Network Layer

CMPS 4750/6750: Computer Networks

Outline

= Overview of network layer
» Forwarding (data plane)

" Routing (control plane)

" The Internet Protocol (IP)

" Routing in the Internet: OSPF, BGP

Network Layer

" transport segment from sending to
receiving host

" on sending side encapsulates segments
into datagrams

" on receiving side, delivers segments to
transport layer

= network layer protocols in every host &
router

= router examines header fields in all IP
datagrams passing through it

application

network network
data link data link
network

> s
data link_| L_Physical _Py3cea
Physical network network

data link J{ data link

physical physical

network network

data link data link

phylca M \\vork sical
data link

network

W data link T
=~ network physical data link
i physical

e

\
-
- |
= |

Two key network-layer functions

" forwarding: move packets from router’s input to
appropriate router output

" routing: determine route taken by packets from source
to destination

* routing algorithms

Network layer: data plane, control plane

Data plane Control plane

* |ocal, per-router function " network-wide logic
* forwarding * routing
« dropping * access control

* modify field load balancing

= two control-plane approaches:

values in arriving

packet header * traditional routing algorithms:
implemented in routers
V
% e software-defined networking
(SDN): implemented in (remote)

servers

Per-router control plane

» Individual routing algorithm components in each and every router interact in the
control plane

control
plane
| | | | data

plane

|
Local forwarding |
table

header output

0100 3
0110 2
0111 2
1001 1

values in arriving
packet heade

Logically centralized control plane

= A distinct (typically remote) controller interacts with local control agents (CAs)

— Remote Controller —

control
plane

values in arriving
packet header

Network service model

|H

Q: What service model for “channel” transporting datagrams from

sender to receiver?

example services for example services for a flow
individual datagrams: of datagrams:

= guaranteed delivery * in-order datagram delivery

e guaranteed minimum
bandwidth to flow

* restrictions on changes in
inter-packet spacing

= guaranteed delivery with
less than 40 msec delay

The Internet’s network layer
provides “best-effort” service

Outline

" Overview of network layer
" Forwarding (data plane)

" Routing (control plane)

" The Internet Protocol (IP)

" Routing in the Internet: OSPF, BGP

Router architecture overview

routing, management

routing control plane (software)
T procgssor operates in millisecond
time frame

- forwarding data plane
(hardware) operates
in nanosecond
timeframe

A 4
v

high-seed
switching
fabric

<:_________ b o ol - - —
e 0 00

\ 4
v

router input ports router output ports

Input port functions

line

termination

/

_ lookup,
link forwarding _
layer |, | switch
protocol I"""" fabric
(receive) _
queueing

physical layer: 7
bit-level reception

data link layer:
e.g., Ethernet
see chapter 5

decentralized switching:

using header field values, lookup output port using
forwarding table in input port memory (“match plus
action’)

goal: complete input port processing at ‘line speed’
queuing: if datagrams arrive faster than forwarding
rate into switch fabric

Input port functions

line

termination

/

link
layer
protocol
(receive)

lookup,
forwarding

queueing

physical layer: 7
bit-level reception

data link layer:
e.g., Ethernet
see chapter 5

decentralized switching:

using header field values, lookup output port using
forwarding table in input port memory (“match plus

action’)

switch
fabric

destination-based forwarding: forward based only on
destination IP address (traditional)

generalized forwarding: forward based on any set of
header field values

Destination Address Range

forwarding table

Destination-based forwarding

Link Interface

11001000 00010111 00010000

through
11001000

00010111

00010111

00000000

11111111

11001000

through
11001000

00010111

00010111

00011000

00011000

00000000

11111111

11001000

through
11001000

00010111

00010111

00011001

00011111

00000000

11111111

otherwise

13

Destination Address Range

forwarding table

Destination-based forwarding

Link Interface

11001000 00010111 00010000

through
11001000

00010111

00010111

00000000

11111111

11001000

through
11001000

00010111

00010111

00011000

00011000

00000000

11111111

11001000

through
11001000

00010111

00010111

00011001

00011111

00000000

11111111

otherwise

14

Longest prefix matching

Destination Address Range Link interface

11001000 00010111 OQ0L10Q*** FxFkxkkxkx 0

11001000 00010111 00011000 ***x**x*x*x

11001000 00010111 OQ0I1*x** Fxkxkkxkx

Wl N| =~

otherwise

examples: DA: 11001000 00010111 00010110 10100001 which interface? 0
DA: 11001000 00010111 00011000 10101010 which interface? 1

— longest prefix matching

when looking for forwarding table entry for given destination address, use
longest address prefix that matches destination address.

