
Web Server Lab (20 points)
In this lab, you will learn the basics of socket programming for TCP connections in Python: how to create

a socket, bind it to a specific address and port, as well as send and receive a HTTP packet. You will also

learn some basics of HTTP header format.

You will develop a web server that handles one HTTP request at a time. Your web server should accept

and parse the HTTP request, get the requested file from the server’s file system, create an HTTP response

message consisting of the requested file preceded by header lines, and then send the response directly to

the client. If the requested file is not present in the server, the server should send an HTTP “404 Not Found”

message back to the client.

Code
Below you will find the Python skeleton code for the Web server. You are to complete the skeleton code.

The places where you need to fill in code are marked with #Fill in start and #Fill in end. Each place

may require one or more lines of code. (Note: If you use other languages, you need to write the code from

scratch to implement similar functions.)

Running the Server
Put an HTML file (e.g., HelloWorld.html) in the same directory that the server is in. Run the server program.

Determine the IP address of the host that is running the server (e.g., 128.238.251.26). From another host,

open a browser and provide the corresponding URL. For example:

http://128.238.251.26:6789/HelloWorld.html

‘HelloWorld.html’ is the name of the file you placed in the server directory. Note also the use of the port

number after the colon. You need to replace this port number with whatever port you have used in the server

code. In the above example, we have used the port number 6789. The browser should then display the

contents of HelloWorld.html. If you omit ":6789", the browser will assume port 80 and you will get the

web page from the server only if your server is listening at port 80.

Then try to get a file that is not present at the server. You should get a “404 Not Found” message.

Extension
Currently, the web server handles only one HTTP request at a time. Implement a multithreaded server that

is capable of serving multiple requests simultaneously. Using threading, first create a main thread in which

your modified server listens for clients at a fixed port. When it receives a TCP connection request from a

client, it will set up the TCP connection through another socket and services the client request in a separate

thread. There will be a separate TCP connection in a separate thread for each connection.

What to Hand in
You will hand in the complete server code along with the screen shots of your client browser, verifying that

you actually receive the contents of the HTML file from the server.

Skeleton Python Code for the Web Server
#import socket module

from socket import *

import sys # In order to terminate the program

serverSocket = socket(AF_INET, SOCK_STREAM)

#Prepare a sever socket

#Fill in start

#Fill in end

while True:

 #Establish the connection

 print('Ready to serve...')

 connectionSocket, addr = #Fill in start #Fill in end

 try:

 message = #Fill in start #Fill in end

 filename = message.split()[1]

 f = open(filename[1:])

 outputdata = #Fill in start #Fill in end

 #Send one HTTP header line into socket

 #Fill in start

 #Fill in end

 #Send the content of the requested file to the client

 for i in range(0, len(outputdata)):

 connectionSocket.send(outputdata[i].encode())

 connectionSocket.send("\r\n".encode())

 #Close the client connection socket

 connectionSocket.close()

 except IOError:

 #Send response message for file not found

 #Fill in start

 #Fill in end

 #Close the client connection socket

 #Fill in start

 #Fill in end

serverSocket.close()

sys.exit()

