
Statistical Multiplexing and Queues

CMPS 4750/6750: Computer Networks
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Outline

• The Chernoff bound (3.1)
• Statistical multiplexing (3.2)
• Discrete-time Markov chains (3.3)
• Geo/Geo/1 queue (3.4)
• Little’s law (3.4)
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Statistical multiplexing

• Example: 
− 10 Mb/s link
− each user:

• active with a probability 0.1
• 100 kb/s when “active”

• How many users can be supported?
− assume that there is no output queue
− 1. allocation according to peak rate (e.g., circuit switching): 10Mbps/100kpbs = 100
− 2. statistical multiplexing: allow ! ≥ 100 users to share the link

• What is the overflow probability? Pr(at least 101 users become active simultaneously)
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n users

10 Mbps link

…
..

Each user: active with prob ' = 0.1	
100 kb/s when active



Statistical multiplexing
• Allow ! > 100 users to share the link

− For each user %, let &' = 1	if	user	% is	active,	&' = 0
otherwise	
−Assume &'’s are i.i.d., &'	~ Bernoulli(0.1)

−Overflow probability:
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Markov’s inequality

Lemma 3.1.1 (Markov’s inequality) For a positive r. v. #, the following inequality 
holds for any $ > 0:

Pr # ≥ $ ≤ , -
.

Proof Define a r.v. / such that / = $ if # ≥ $ and / = 0 otherwise. So 

1 # ≥ 1 /
											= $ Pr / = $

= $ Pr # ≥ $
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The Chernoff bound
Theorem 3.1.2 (the Chernoff bound) Consider a sequence of independently and identically 
distributed (i.i.d.) random variables !" . For any constant $, the following inequality holds:

Pr '!" ≥ )$
*

"+,

≤ .
/* 012

345
67/89: ; 6 	

where = > = @(.6BC) is the moment generation function of !,

If !"	~ Bernoulli(F), and F ≤ $ ≤ 1, then 

Pr '!" ≥ )$
*

"+,

≤ ./*H(7∥J)	

where K $ ∥ F = $ log 7
J
+ 1 − $ log ,/7

,/J
		 (Kullback-Leibler divergence between Bernoulli r.v.s)
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Proving the Chernoff bound 
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Markov inequality

Independent dist. 

Identical dist. 



Proving the Chernoff bound (Bernoulli case)

If !"	~ Bernoulli(%) ∀', and % ≤ ) ≤ 1, then 

sup
./0

1) − log6 1 = ) log 8
9
+ 1 − ) log ;<8

;<9
	

Proof Since !;	~ Bernoulli(%), 6 1 = = >.?@ = %>. + (1 − %)

Let C 1 = 	1) − log6 1 = 1) − log %>. + 1 − %

CD 1 = ) − 9EF

9EFG(;<9)
,  

⇒ sup
./0

C 1 =	 ) log 8
;<8	

+ log ;<9
9

− log 8
;<8

1 − % + 1 − %

= ) log 8
9
+ 1 − ) log ;<8

;<9
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Statistical multiplexing
• Allow ! > 100 users to share the link

− For each user %, let &' = 1	if	user	% is	active,	&' = 0
otherwise	

− Assume &'’s are i.i.d., &'	~ Bernoulli(0.1)

− Overflow probability

• Pr	(∑ &' ≥ 101) =	?
'@A  ∑ ?

B 0.1
B 1 − 0.1 ?DB ?

B@AEA

• Using the Chernoff bound:

Pr F&' ≥ 101

?

'@A

= Pr F&' ≥ !
101
!

?