15

Switching fabrics

= transfer packets from input buffer to
appropriate output buffer

= switching rate: rate at which packets
can be transfer from inputs to
outputs

» often measured as multiple of
input/output line rate

* N inputs: switching rate N times line
rate desirable

routing
procgssor

e 0600
4:————————.-—— H o= = = -

;

high-seed
switching
fabric

router input ports

router output ports

16

Crossbar switches

!
- = =

input queues

Bipartite graph representation

output queues

= at any time, one input point can be connected to at most one output port, and vice versa

= a schedule in a crossbar switch corresponds to a matching in the corresponding bipartite
graph 17

Input port queuing

= fabric slower than input ports combined -> queueing may occur at input queues
* gueueing delay and loss due to input buffer overflow!

T - - =
—
/

i ——— ~ .
switchy g
fabrid

- - |,

output port contention: lower red packet is

blocked

: /
switch /

fabrics
/

i

assuming FCFS, green packet

experiences HOL blocking

Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in
gueue from moving forward

18

Output ports

switch
fabric

datagram
buffer

»
»

queueing

link _
S layer line
protocol termination
(send)

" buffering required
fabric faster than t

" scheduling
datagrams

Datagram (packets) can be lost
due to congestion, lack of buffers

Priority scheduling — who gets best
performance, network neutrality

19

Output port queueing

" gueueing (delay) and loss due to output port buffer overflow!

BN — -
/
- ----
switch »

fabric/

e --—--7

at t, packets more
from input to output

- L]
— \ N
APy
vy
Lo\
switch { o
fabric ,
/N
- bl I N

one packet time later
(assume switch operates at
three times the line speed)

buffering when arrival rate via switch exceeds output line speed

20

Scheduling mechanisms

= scheduling: choose next packet to send on link

packet -_Q packet

arrivals queue link departures
(waiting area) (server)

S ———

= FCFS (first-come-first-served) scheduling: send in order of arrival to queue
* Also known as first-in-first-out, FIFO
* real-world example?
* discard policy: if packet arrives to full queue: who to discard?
* tail drop: drop arriving packet
e priority: drop/remove on priority basis
* random: drop/remove randomly

21

Scheduling policies: priority

= priority scheduling: send highest
priority queued packet

" multiple classes, with different
priorities
* class may depend on marking or other

header info, e.g. IP source/dest, port
numbers, etc.

* real world example?

high priority queue
(waiting area)

arrivals
_—

departures
_

—_— —_—

link
(server)

classify

low priority queue
(waiting area)

X

22

Scheduling policies: still more

Round Robin (RR) scheduling:
=" multiple classes

= cyclically scan class queues, sending one complete packet

from each class (if available)
©
arriva/sﬁi> ?

®
l

n
service

packet
N O © 60

departures 1

ORONONO) ®

23

Scheduling policies: still more

Weighted Fair Queuing (WFQ):
= generalized Round Robin

" each class gets weighted amount of service in each cycle

classify
arrivals
e

—> -

T

24

Outline

" Overview of network layer
» Forwarding (data plane)

» Routing (control plane)

" The Internet Protocol (IP)

" Routing in the Internet: OSPF, BGP

25

Network-layer functions

Recall: two network-layer functions:

: forward/ng:’m.ove packets data plane
from router’s input to
appropriate router output

" routing: determine route control plane
taken by packets from source
to destination

Two approaches to structuring network control plane:

= per-router control (traditional)
= |ogically centralized control (software defined networking)

Routing protocols

Goal: determine “good” paths (equivalently, routes), from sending
hosts to receiving host, through network of routers

" path: sequence of routers packets will traverse in going from given
initial source host to given final destination host

= “good”: least “cost”, “fastest”, “least congested”

" routing: a “top-10" networking challenge!

