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Statistical multiplexing

Each user: active with prob p = 0.1

o Example: 100 kb/s when active
— 10 Mb/s link
“4’
— each user: -

* active with a probability 0.1

100 kb/s when “active” q 10 Mbps link
e

* How many users can be supported?
— assume that there 1s no output queue
— 1. allocation according to peak rate (e.g., circuit switching): 10Mbps/100kpbs = 100
— 2. statistical multiplexing: allow n = 100 users to share the link
* What is the overflow probability? Pr(at least 101 users become active simultaneously)



Statistical multiplexing

 Allow n > 100 users to share the link Each user: active with prob 0.1

) _ o _ 100 kb/s when active
—For each user i, let X; = 1 ifuser i is active, X; = 0

otherwise

— Assume X;’s are i.i.d., X; ~ Bernoulli(0.1)

. 10 Mbps link
— Overflow probability: =

n

Pr (Zn: X =2 101) = z (Z) 0.1%(1 — 0.1)"*
=1

k=101



Markov’s mnequality

Lemma 3.1.1 (Markov’s inequality) For a positive . v. X, the following inequality
holds for any € > 0:

Pr(X > ¢) < 2%
Proof Definearv.Y suchthatY = e1f X = € and Y = 0 otherwise. So
X
E(X) = E(Y) ()
= ePr(Y =¢)
=ePr(X =€) € Y(s)




The Chernoff bound

Theorem 3.1.2 (the Chernoff bound) Consider a sequence of independently and 1dentically
distributed (i.i.d.) random variables {X;}. For any constant x, the following inequality holds:

n
— Ox—1 6
Pr(ZXi 2nx> <o " oubtOx—log M(0))
=1

where M(0) = E(e?*1) is the moment generation function of X;

If X; ~ Bernoulli(p), and p < x < 1, then

n
Pr (Z X; = nx) < g "D lp)
i=1

where D(x || p) = x logg + (1 —x) logi_;; (Kullback-Leibler divergence between Bernoulli r.v.s)
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Proving the Chernoff bound

n
Pr (Z X; > nx) <Pr(e?Zi=1Xi > ¢7%)  vg >0
i=1

E[ee Z?=1 Xi]

e@nx

Markov inequality <

E[[T}, e%%i]
enx

1_[1iﬂl=1 E(e BXi)
e@nx

[M(6)]"
enx

Independent dist.

Identical dist. —

— e —n(6x—log M(9))

Vo > 0,Pr(T™, X; = nx) < e~ ™6x-log M(0))

= PrQLX; =2 nx) < ggge—nwx—log M(6))

e

—n sup{fx—log M(6)}
6=0



Proving the Chernoff bound (Bernoulli case)

If X; ~ Bernoulli(p) Vi, and p < x < 1, then

sup{fx —log M (0)} = xlog=+ (1 — x) logl_—x
6=0 p 1-p

Proof Since X; ~ Bernoulli(p), M(8) = E(eexl) =pe? + (1 -p)

Let f(8) = Ox —logM(0) = 0x — log (pe‘9 + (1 — p))
x 1—0p

6
O =x- gty [(O)=0=e=

= sup f(0) = x(log£+ log%) — log (&(1 —p)+1-— p)

6=0

1—x p (= 1since x = p)

X ogp+( x) ogl_p



StatIStlcal mu1tlpleX1ng Each user: active with prob 0.1

100 kb/s when active
e Allow n > 100 users to share the link

— For each user i, let X; = 1 if user i is active, X; = 0
otherwise

. 10 Mbps link
— Assume X;’s are i.i.d., X; ~ Bernoulli(0.1) S

— Overflow probability
* Pr(XfL, X; = 101) = YR_104(3)0.1%(1 — 0.1)"*
* Using the Chernoff bound:

- - 101
Pr ZXiZlOl = Pr inZTlT
i=1

i=1

overflow probability

101
—-Nn l )| —— 10710 T T T T T 1
< e ( n " 0 ' 1) 500 550 600 650 700 750 800

number of flows
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Discrete-time stochastic processes

* Let {X,, k € N} be discrete-time stochastic process with a countable state space
—For each k € N, X}, is a random variable
— X}, 1s considered as the state of the process in time-slot k
— X}, takes on values in a countable set S

— Any realization of {X}, } is called a sample path

* E.g., Let {X,, k € N} be an i.i.d. Bernoulli process with parameter p

— X ~Bernoulli(p), i.i.d. over k
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Discrete-time Markov chains

* Let {X, k € N} be a discrete-time stochastic process with a countable state space.
{X,} is called a Discrete-Time Markov Chain (DTMC) if
Pr(X,,, =j | X, =i) (Markovian Property)

Pr(Xk+1 =J | Xk =1, Xk—1 = lg-1,., X0 = io)
_ p. (“ttme homogeneous™)
= P

— P;;: the probability of moving to state j on the next transition, given that the

current state 1s i

12



Transition probability matrix

 Transition probability matrix of a DTMC
—a matrix P whose (i, j)-th element is P;;
—2;P;j =1, Vi (each row of P summing to 1)