'@A

≤ HD?I
JKJ
L
	∥E.A
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Discrete-time stochastic processes

• Let !", $ ∈ ℕ be discrete-time stochastic process with a countable state space
− For each $ ∈ ℕ,  !" is a random variable 

−!" is considered as the state of the process in time-slot $
−!" takes on values in a countable set '
−Any realization of !" is called a sample path

• E.g., Let !", $ ∈ ℕ 	be an i.i.d. Bernoulli process with parameter )
− !"~Bernoulli()), i.i.d. over $
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Discrete-time Markov chains
• Let !", $ ∈ ℕ be a discrete-time stochastic process with a countable state space. 
!" is called a Discrete-Time Markov Chain (DTMC) if

Pr !"'( = *	|	!" = -, !".( = -".(,…, !0 = -0 =

= 	P23

− P23: the probability of moving to state * on the next transition, given that the 
current state is -
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Pr !"'( = *	|	!" = - (Markovian Property)

(“time homogeneous”)



Transition probability matrix

• Transition probability matrix of a DTMC

− a matrix !	whose ($, &)-th element is P)*
−∑ ,)* = 1* , ∀$

− Ex: for an i.i.d. Bernoulli process with parameter 0,	! =
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(each row of !	summing to 1)
0 1 − 0
0 1 − 0



Discrete-time Markov chains 

Repair facility problem: a machine is either working or is 
in the repair center, with the transition probability matrix:

Assume Pr #$ = “Working” =	0.8, Pr #$ = “Broken” =	0.2 

What is Pr #1 = “Working” ?	
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W            B
W
B3	 =	 0.95 0.05

0.40 0.60

Pr #1 = “W” = Pr #$ = “W”	 ∩		#1= “W” +Pr #$ = “B”	 ∩			#1= “W” 		
= Pr(#$ = “W”) Pr(#1 = “W”|#$ = “W”) +Pr(#$ = “B”) Pr(#1 = “W”|#$ = “B”)
= Pr #$ = “W” ?@@ + Pr #$ = “B” ?A@
= 0.8	×	0.95 + 0.2×0.4	 = 0.84	

0.95

0.05

0.40

0.60



Discrete-time Markov chains 

In general, we have 

§ Pr #$ = & =	∑ Pr #$)* = + ,-.-

§ Let /. 0 = Pr(#$ = &) , / 0 = /* 0 ,	/4 0 , … .	Then

/ 0 = / 0 − 1 9	
§ A DTMC is completely captured by /[0] and 9
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!-step Transition Probabilities

Let "# = " ⋅ "⋯", multiplied n times.  Let '()
(#)	denote "# ()

Theorem Pr /# = 0	|	/2 = 3 = '()
(#)

Proof (by induction):  ! = 1, we have Pr /# = 0	|	/2 = 3 = '() = '()
(5)

Assume the result holds for any !,	we have

Pr /#75 = 0	|	/2 = 3 = 	∑ Pr /#75 = 0, /# = 9|	/2 = 3:

= ∑ Pr /#75 = 0|/# = 9, /2 = 3: Pr /# = 9	|	/2 = 3

= ∑ ':): '(:
(#) = ∑ '(:

(#)':): = '()
(#75)

16



Limiting distributions

• Repair facility problem: a machine is either working or is 
in the repair center, with the transition probability matrix:

• Q:What fraction of time does the  machine spend in the 
repair shop? 

17

W            B

W
B!	 =	 1 − & &

' 1 − '
0 < & < 1, 0 < b < 1

!, 	=	
-./ 01/1- 2

/.-
/1/ 01/1- 2

/.-
-1- 01/1- 2

/.-
/.- 01/1- 2

/.-

lim,→7	!, 	=	
-

/.-
/

/.-
-

/.-
/

/.-

A probability distribution	8 = 80, 89, … is 
called a limiting distribution of the DTMS if 

8; = lim	,→7<=;
(,) and     ∑ 8;	 = 1		;



Stationary distributions 

• A probability distribution ! = (!$, !&, … ) is said to be stationary for the DTMS if 

! ⋅ * = !
− ! ⋅ * = ! ⇔ ∑ !-	/-0 = !0- 	∀	2
− If 3 0 = !, then 3 5 = !	for all 5

• Theorem If a DTMS has a limiting distribution !, then ! is also a stationary 
distribution and there is no other stationary distribution 

• Q1: under what conditions, does the limiting distribution exist? 