Graph abstraction of the network

graph: G = (N,E)
N =setof routers={u,v,w, x,y, z}

E = set of links ={ (u,v), (u,x), (v,X), (v,w), (X,w), (X,y), (W,y), (W,z2), (Y,z) }

aside: graph abstraction is useful in other network contexts, e.g.,
P2P, where N is set of peers and E is set of TCP connections

Graph abstraction: costs

c(x,x’) = cost of link (x,x’)
e.g.,, c(w,z) =5

cost could always be 1, or
inversely related to bandwidth,
or related to congestion or delay

cost of path (x4, Xy, X3,..., X5) = C(X1,X5) + C(Xg,X3) + ... + (X, 4,Xp)

key question: what is the least-cost path between uand z ?

routing algorithm: algorithm that finds that least cost path

29

Routing algorithm classification

Q: global or decentralized information?
global:

= all routers have complete topology, link
cost info

= “link state” algorithms
decentralized:

= router knows physically-connected
neighbors, link costs to neighbors

" jterative process of computation,
exchange of info with neighbors

= “distance vector” algorithms

Q: static or dynamic?

static:
* routes change slowly over time
dynamic:

* routes change more quickly
* periodic update
* in response to link cost changes

30

Link-state routing algorithm

Dijkstra’s algorithm
" net topology, link costs known to all
nodes

e accomplished via “link state
broadcast”

* all nodes have same info
= computes least cost paths from one node
“source”) to all other nodes
 gives forwarding table for that node

= jterative: after k iterations, know least
cost path to k dest.’s

notation:

c(x,y): link cost from node xtoy; = oo if
not direct neighbors

D(v): current value of cost of path from
source to dest. v

p(v): predecessor node along path from
source to v

N': set of nodes whose least cost path
definitively known

Dijsktra’s algorithm

1 Initialization:

2 N'={u}

3 forall nodes v

4 if v adjacentto u

5 then D(v) = c(u,v)
6 else D(v) = o

7
(\ 8 Loop

9 find w not in N' such that D(w) is a minimum
10 add wto N’
11 for all v adjacent to w and not in N':

12 D(v) = min(D(v), D(w) + c(w,v))

UCS until all nodes in N’

new cost to v is either
old cost to v or known

shortest path cost tow
plus cost fromw tov

32

Dijkstra’s algorithm: example

D(v) D(w) D(x) D(y) D(z)

Step N P(v) pw) p(x) ply) p(2)
0 u /,u @ 5,u o o
1 uw 6,wW 5,u11,w oo
2 uwx B,wW) 11,W 14X
3 UwWXv 10,v) 14,X
4 UWXVY

5 uwxvyz

notes:

- construct shortest path tree by
tracing predecessor nodes

- ties can exist (can be broken

arbitrarily)

resulting forwarding table in u:

destination link
v (u,w)
w (U,W)
X | (ux)
y | (uw)
Z (u,w)

33

Complexity of Dijkstra’s algorithm

For a given network G(N, E)

= each iteration: need to check all nodes not in N” and edges adjacent tow
= [N|(IN] + 1)/2 comparisons + O(|E|) updates: O(|N|?)

* more efficient implementations possible: O(|N|log|N| + |E|)

Distance vector algorithm

Bellman-Ford equation (dynamic programming)

let

d,(y) := cost of least-cost path from xto y
then
d,(y) = min {c(x,v) +d,(y) }

cost from neighbor v to destination y

cost to neighbor v

min taken over all neighbors v of x

35

Bellman-Ford example

clearly, d,(z) =5, d,(z) =3,d,(z) =3

dy(z) = min { c(u,v) + d,(2),
C(u,x) + dy(2),

c(u,w) +d,(z) }
=min {2 + 5,

1+ 3,

5+3} =4

node achieving minimum is next
hop in shortest path, used in forwarding table

Distance vector algorithm

=" hode x:

* knows cost to each neighbor v: c(x,v)

* x maintains distance vector D, = [D,(y):y E N]
* D,(y) = estimate of least cost from xtoy

* maintains its neighbors’ distance vectors

* For each neighbor v, x maintains D, = [D,(y): y € N]

37

Distance vector algorithm

key idea:

= from time-to-time, each node sends its own distance vector
estimate to neighbors

" when x receives new DV estimate from neighbor, it updates its
own DV using B-F equation:

D.(y) < min {c(x,v) + D (y)} for each nodey € N

38

Distance vector algorithm

Each node x

= start with known costs to neighbors

= calculate initial estimate of D,, = {D,.(y),y € N}

" send distance vector to neighbors

= wait for change in local link cost or msg from neighbor
" recompute D, using Bellman-Ford equation

= if D,.(y) changed for any y, notify neighbors

« distributed, asynchronous algorithm

+ under minor, natural conditions, the estimate D, (y) converge to the
actual least cost d,(y)