— EXx: for an i.i.d. Bernoulli process with parameter p, P = (

p 1—-p
p 1—-p

)
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Discrete-time Markov chains

Repair facility problem: a machine is either working or 1s W B
in the repair center, with the transition probability matrix: p=" (0'95 0'05)
B \0.40 0.60.
Assume Pr(X, = “Working”) = 0.8, Pr(X, = “Broken”) = 0.2 0.05 0.60
s Q@
What is Pr(X; = “Working”)? — o
0.40

Pr(X; = “W”) = Pr(Xo = “W” N X;= “W”) +Pr(X, = “B” N X;= “W”)
= Pr(Xo = “W”) Pr(X; = “W”|X, = “W”) + Pr(X, = “B”) Pr(X; = “W”|X, = “B”)
= Pr(Xo = “W”)Pyy + Pr(X, = “B”) Pgyy
= 0.8 X 0.95 + 0.2x0.4 = 0.84
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Discrete-time Markov chains

In general, we have
u PI‘(Xk =]) — Zi Pr(Xk_l — l)Pl]
" Letp;lk] = Pr(Xy =) .plk] = (p1lk], p2[k], ...). Then

plk] = plk —1]P
= ADTMC is completely captured by p[0] and P



n-step Transition Probabilities

Let P" = P - P-- P, multiplied  times. Let P\"” denote (P™);;
Theorem Pr(X,, =j| X, =1i) = Pl.(.n)
Proof (by induction): n =1, we have Pr(X,, =j | X, =1i) = P;; = P(l)
Assume the result holds for any n, we have
PriXns1 =j | Xo =10 = X PriXns1 =/, Xn =k|Xo =1)
=Yk PriXpns1 =JjlXn =k, Xo =D Pr(X, =k | X, =1)

= Dk Pyj P l(n) 2k P (n)Pk] Plg-nﬂ)



Limiting distributions

4 B
51l

* Repair facility problem: a machine 1s either working or 1s
W

in the repair center, with the transition probability matrix: P =, (

* 0. What fraction of time does the machine spend in the 0<a<L0<b<l

repair shop?
b+a(l—-a-b)* a—-a(1—-a-b)"

pP" — a+b a+b A probability distribution T = (14, 5, ... ) iS
b-b(1-a-b)* a+b(1-a-b)" called a limiting distribution of the DTMS if
a+b a+b _ n)
, 4 nfzil_%opif and X ;m =1
: a+b a+b
lim, ., P" = b .

a+b a+b



Stationary distributions

* A probability distribution m = (14, 7T,, ... ) 1s said to be stationary for the DTMS if
m-P=m
—n-P=mm & Y,nPjj=m; V]
— If p|0] = &, then p|k] = = for all k

* Theorem If a DTMS has a limiting distribution 7, then 7 1s also a stationary
distribution and there 1s no other stationary distribution

* O/: under what conditions, does the limiting distribution exist?

* 02: how to find a stationary distribution?



Irreducible Markov chains

* Ex: A Markov chain with two states a and b and the transition probability matrix
given by: /10
P = (o 1)

— If the chain started in one state, it remained in the same state forever
—lim,,, P" =P
—m - P = @ for any distribution  (not unique)

* State j 1s said to be reachable from state i if there exists n = 1 so that Pig.n) >0

* A Markov chain 1s said to be 1irreducible 1f any state i 1s reachable from any other
state j
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Aperiodic Markov chains

* Ex: A Markov chain with two states a and b and the transition probability matrix
given by: /0 1
P=(1 o
-n-P=m = m=(05,0.5)

— lim P(.n)

%7~ does not exist for any j (a state is only visited every other time step.)
n—oo

* Period of state i: d; = gcd{n > O: Pign) > 0}
— State i 1s said to be aperiodic if d;=1
* A Markov chain 1s said to be aperiodic 1f all states are aperiodic

* Theorem Every state in an irreducible Markov chain has the same period.
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Big Theorem

Consider a DTMC that is irreducible and aperiodic
= [f the chain has a finite state-space, it always has a limiting distribution.
* There must be a positive vector  such that 1 = 7P (an invariant measure)

= [f ),; m; = 1, then & it is the unique stationary distribution and lim Pig.") = m;

n—->00

= If ),; m; = oo, a stationary distribution does not exist and lim Pl.S.n) =0

n—0o
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How to find stationary distributions?

* Using the definition:  Ex: given the transition matrix P of a

_ DTMC, find its stationary distribution.
mj = 2T Pij V]

e Tl,'j = Ziijni Pl] +T[]P]] Vj P = ;9 2’)
, R

= 1;(1-Pj) = 2izjTi Pij V] 1 0

S T Nz Pji = LixjTi Pij Vj

(global balance equations)
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How to find stationary distributions?