• Q2: how to find a stationary distribution?
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Irreducible Markov chains

• Ex: A Markov chain with two states ! and " and the transition probability matrix 
given by: 

− If the chain started in one state, it remained in the same state forever
− lim&→(	*& = *
− , ⋅ * = , for any distribution , (not unique)

• State . is said to be reachable from state / if there exists 0 ≥ 1 so that 345
(&) > 0

• A Markov chain is said to be irreducible if any state / is reachable from any other 
state .

19

*	 =	 1 0
0 1



Aperiodic Markov chains

• Ex: A Markov chain with two states ! and " and the transition probability matrix 
given by: 

− # ⋅ % = #	
− lim	
+→-

.//
(+) does not exist for any 2

• Period of state 3: 45 = gcd	{: > 0: .55
(+) > 0}	

− State 3 is said to be aperiodic if 45=1

• A Markov chain is said to be aperiodic if all states are aperiodic

• Theorem Every state in an irreducible Markov chain has the same period. 
20

%	 =	 0 1
1 0

⇒ # = (0.5, 0.5)
(a state is only visited every other time step.)



Big Theorem 

Consider a DTMC that is irreducible and aperiodic

§ If the chain has a finite state-space, it always has a limiting distribution.

§ There must be a positive vector ! such that ! = !# (an invariant measure)

§ If ∑ !% = 1% , then !	it is the unique stationary distribution and lim	
+→-

.%/
(+) = !/

§ If ∑ !% = ∞% , a stationary distribution does not exist and lim	
+→-

.%/
(+) = 0
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• Ex: given the transition matrix P of a 
DTMC, find its stationary distribution.

How to find stationary distributions? 

• Using the definition: 

"# = ∑ "&	(&#& 	∀*	
⟺ "# = ∑ "&	(&#&,# + "#(##						∀*

⟺ "# 1 − (## = ∑ "&	(&#&,# 			∀*	
⟺ "# ∑ (#&&,# = ∑ "&	(&#&,# 					∀*	

(global balance equations)
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0	 =	
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How to find stationary distributions? 

• Using the definition: 

!" = ∑ !%	'%"% 	∀)	
⟺ !" = ∑ !%	'%"%+" + !"'""						∀)

⟺ !" 1 − '"" = ∑ !%	'%"%+" 			∀)	
⟺ !" ∑ '"%%+" = ∑ !%	'%"%+" 					∀)	

(global balance equations)
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• Using the local balance equations:

!"'"% = !%'%"				∀/, )

⟹ ∑ !"'"%% = ∑ !%	'%"			% ∀)
⟹ !" ∑ '"%%+" = ∑ !%	'%"%+" 	∀)



Geo/Geo/1 queue
• A single server queue with infinite buffer size

• ! " 	- number of packets arrive in time-slot "
− ! " ~Bernoulli(%), i.i.d. over "

• ' " - number of packets served in time-slot "
− ' " ~Bernoulli((), i.i.d. over "

− ' " and ! " are independent processes

• ) " - number of packets in the queue at the beginning of time-slot " (before packet arrivals occur)

• Queueing dynamics:   ) " + 1 = ) " + ! " − ' " .

− Arrival occurs before any departure in each time-slot

− ) " includes the packet that is being processed
24

buffer with infinite size

⇒ inter-arrival time ~ Geometric (%)

⇒ service time ~ Geometric (()

1 . = max(1, 0)



Geo/Geo/1 queue

! " is an infinite state Markov chain

#$,$&'	 = *(1 − .),  

Let 0 = * 1 − . =	Pr(1 arrival, no departure)

1 = . 1 − * =	Pr(no arrival, 1 departure)
25

We will assume 0 < *, . < 1
which implies 0 < 0, 1 < 1

#$,$	 = *. + (1 − *)(1 − .)	for 5 > 0, #7,7	 = 1 − *(1 − .)