D(y) = min{c(x,y) + D,(y), ¢(x,2) + D,(y)} Dy(z) = min{c(x,y) +
= min{2+0 , 7+1} = 2 D,(z), ¢(x,z) + D,(z)}
=min{2+1,7+0} =3

node X ostto cost to
table ([x y z X Yy
XO/Z 7 x [(O 2‘ 3
Sy Syl2 0 1
z Z\7 10
node y
tabl 2 1
X
X
5y !
Tz
node z ostto
table | X y z
X | 00 o0 o0
Sy
z

» time

D,(z) = min{c(x,y) +
D,(z), c(x,z) + D,(2)}
=min{2+1 , 740} =3

D,(y) = min{c(x,y) + D\(y), c(x,z) + D,(y)};
=min{2+0 , 7+1} = 2

tt cost to

table Xco; Z Xy Xco;t toz
XO/Z 4 x [CO 2‘(3 02 3
SY y|2 0 1 5 0 1

4 2|17 10 31 0
node y cost {0 cost to
tabl Xy z Xy z
X X102 7 X102 3

gV y|2 0 1 Syl20 1

z Zl7 10 "~ z|310
nodez (ostto cost to cost to
table | X y z Xy z
X | o0 00 o0 X x|02 3

Sy gy y|20 1

z ‘ 21310

Distance vector: link cost changes

link cost changes:

1

+ node detects local link cost change 1

+ updates routing info, recalculates ﬁ@
distance vector 50

« if DV changes, notify neighbors

“good
news
travels
fast”

t,: y detects link-cost change, updates its DV, informs its neighbors.

t,: z receives update from y, updates its table, computes
new least cost to x, sends its neighbors its DV.

t,:y receives z’s update, updates its distance table. y’s least
costs do not change, so y does not send a message to z.

y detect link
cost change

Distance vector: link cost changes

link cost changes:

+ node detects local link cost change

< may have routing loops during convergence

60

2

« bad news travels slow - “count-to-infinity” problem!

—_—

46
47
48

-bU)NHOH

4
min(60+0,1+5) =6
6
min(60+0,1+7) =8
8

50
min(60 + 0,1 + 50) = 51
51

5
5
min(50+ 0,14+ 6) =7
7
min(50+0,1+8) =9

min(50 + 0,1 + 50) = 50
50
min(50+ 0,1+ 51) =50

50

43

Distance vector: link cost changes

poisoned reverse:

« If Z routes through Y to getto X : 60

= ZtellsYits (Z's) distance to X is infinite (so Y ;}:E 321
won’t route to X via Z)

50
« will this completely solve count-to-infinity problem?

0 4 5
vdetectlink 9 in(60 40,1+) = 60 5
cost change
2 60 min(50+ 0,1 + 60) = 50
3 min(60 + 0,1 + 50) = 51 50

4 51 min(50 + 0,1 + o) = 50

44

Comparison of LS and DV algorithms

message complexity robustness: what happens if router
malfunctions?

= [S: with n nodes, E links, O(nE) msgs sent

LS:
" DV: exchange between neighbors only * node can advertise incorrect link cost

° convergence time varies * each node computes only its own table
speed of convergence DV.
* DV node can advertise incorrect path cost

= [S: O(n?) algorithm requires O(nE) msgs « each node’s table used by others
= DV: convergence time varies * error propagate thru network

* may be routing loops

e count-to-infinity problem

45

Lab 3: Distance Vector Routing

nodeO.c
— rtinit0()
\ distance table and
routing packets other data structure
sent to other
nodes: tolayer2()
rtupdate0()
distance table at node 0 routing packets routing packets
. received from sent to other
= dt.costs[4][4]: 4-by-4 array of int's other nodes nodes: tolayer2()
= dt.costs]i,j]: node O’s currently ! |

computed cost from 0 to j via direct Layer 2 Simulator prog.c

neighbor i

AIAD

equal
Full W bandwidth
bandwidth o share

tilization
ine

Connection 2 throughput

Connection 1 throughput R

(a) linear increase, with equal
linear decrease

Full gqu(a'jl id
bandwidth ..°"s|:2rem
utilization o

line

Connection 2 throughput

Connection 1 throughput R

(b) linear increase, connection 1
decrease Is twice that of connectlon 2

47

Outline

" Overview of network layer

» Forwarding (data plane)

" Routing (control plane)

