Model-Free Control

CMPS 4660/6660: Reinforcement Learning

Acknowledgement: slides adapted from David Silver's RL course

https://www.davidsilver.uk/teaching/

Model-Free Reinforcement Learning

* Model-free prediction

e Estimate the value function of an unknown MDP

e Model-free control

* Optimize the value function of an unknown MDP

Agenda

* On-Policy Monte-Carlo Control

* On-Policy Temporal-Difference Learning

e Off-Policy Learning

On and Off-Policy Learning

* On-policy learning
e "Learn on the job"

e Learn about policy m from experience sampled from

* Off-policy learning
e “Look over someone's shoulder"

* Learn about policy ™ from experience sampled from u

Generalized Policy Iteration (Refresher)

evaluation

m

T V

Ugy Ty
7 ~+ greedy(V')
—greeay () |

T Improvement

* Policy evaluation estimates v;;

* e.g. Iterative policy evaluation
. . * *

* Policy improvement generates ' s.t. v, = v T =V

* e.g. Greedy policy improvement

Generalized Policy lteration With Monte-Carlo Evaluation

Uy, Ty

eedy (U\

o

Policy evaluation Monte-Carlo policy evaluation, V = v?

Policy improvement Greedy policy improvement?

Model-Free Policy Iteration Using Action-Value Function

 Greedy policy improvement over V. (s) requires model of MDP

r(s,a) +vy) Pgy(a)Vp(s')

!

' (s) = argmax
acA(s)

S
 Greedy policy improvement over Q. (s, a) is model-free

' (s) = argmax Q,(s,a)
acA(s)

Generalized Policy Iteration with Action-Value Function

Policy evaluation Monte-Carlo policy evaluation, Q = g,?

Policy improvement Greedy policy improvement?

Monte-Carlo Policy Evaluation

* Sample kth episode using policy T:

So, Ao,Rl, ""ST_]_’AT_].,RT ~ T

* For each state S; and action A; in the episode:
N(St Ap) « N(St, Ap) +1

Q(Sp, Ap) « Q(Se, Ap) + —

N(St,A¢) (Gt —Q(S;, At))

Example of Greedy Action Selection

There are two doors in front of you.

You open the left door and get reward O
V(left) =0

You open the right door and get reward +1
V(right) = +1

You open the right door and get reward +3
V(right) = +3

You open the right door and get reward +2
V(right) = +2

“Behind one door is tenure - behind the other
is flipping burgers at McDonald's.”

Are you sure you've chosen the best door?

10

Exploration vs. Exploitation Tradeoff

e Exploration: Choose an action with more information

* Exploitation: Choose an action with more reward

* In MDP, the agent has complete information of what he is going to get for
different actions from the Markov model.

* In RL, such information is inaccurate due to finite experience.

* One solution: e-Greedy

e-Greedy Exploration

Simplest idea for ensuring continual exploration

Allm = |A(s)| actions are tried with non-zero probability

With probability 1 — € choose the greedy action

With probability € choose an action at random

e/m+1—e if a* =argmax Q(s, a)
m(als) = acA

€/m otherwise

e-Greedy Policy Improvement

For any e-greedy policy m, the e-greedy policy @’ with respect to
G- Is an improvement, v;/(S) > vz(s)

qr (s, 7T/(S)) = Z 7T,(3|5)q7r(57 a)

acA
=¢/m) _ ar(s,a) + (1 —) max gx(s, 2) n(als) > e/m,Va
acA
> e/mY ae(s.a) + (1-) 3 T (s, 2)
acA acA
= 3" (als)gx(s,) = va(s)
acA

Therefore from policy improvement theorem, v,/(s) > v, (s)

13

Monte-Carlo Policy Iteration

Starting

(%, TTx

Policy evaluation Monte-Carlo policy evaluation, Q = g,

Policy improvement e-greedy policy improvement

14

Monte-Carlo Policy Iteration

Starting

(%, Tx

Every episode:
Policy evaluation Monte-Carlo policy evaluation, Q = g
Policy improvement e-greedy policy improvement

15

On-policy first-visit MC control (for e-soft policies), estimates 7™ ~ 7,

Algorithm parameter: small € > 0

Initialize:
m < an arbitrary e-soft policy
Q(s,a) € R (arbitrarily), for all s € §, a € A(s)
Returns(s,a) + empty list, for all s € §, a € A(s)

Repeat forever (for each episode):

Generate an episode following m: Sp, Ag, R1,...,S7_1,Ar_1, Rt
G+ 0
Loop for each step of episode, t =T—-1,T-2,...,0:

G+ vG+ R; 14

Unless the pair S;, A; appears in Sp, Ag, S1, A1...,5_1,A:+_1:
Append G to Returns(S;, A;)
Q(Si, A¢) < average(Returns(S;, A¢))
A* « argmax, Q(St, a) (with ties broken arbitrarily)
For all a € A(S;):
1—e+¢€/|A(S; ifa=A*
m(alSe) { i N ez

16

GLIE

Greedy in the Limit with Infinite Exploration (GLIE)

m All state-action pairs are explored infinitely many times,

lim Ng(s,a) = oo
k— o0

m [he policy converges on a greedy policy,
lim mx(als) = 1(a = argmax Qk(s, a’))

k—>OO a/eA

m For example, e-greedy is GLIE if € reduces to zero at €, = %

17

GLIE Monte-Carlo Control

e Sample kth episode using policy :
So, Ao, Rll 'ST—llAT—l,RT ~ T

* For each state S; and action A; in the episode:

