Midterm Review

CMPS 4660/6660: Reinforcement Learning

Midterm

- When: Oct 15 (R) 12:25-1:35 pm
- Where: Zoom meeting
 - camera on during the entire exam period
 - your exam will not be graded if you do not join the Zoom meeting
- Open-book and open-notes
 - You are NOT allowed to communicate with each other or search solutions online
- Office hours: W 10-11 am

Topics Covered

- Intro to RL
- Markov Decision Processes
- Dynamic Programming
- Model-Free Prediction
- Model-Free Control

Intro to RL

- Sequential decision making in uncertain environment
- Learning vs. Planning
- Exploration vs. Exploitation
- Goals and Rewards: Rewards Hypothesis
- Environment state vs. agent state: fully vs. partially observable environment

Markov Decision Processes

- Definition of MDP
 - Five elements $\langle S, A, P, r, \gamma \rangle$
 - Different ways of representing transition probabilities
 - Connections with Markov Chains and Markov Reward Processes
- Policy
 - history dependent vs. stationary policies
 - stochastic vs. deterministic policies
- Return
 - Episodic vs. Continuing Tasks
 - Why discount in continuing tasks?
 - "MDP with a terminal state" not required

Markov Decision Processes

- State-value and action-value functions
 - Connection between the two
- Prediction
 - Bellman Equations for state-value and action-value functions
 - Proof required for graduate students
- Control
 - Optimal Policy and Optimal Value Functions
 - Bellman Optimality Equations for state-value and action-value functions
 - Proof not required

Dynamic Programming

- Banach's fixed point theorem
 - Convergence in norm, contraction mappings, fixed point
 - Iterative convergence and uniqueness
 - Proof required for graduate students
- Policy Evaluation
 - Properties of Bellman operator T^{π}
 - Iterative policy evaluation
 - for state-value and action-value functions

Dynamic Programming

- Policy Optimization
 - Properties of Bellman optimality operator T^*
 - From optimal value to optimal policy (proof required for graduate students)
- Value Iteration
 - Algorithm and convergence result
 - Synchronous vs. Asynchronous VI
- Policy Iteration
 - Policy improvement theorem (proof required for graduate students)
 - Generalized Policy Iteration
- Linear Programming method for MDP
- POMDP not required

Mode-Free Prediction

- Model-free vs. model-based approaches
 - Model?
 - Model-free??
- Monte-Carlo Method
 - Algorithm
 - Incremental view: step-size
 - Convergence property
 - Stochastic Approximation not required

Mode-Free Prediction

- TD(0)
 - TD target, TD error
 - TD(0) vs. MC: bootstrapping, bias/variance tradeoff
 - Batch MC and TD
- n-step TD
- TD(λ)
 - forward-view vs. backward view
 - online vs. offline updates
 - TD(1) vs. MC
- TD vs. DP

Mode-Free Control

- Generalized Policy Iteration for model-free control
 - Why use action-value function?
 - Why is exploration necessary?
 - ϵ -greedy policy improvement
- On-policy Monte-Carol Control
 - Convergence: Greedy in the limit with infinite exploration (GLIE)