" The Internet Protocol (IP): IPv4, DHCP, NAT, IPv6
" Routing in the Internet: OSPF, BGP

48

The Internet network layer

host, router network layer functions:

|

network
layer

|

transport layer: TCP, UDP

IP protocol
 addressing conventions

» datagram format

« packet handling conventions

routing protocols
* path selection
* RIP, OSPF, BGP

\-v forwarding

table

ICMP protocol

* error reporting
* router “signaling”

link layer

physical layer

49

IP datagram format

IP protocol version

<

32 bits —»

total datagram

number _
header length length (bytes): header + data
(4 bytes) service length for
‘type” of data =T 45 it identifier | fige]—2IMENt —Rfragmentation/
max number__| time to | upper hedjf reassembly
remaining hops live A layer checksum recomputed at

(decremented at
each router)

each router

upper layer protocol/

32 bit destination IP address

to deliver payload to

options (if any) e.g. timestamp,

how much overhead?
20 bytes of TCP
20 bytes of IP

=40 bytes + app
layer overhead

record route
taken, specify
list of routers
to visit.

data
(variable length,
typically a TCP
or UDP segment)

50

IP fragmentation, reassembly

" network links have MTU (maximum
transmission unit) - largest possible link-
level frame

 different link types, different MTUs

fragmentation:
in: one large datagram
out: 3 smaller datagrams

= large IP datagram.di\./ided i —
(“fragmented”) within net

* one datagram becomes several
datagrams

* “reassembled” only at final
destination

* |P header bits used to identify,
order related fragments

51

IP fragmentation, reassembly

example:

4000 byte datagram
MTU = 1500 bytes

1480 bytes in

length |ID
=4000 | =x

fragflag | offset I
- =0 =0

one large datagram becomes
several smaller datagrams

length [ID [fragflag | Offset

data field

offset =

=1500 | = =1 =0

length | ID | fragflag | offset

1480/8

\‘ =1500 |=x | =1 =185

length |ID | fragflag | offset
=1040 [=x =0 =370

N N

52

IP addressing: introduction

223.1.11
g "
oy e . fe . 223.1.2:
= |P address: 32-bit identifier for host, = P
] ~ e
router interface 223-1-1-2% 223414 223129
B
. N/
" jnterface: boundary between g_ &lﬁ -
. . — 223.1.3.27 _2
host/router and physical link 223.1.1.3 ‘ 20312.5%
* routers typically have multiple interfaces
* host typically has one or two interfaces (e.g., | |
wired Ethernet, wireless 802.11) ﬁ““ g 223132
. . i =
" |P addresses associated with each e
interface 223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 1 1

53

IP addressing: introduction

223.1.1.1
g =
=T 223124 0
=
, A
223.1.1.2 N
e — > 223.1.1.4 223.1.2.9
V—EI | g
993,113 223.1.3.27 e
- . o 22312.3%
wired Ethernet interfaces connected ‘
by Ethernet switches %
I 3.1.3.1 ,'|\223132
A

wireless WiFi interfaces connected
by WiFi base station

54

Subnets

subnet

.

= [P address:
* subnet part - high order bits

* host part - low order bits

" what’s a subnet ?
* device interfaces with same subnet part

of IP address
 can physically reach each other without

intervening router

223.1.1.0/24

223.1.2.0/24
/ v{ 223.1.1.1 =
| =i
W 223.1.1.2 223.1.2.1
e 223114 223.1.29
-
: — 223.1.2.2 \m
e -
2231.1.3 223.1[3.27 \\g/ﬁ,

223.1.34'] |223.1.3.2
- »
223.1.3.0/24

subnet mask: /24

55

Subnets

subnet

.

recipe

= to determine the subnets, detach
each interface from its host or
router, creating islands of isolated

networks

= each isolated network is called a
subnet

223.1.1.0/24
223.1.2.0/24
W/ 223.1.1.1 =
e _
| =
W 223.1.1.2 223.1.2.1
s~ 2231.1.4 223.1.29
./
e — 223122 \w
e —
2931.1.3 223.1(3.27 \?f
993.1.3.11 223.1.3.2
\al i
= =
223.1.3.0/24

subnet mask: /24

56

Subnets

how many
subnets?

223.1.1.2

3.1.2.2

223.1.