Geo/Geo/1 queue

• The Markov chain ! " is 

− irreducible: any state is reachable from any other state

− aperiodic:

26

#$$	 > 0
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To find the stationary distribution, apply the local 
balance equation:

!"#$%	 = ("#
⇒ "#$% = *"# where * = +

, =
- %./
%.- /

⇒ "# = *#"0	
∑ "## = 1

§ If * < 1,	 ∑ *# = %
%.5#

§ If *	 ≥ 1, "0 ∑ *## = 1 never hold

Geo/Geo/1 queue

⇒	∑ "## = "0 ∑ *## = 1
The Markov chain has a 
stationary distribution iff
* < 1, or equivalently 7 < 8

⇒ "0 = 1 − *,		 "# = *#(1 − *)



Geo/Geo/1 queue

Assume ! < 1,		then &' = !' 1 − !
The average queue length is 

* + = ∑ -!'(1 − !)'

= 1 − ! !∑ -!'01'

= 1 − ! ! 1
102 3

= 2
102

What is the average waiting time of a packet?

28



Little’s law

Informally, “the mean queue length is equal to the product of the mean arrival rate 
and the expected waiting time” 

• holds for very general arrival processes and service disciplines

• !(#) – number of packet arrivals up to  (and including) time-slot #
• %& # = 1	if packet * arrived in a time-slot < # and departs in a time-slot ≥ #, %&(#) =
0	otherwise

− %& # = 1	if packet * remains in the system at the beginning of time-slot #

− . # = 	∑ %&(#0(123)
&43 )

− the waiting time of packet *, denoted by 5&, is defined to be 5& = ∑ %&6143 (#)
29



Little’s law

! " = $ %
% :  average arrival rate by time-slot "

& " = '
% 	∑ *(,)%

./' :	average queue length by time-slot "
1 2 = '

3 ∑ 453
5/' :  average waiting time of the first 2 packets

Define the following limits (with probability 1)

! = lim
%→:

! " , 		& = lim
%→:

& " , 1 = lim
3→:

1 2

Theorem 3.4.1 (Little’s law) Assuming that ! and 1 exists and are finite, & exists 
and & = !1.
• also applies to the stead-state expectations (from the ergodicity of Markov chains) 

30



Proof of Little’s law (sketch)
Theorem 3.4.1 (Little’s law) Assuming that ! and " exists and are finite, 
# exists and # = !".

Proof:  # % = &
' 	∑ *(,)'

./&

= &
' ∑ ∑ 01(,2(.3&)

1/& ) '
./&

= 	 &' 	∑ ∑ 01(,)'
./&

2('3&)
1/&

≤ 	 &' 	∑ ∑ 01 ,5
./&

2 '
1/& =	 &' 	∑ 612(')

1/&

It remains to show # ≥ !	" (see the textbook [SY])
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lim
'→5

# % ≤ lim
'→5

	&' 	∑ 612 '
1/&

= 	 lim
'→5

2 '
'

∑ <=> ?
=@A
2 ' 	

= !	"



Geo/Geo/1 queue

Assume ! < 1,		then &' = !' 1 − !
The average queue length is 

* = 	+ , = ∑ .!'(1 − !)'

= 1
231

The mean waiting time of a packet 4 = 5
6 =

1
6 231
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Geo/Geo/1/B queue

• Same setting as Geo/Geo/1 except that the buffer size is ! < ∞
− $(&) is a irreducible and aperiodic DTMC with a finite state space

()*+,	 = /)* for 0 ≤ 2 ≤ ! − 1, 
⇒ )*+, = 6)* where 6 = 7

8 =
9 ,:;
,:9 ; for 0 ≤ 2 ≤ ! − 1, 

⇒ )* = 6*)<	 for 0 ≤ 2 ≤ !, 

• What is the fraction of arriving packets that are dropped?
− => = Pr $ & = ! A & = 1 =	

33

⇒ )<B 6*
C

*D<
= 1 ⇒ )< =

1 − 6
1 − 6C+, ⇒ )* =

1 − 6 6*
1 − 6C+, 	 , 2 = 0, 1, … , !	

Pr $ & = ! = )C