* Using the definition:
mj = )T P Vj

S T = YT Py + PV
< (1= Pyj) =Xix;mi Py Vj
S T Yz Pi = Xz T Pij VJ

(global balance equations)

* Using the local balance equations:

T[iji = T[iPij Vl,]
= X miP; =X, Pij Vj

= T Nixj Pji = Liwj i Pij VJ
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Geo/Geo/1 queue

. . . . . —_—> —>
* A ssingle server queue with infinite buffer size I O
* a(k) - number of packets arrive in time-slot k buffer with infinite size

— a(k)~Bernoulli(1), i.i.d. over k = inter-arrival time ~ Geometric (1)

s(k) - number of packets served in time-slot k

— s(k)~Bernoulli(), i.i.d. over k = service time ~ Geometric (i)

— s(k) and a(k) are independent processes

q (k) - number of packets in the queue at the beginning of time-slot k (before packet arrivals occur)

Queueing dynamics: q(k + 1) = [q(k) + a(k) — s(k)]* (x)* = max(x, 0)
— Arrival occurs before any departure in each time-slot

— q(k) includes the packet that is being processed
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Geo/Geo/1 queue

g (k) is an infinite state Markov chain

e+ (T=2) - 2u+ (1-2)-u

Piivi =A1—w), Py =Au+(Q-DA-wfori >0, Poo =1-A(1—p)

Let @ = A(1 — p) = Pr(1 arrival, no departure) We will assume 0 < A, u <1
B = u(1 — A1) =Pr(no arrival, 1 departure) which implies 0 < a, f < 125



Geo/Geo/1 queue

1-a O (U

—a—-pf 1-a-p

* The Markov chain g(k) is
— 1rreducible: any state 1s reachable from any other state

— aperiodic: Pyy >0
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Geo/Geo/1 queue

To find the stationary distribution, apply the local
balance equation:

frii1 = am;
= i1 = pm; where p = = = 1(1;;1) :
B =M The Markov chain has a
stationary distribution 1ff

p < 1,orequivalently A < u

= T; = p'M

yom =1 }:' 2 7T :T[OZipi =1

. 1 .
"Ifp <1, ZiPl=E >my=1—p, 7; =p'(1—p)

= Ifp >1,myY;p* = 1 never hold
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Geo/Geo/1 queue

Assume p < 1, thenmr; = p*(1 — p)
The average queue length 1s
E(q) = X;ip'(1 - p)

=1 -p)pX;ip-?

What 1s the average waiting time of a packet?
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Little’s law

Informally, “the mean queue length is equal to the product of the mean arrival rate
and the expected waiting time”

* holds for very general arrival processes and service disciplines
* A(t) — number of packet arrivals up to (and including) time-slot ¢

« I;(t) = 1ifpacket i arrived in a time-slot < t and departs in a time-slot > t, I;(t) =
0 otherwise

— I;(t) = 1 if packet i remains in the system at the beginning of time-slot t

—q(®) = V1)

— the waiting time of packet i, denoted by w;, is defined to be w; = Y721 I; (t)



Little’s law

A(T) = @ . average arrival rate by time-slot T

L(T) == Zt—l q(t) : average queue length by time-slot T
W(n) ==)1-4 Wy: average waiting time of the first n packets

Define the following limits (with probability 1)
A=1imA(T), L= llm L(T) W = limW(n)

T — o0 Nn—o00

Theorem 3.4.1 (Little’s law) Assuming that A and W exists and are finite, L exists
and L = AW

* also applies to the stead-state expectations (from the ergodicity of Markov chains)



Proof of Little’s law (sketch)

Theorem 3.4.1 (Little’s law) Assuming that A and W exists and are finite,
L exists and L = AW

1
Proof: L(T) == X{=1q(t) Tllm L(T) < Tllm ZA(T)
= 2oL 12““ VL) i A D w,

T-co T A(T)
1

= ZA(T DY L)

T =AW
STV IR L) = 2 i w

I/\

It remains to show L = A W (see the textbook [SY])



Geo/Geo/1 queue

Assume p < 1, thenmr; = p*(1 — p)
The average queue length 1s
L= E(qQ)=X;ip'(1-p)

P
1-p

e L
The mean waiting time of a packet W =

> |

|l
N
N\
i
e
—
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Geo/Geo/1/B queue

OO X L Ceee GO
1-a B ' B ' B B 1-5

1-a-p 1-a-p
* Same setting as Geo/Geo/1 except that the buffer size 1s B < o0
—q(t) 1s a irreducible and aperiodic DTMC with a finite state space
priyq =am; for0<i<B-—1,

_A-pw)

<i<B-—
(A)MforO I<B-—-1,

= T;,q = pT; where p =

"%ISQ

>m; =p'nm, for0<i<B, |
= ZB =1 =2>ma, = 1-p =>T[-—(1_p)pl i=0,1 B
T[O i:()p — 0 — 1_pB+1 l 1_pB+1 ) y Ly eey

* What 1s the fraction of arriving packets that are dropped?
—pg = Pr(q(t) = Bla(t) =1) =Pr(q(t) = B) = mp
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