57

IP addressing: CIDR

CIDR: Classless InterDomain Routing
* subnet portion of address of arbitrary length

» address format: a.b.c.d/x, where x is # bits in subnet portion of
address

subnet g host
part part

11001000 00010111 00010000 00000000
200.23.16.0/23

—

58

Hierarchical addressing: route aggregation
hierarchical addressing allows efficient advertisement of routing information:

Organization 0
200.23.16.0/23

“Send me anything
Organization 1 with addresses
200.23.18.0/23 beginning
Organization 2 T 200.23.16.0/20”

200.23.20.0/23 . ISP 1 \
.) Internet
Organization 7 | /
200.23.30.0/23 /

ISP 2 “Send me anything
with addresses

/ beginning
199.31.0.0/16”

Hierarchical addressing: route aggregation

ISP 2 has a more specific route to Organization 1

Organization 0
200.23.16.0/23

“Send me anything
\ with addresses
beginning
Organization 2 200.23.16.0/20”
200.23.20.0/23 . ISP 2 \
Organization 7 | / et
200.23.30.0/23 -
_ ISP 1 “Send me anything
o — with addresses
S // beginning 199.31.0.0/16
200.23.18.0/23

or 200.23.18.0/23”

IP addresses: how to get one?

Q: how does network get subnet part of IP addr?

A: gets allocated portion of its provider ISP’s address space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23
Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23
Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23

Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

Q: how does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org

IP addresses: how to get one?

Q: How does a host get IP address?

" hard-coded by system admin in a file
* Windows: control-panel->network->configuration->tcp/ip->properties
* UNIX: /etc/rc.config

= DHCP: Dynamic Host Configuration Protocol: dynamically get address
from as server

* “plug-and-play”

DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network server
when it joins network

* can renew its lease on address in use
* allows reuse of addresses (only hold address while connected/“on”

e support for mobile users who want to join network (more shortly)

DHCP client-server scenario

DHCP

223.1.1.0/24 server

xv arriving DHCP
=/ client needs
address in this
network

223.1.2.0/24

223.1.3.1 1.3.2

223.1.3.0/24

DHCP client-server scenario

DHCP server: 223.1.2.5 DHCP discover arriving

client

Broadcast: is there a
DHCP server out there? | <>

4-/DHCP offer

\

Broadcast: I'm a DHCP
server! Here's an IP

DHCP request

Broadcast: OK. I'lltake | _—
that IP address!

DHCP ACK

\

Broadcast: OK. You've
got that IP address! [

DHCP messages
exchanged through UDP

255.255.255.255 - IP
broadcast address:
message delivered to all
hosts on the same
subnet

65

DHCP: Dynamic Host Configuration Protocol

DHCP can return more than just allocated IP address on subnet:
» address of first-hop router for client
* name and IP address of DNS sever

* network mask (indicating network versus host portion of address)

NAT: network address translation

= |Pv4 has ~4.3 billion IP addresses, but we have
e ~7.6 billion people in 2018, each with multiple devices

e ~30 billion Internet of Things (loT) devices in 2020

" motivation: local network uses just one IP address as far as outside world is
concerned:

= range of addresses not needed from ISP: just one IP address for all devices
= can change addresses of devices in local network without notifying outside world

= devices inside local net not explicitly addressable, visible by outside world (a security
plus)

Private IP addresses:

NAT: network address translation

10.x.X.X
192.168.x.x
«— restof »| «— local network >
Internet (e.g., home network) 172.16.0.0 — 172.31.255.255

10.0.0/24 _XQ 10.0.0.1

<
10.0.0.4

S5 ™ 10002

e =
138.76.29.7

/ / —v 10.0.0.3

<
all datagrams leaving local ~ datagrams with source or

network have same single destination in this network
source NAT IP address: have 10.0.0/24 address for

138.76.29.7,different source, destination (as usual)
source port numbers

68

NAT: network address translation

NAT translation table
) 1: host 10.0.0.1
2: NAT router WAN side addr [LAN side addr sends datagram to
changes datagram 128.119 40 186. 80
source addr from 13876297, 5001 10001, 3345 . ST J
10.0.0.1, 3345 to e .
138.76.29.7, 5001, ,
updates table ‘ S:10.0.0.1, 3345 j
D: 128.119.40.186, 80

@ S: 138.76.29.7, 5001 j &

=
D: 128.119.40.186, 80 10.0.0.4
: Y _b 10.0.0.2
=g

===

7 ,
138.76.29.7 " S:128.119.40.186, 80
It L, D: 10.0.0.1, 3345 _@'
[S:128.119.40.186, 80 _@ , -
/. D: 138.76.29.7, 5001 4: NAT router _p 10.0.0.3
3: reply arrives changes datagram -

138.76.29.7, 5001 138.76.29.7, 5001 to 10.0.0.1, 3345

69

NAT: network address translation

" 16-bit port-number field:

* 60,000 simultaneous connections with a single LAN-side address!

