Discrete Probability: a brief review
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Applications of Probability in Computer Science

* Information theory
* Networking

* Machine learning
* Algorithms

* Combinatorics

* Cryptography



Sample Space

* Experiment: a procedure that yields one of a given set of possible outcomes

— Ex: flip a coin, roll two dice, draw five cards from a deck, etc.

» Sample space (2: the set of possible outcomes
— We focus on countable sample space: (1 is finite or countably infinite

— In many applications, () 1s uncountable (e.g., a subset of R)

* Event: a subset of the sample space
— Probability 1s assigned to events

— For an event A C (), its probability is denoted by P(A4)

* Describes beliefs about likelihood of outcomes



Discrete Probability

* Discrete Probability Law
— A function P: P () — [0,1] that assigns probability to events such that:

* 0 <P({s}) <1foralls € (Nonnegativity)

* P(A) = Y.cs P({s}) forall A € O (Additivity)

* P(Q) =) .cqP{shH =1 (Normalization)
e Discrete uniform probability law: |Q| = n,P(4) = “vaca

n



Examples

* Ex. 1: consider rolling a pair of 6-sided fair dice

-Q={(i,j):i,j =1,2,3,4,5, 6}, each outcome has the same probability of 1/36

— P({the sum of the rolls is even}) = 18/36 = 1/2

* Ex. 2: consider rolling a 6-sided biased (loaded) die

- Assume P(3) =2,P(1) = P(2) = P(4) = P(5) = P(6) = -
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Properties of Probability Laws

* Consider a probability law, and let A, B, and C be events
~If A € B, then P(4) < P(B)
-P(A) =1—-P(4)
~P(AUB)=P(A) + P(B) —P(ANB)
—~P(A U B) = P(A) + P(B) if A and B are disjoint, i.e, ANB = @



Conditional Probability

* Conditional probability provides us with a way to reason about the outcome of an
experiment, based on partial information

* Let A and B be two events (of a given sample space) where P(B) > 0. The
conditional probability of A given B is defined as

P(A N B)

P(A|B) = P(B)

* Ex. 3: roll a six-sided fair die. Suppose we are told that the outcome 1s even. What

. . . o
is the probability that the outcome is 67 (AN B) = % B

1
A P(B)=5  P(AIB)= 3



Independence

* We say that event A is independent of event B if P(A | B) = P(4)

* Two events A and B are independent if and only if P(A N B) = P(A4) P(B)

* We say that the events A4, A4,, ... A,, are (mutually) independent if and only if
P(Njes A;) =1l;es P(4;), for every subset S of {1, 2, ...,n}



Bernoulli Trials

* Bernoulli Trial: an experiment with two possible outcomes

— E.g., flip a coin results in two possible outcomes: head (H) and tail (T')
* Independent Bernoulli Trials: a sequence of Bernoulli trails that are mutually independent

* Ex.4: Consider an experiment involving five independent tosses of a biased coin, in which the
probability of heads 1s p.

— What is the probability of the sequence HHHTT?

* A; = {i—th toss is a head}

* P(4; N4, N A3 N A, N As) = P(A)P(4,)P(A3)P(44)P(45) = p*(1 - p)?
— What is the probability that exactly three heads come up?

 P(exactly three heads come up) = (g)p3(1 —p)?



Random Variables

* Arandom variable (r.v.) 1s a real-valued function of the experimental outcome.

* Ex. 5: Consider an experiment involving three independent tosses of a fair coin.
— O ={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

— X (s) = the number of heads that appear for s € ().
~P(X = 2) = P({HHT,HTH,THH}) = 3/8
~P(X <2) = P({HTT,THT,TTH,TTT}) = 4/8 = 1/2

* A discrete random variable 1s a real-valued function of the outcome of the experiment

that can take a finite or countably infinite number of values
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Probability Mass Functions

 Let X be a discrete r.v. Then the probability mass function (PMF), px(:) of X, is
defined as:

px(x) =P(X =x) =P(s € Q: X(s) =x))
—2x Px(x) =1
—P(X €5) = Yyespx(x)
* The cumulative distribution function (CDF) of X 1s defined as

Fx(a) =P(X < a) = Yy<aPx(x)
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Bernoulli Distribution

* Consider a Bernoulli trial with probability of success p. Let X be ar.v.
where X = 1 1f “success” and X = 0 1if “failure”

¥ — 1 w/prob p
0 otherwise

We write X~ Bernoulli(p). The PMF of X 1s defined as:
px(1) =p
px(0) =1-p
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Binomial Distribution

* Consider an experiment of n independent Bernoull: trials, with the
probability of success p. Let the r.v. X be the number of successes in the n
trials.

* The PMF of X i1s defined as:
px(k) =P(X =k)
= (Z)pk(l —p)" % wherek =0,1,2,...,n

We write X~ Binomial(n, p).
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Geometric Distribution

* Consider an experiment of independent Bernoulli trials, with probability
of success p. Let X be the number of trials to get one success.

e Then the PMF of X i1s:
P(X=k)=(1-p)*1p, where k=1,2,3..

We write X~ Geometric(p).
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Expected Value

* The expected value (also called the expectation or the mean) of a random
variable X on the sample space () 1s equal to

E(X) = Xseq X(s) P({s})

= Dx XPX(x)
Ex. 6: If X~ Bernoulli(p), E(X)= 1-p+0-(1—p) =p

Ex. 7: If X~ Geometric(p), E(X) = Z k(1—p)1p =
k=1

= | =

15



Linearity of Expectations

e If X;,i = 1,2,...,n are random variables on (), and a and b are real numbers, then
—E(aX+b)=aE(X)+b

* Ex. 8: X~ Binomial(n, p)
= /n _

k=0
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Variance

* The variance of a random variable X on the sample space () is equal to
2
V) =Zsea(X(s) —ECO)" P({s))

2
=E|(Xx-E00)’|
— The variance provides a measure of dispersion of X around its mean

— Another measure of dispersion is the standard deviation of X:

o(X) =V(X)
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Variance

e Theorem: V(X) = E(X?) — E(X)?

* Ex. 1: Let X be a Bernoulli random variable with parameter p
EX)=1-p+0-(1-p)=p EXH=1-p+0-(1-p)=p
V(X) = EX?) —EX)?=p—p’

* Ex. 2: Let X be a geometric random variable with parameter p

1 2 1
E(X):;, E(XZ):E—;
1-p

V(0 = E(X?) - E(0)? =1
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Moment-Generating Functions

* The moment-generating function of ar.v. X 1s

My (t) = E(et®),t € R

2vyv2 3y3 nyn

eX =1 HtX+ ot

2 2 3 3

> My(t) = 1+ tE(X) + — 2 o

d"Mx(0)

i E(X™)

+ .-

+ ...



Joint Probability and Independence

* The joint probability mass function between discrete r.v.’s X and Y 1s
defined by

pxy (x,y) =P{X =xandY =y}
* We say two discrete r.v.’s X and Y are independent 1f
pxy (0, y) =px(x) - py (), Vx,y

e Theorem: If two r.v.’s X and Y are independent, then E(XY) = E(X)E(Y)
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