= NAT is controversial:
 routers should only process up to layer 3
e address shortage should be solved by IPv6

 NAT traversal: what if client wants to connect to server behind NAT?

IPv6: motivation

" initial motivation: 32-bit address space soon to be completely
allocated.

= additional motivation:
* header format helps speed processing/forwarding
* header changes to facilitate QoS

IPv6 datagram format:
* fixed-length 40 byte header
* no fragmentation allowed

71

IPv6 datagram format

flow label = Priority (traffic class): identify priority
payload len next hdr | hop limit among datagrams in flow
So‘iﬁcf’ga&fsr)e > = flow Label: identify datagrams in same

destination address flow

(128 bits) " next header: identify upper layer
dat protocol for data
- " header checksum: removed entirely to
) 32 bits R reduce processing time at each hop

= options: allowed, but outside of
header, indicated by “Next Header”
field

72

Transition from IPv4 to |IPv6

= not all routers can be upgraded simultaneously

* no “flag days”
* how will network operate with mixed IPv4 and IPv6 routers?

" tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

IPv4 header fields IPv6 header fields Pva 0ad
IPv4 squrce, dest addr IPv6 source dest addr va payloa
N UDP/TCP paylcrad/
INIEE | \ ‘\ =

[
IPv6 datagram ——

IPv4 datagram >

A

A

Tunneling

IPv4 tunnel
connecting IPv6 routers
IPv6 IPv6 IPv6 IPvb
B C D E F
IPv6 IPv6 IPv4 IPv4 IPv6 IPv6
—_— —_— —_— ——
flow: X flow: X
src: A src: A
dest: F dest: F
data data
A-to-B ! f E-to-F
-to-B: _ _ -to-F:
IPV6 B-to-C: D-to-E: IPV6
IPv6 inside

IPv4

IPv6 inside 74
IPv4

Outline

" Overview of network layer
» Forwarding (data plane)

" Routing (control plane)

" The Internet Protocol (IP)

» Routing in the Internet: OSPF, BGP (not required for final)

75

Making routing scalable

our routing study thus far - idealized
= all routers identical

= network “flat”

... hot true in practice

scale: with billions of destinations: administrative autonomy

* internet = network of

m can’t store all destinations in
networks

routing tables!
* each network admin may

" routing table exchange would want to control routing in its
swamp links! own network

Internet approach to scalable routing

aggregate routers into regions known as “autonomous

systems” (AS) (a.k.a. “domains”)

intra-AS routing

routing among hosts, routers
in same AS (“network”)

all routers in AS must run
same intra-domain protocol

routers in different AS can run
different intra-domain routing
protocol

inter-AS routing
* routing among AS’es

e gateway router: at “edge” of its
own AS, has link(s) to router(s) in
other AS’es

* gateways perform inter-domain
routing (as well as intra-domain
routing)

77

Interconnected ASes

&5

AS3

AS2

Intra-AS Inter-AS
Routing Routing
algorith algorith

.

= forwarding table configured by
both intra- and inter-AS routing
algorithm

* intra-AS routing determine
entries for destinations
within AS

* inter-AS & intra-AS
determine entries for
external destinations

78

Intra-AS Routing

" also known as interior gateway protocols (IGP)

" most common intra-AS routing protocols:
* RIP: Routing Information Protocol

e OSPF: Open Shortest Path First (IS-IS protocol essentially same as
OSPF)

* IGRP: Interior Gateway Routing Protocol (Cisco proprietary for
decades, until 2016)

OSPF (Open Shortest Path First)

= “open”: publicly available

= uses link-state algorithm

* link state packet dissemination
* topology map at each node

* route computation using Dijkstra’s algorithm

= router floods OSPF link-state advertisements to all other routers in entire AS
 carried in OSPF messages directly over IP (rather than TCP or UDP)

" “advanced” features: security, multiple same-cost paths, etc.

Hierarchical OSPF

boundary router

backbone router

~
——————

E \ \\
| ~
N\
v7'\internal
’ routers S~

81

Inter-AS tasks

= suppose router in AS1 AS1 must:
receives datagram destined 1. learn which dests are
outside of AS1: reachable through AS2,
* router should forward which through AS3
packet to gateway router, 2. propagate this
but which one? reachability info to all

routers in AS1
job of inter-AS routing!

other

networks
other

networks

Internet inter-AS routing: BGP

= BGP (Border Gateway Protocol): the de facto inter-domain routing
protocol

“glue that holds the Internet together”

" BGP provides each AS a means to:

allows subnet to advertise its existence to rest of Internet: “/ am here”
obtain subnet reachability information from neighboring ASes
propagate reachability information to all AS-internal routers.

determine “good” routes to other networks based on reachability
information and policy

BGP connections

= BGP connection: two BGP routers (“peers”) exchange BGP messages over semi-
permanent TCP connection

AS 2

AS 1 — = = eBGP connection AS 3
______ iIBGP connection

gateway routers run both eBGP and iBGP protocols

84

BGP basics

= BGP connection: two BGP routers (“peers”) exchange BGP messages over semi-
permanent TCP connection:

 advertising paths to different destination network prefixes (BGP is a “path
vector” protocol)

= when AS3 gateway router 3a advertises path AS3,X to AS2 gateway router 2c:

* AS3 promises to AS2 it will forward datagrams towards X

. BGP advertisement:

@_ :L @ . AS3, X

85

BGP path advertisement

5202
’_4___1___\ AS3,X
AS2,AS3.X /@ —
AS1 & ®/ Mo ’E 0
Gag i DEg NI A
SN AS2 @ et =

= AS2 router 2c receives path advertisement AS3,X (via eBGP) from AS3
router 3a

= Based on AS2 policy, AS2 router 2c accepts path AS3,X, propagates
(via iBGP) to all AS2 routers

= Based on AS2 policy, AS2 router 2a advertises (via eBGP) path AS2,
AS3, X to AS1 router 1c

86

BGP path advertisement

gateway router may learn about multiple paths to destination:

= AS1 gateway router 1c learns path AS2,AS3,X from 2a
= AS1 gateway router 1d learns path AS3,X from 3d

87

Path attributes and BGP routes

= advertised prefix includes BGP attributes

* prefix + attributes = “route”

" two important attributes:
* AS-PATH: list of ASes through which prefix advertisement has passed
* NEXT-HOP: indicates specific internal-AS router to next-hop AS

Path attributes and BGP routes

NEXT-HOP AS-PATH

= |P address of leftmost interface for router 2a; AS2,AS3;X

= |P address of leftmost interface for router 3d; AS3;X

89

Hot Potato Routing

= 1b learns (via iBGP) it can route to X via 2a or 3d

" hot potato routing: choose route with the least cost to NEXT-HOP
router: get packets out of its AS as quickly as possible!

= 1b and 1d may choose different AS paths to the same prefix

90

BGP route selection

" router may learn about more than one route to destination AS,
selects route based on:

1. local preference value attribute: policy decision

e e.g., neverroute through ASY

 AS policy also determines whether to advertise path to other other neighboring ASes

2. shortest AS-PATH
3. closest NEXT-HOP router: hot potato routing

4. additional criteria

BGP: achieving policy via advertisements

legend:
7/
N

\
| e
\

= A,B,C are provider networks
= X,WY are customer (of provider networks)
= X is dual-homed: attached to two networks

= policy to enforce: X does not want to route from B to C via X

= . so X will not advertise to B a route to C

provider
network

customer
network:

92

BGP: achieving policy via advertisements

legend: provider
network

/TN
. I / custome_r
\ network:

= A advertises path AwtoBandto C

= B chooses not to advertise BAw to C:

= B gets no “revenue” for routing CBAw, since none of C, A, w are B’s
customers

= Cdoes not learn about CBAw path
= Cwill route CAw (not using B) to get tow

Usually, an ISP only wants to route traffic to/from its customer
networks (does not want to carry transit traffic between other ISPs) 03

Why different Intra-, Inter-AS routing ?

policy:
" intra-AS: single admin, so no policy decisions needed

= inter-AS: admin wants control over how its traffic routed, who routes through its
net.

scale:

= hierarchical routing saves table size, reduced update traffic

performance:
" intra-AS: can focus on performance

= inter-AS: policy may dominate over performance

94