N(S Ap) « N(Sp, Ap) +1

Q(Se Ar) <« Q(Sp, Ap) + (G — Q(St, AD)
* Improve policy based on new action-value function

e —1/k
T « e-greedy (Q)

GLIE Monte-Carlo control converges to the optimal action-value
function, Q(s,a) — g«(s, a)

1
N(St'At)

18

MC vs. TD Control

* Temporal-difference (TD) learning has several advantages over
Monte-Carlo (MC)

e Lower variance
* Online

* Incomplete sequences

* Natural idea: use TD instead of MC in our control loop
* Apply TDto Q(S,A)
* Use e-greedy policy improvement

e Update every time-step

Agenda

* On-Policy Monte-Carlo Control

* On-Policy Temporal-Difference Learning

e Off-Policy Learning

Updating Action-Value Functions with Sarsa

. S f+1 S . t S .9 t+3 S .
% > OGS I NG PGS I

Q(St, Ar) « Q(S, Ap) + a|Re + ¥Q(Se41, Ars1) — Q(St, Ap)]

21

On-Policy Control With Sarsa

Starting Q G
%, T%

Every time-step:
* Policy evaluation Sarsa, Q = g

* Policy improvement e-greedy policy improvement

22

Sarsa Algorithm for On-Policy Control

Sarsa (on-policy TD control) for estimating @ ~ ¢.

Algorithm parameters: step size a € (0, 1], small € > 0
Initialize Q(s,a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S,4) + Q(S, 4) + a[R+7Q(S", A') — Q(S, A)]
S+ S A+ Al
until S is terminal

23

Convergence of Sarsa

Sarsa converges to the optimal action-value function,
Q(s,a) — g«(s, a), under the following conditions:

m GLIE sequence of policies 7¢(a|s)

m Robbins-Monro sequence of step-sizes ot

©. @)
E o — OO
t=1
©. @)

2
Y " af < o0
t=1

24

Windy Gridworld Example

s e | T

standard
moves

0O 0 01 1 1 2 2 1 0

m Reward = -1 per time-step until reaching goal

m Undiscounted

25

Sarsa on the Windy Gridworld

Episodes

170 -
150 -

2

e=01a =05

S I G\ ’—I_’

Actions

0 1000 2000 3000 4000 5000 6000 7000 8000
Time steps

Initially Q(s,a) =

0

26

Expressions of Action-Value Function

* Conditional expectation of return:
qr(s,a) = Ex (XL Y Re41lSo = 5,40 = a)
* Bellman Equation:

qr(s,a) = Ex (Rey1 +V qu(Ses1, Ae1)ISe = 5,4 = a)
Qn(S» a) = Erq (Rey1 + YRey2 + VZCIn(St+2;At+2)|St = 5,4 = a)
qn(s,a) = Eqx (Rep1 + YReso + V2R3 + V2 qn(Sti3,Ari3)1Se = 5, A = a)

27

n-Step Sarsa

m Consider the following n-step returns for n =1, 2, oc:

n=1 (Sarsa) ¢tV = Riy1 +7Q(Sri1, Aria)

n=~>2 C]£2> = Riy1 +yRiyo + VZQ(SHQ, Aiyo)

n=oco (MC) ¢ =Ri1+7Ripa+...+97 'Ry

m Define the n-step Q-return

(1)

¢, = Rit1 +YRei2 4+ 9" Repn +7"Q(St4ns Atin)
m n-step Sarsa updates Q(s, a) towards the n-step Q-return

Q(St, Ar) + Q(St, Ar) + @ (qﬁ”) — Q(St,At)>

28

Sarsa(A): Forward View

p Sarsa
n-step S

]
I
]
oo

»
oo+ —e T
Q
I
Q

]
i

co-ste
aka Monte Carlo

m The g* return combines all n-step

Q-returns q§”)

m Using weight (1 — \)\"1

@ = (1= A q”
=1

m Forward-view Sarsa(\)

Q(St7 At) — Q(Sta At) T o (qf‘\ o Q(5t7At))

Sarsa(A): Backward View

 Just like TD(A), we use eligibility traces in an online algorithm
» But Sarsa(A) has one eligibility trace for each state-action pair
E_{(s,a) =0
Ei(s,a) = YAE;_1(s,a) + 1(S; = s, A; = a)
* Q(s,a) is updated for every state s and action a
* In proportion to TD-error §; and eligibility trace E;(s, a)
Ot = Reyq1 +¥Q(Se41, A1) — Q(St, Ag)
Q(s,a) < Q(s,a) + ad:E:(s,a),Vs €ES,a €A

30

Sarsa(A) Algorithm

Initialize Q(s, a) arbitrarily, for all s € 8,a € A(s)
Repeat (for each episode):
E(s,a) =0, for all s € §,a € A(s)
Initialize S, A
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
5 R+1Q(S',A) — Q(S,)
E(S,A) <« E(S,A) +1
For all s € §,a € A(s):
Q(s,a) « Q(s,a) + a6 E(s,)
E(s,a) < Y\E(s,a)
S+ S A+ A
until S is terminal

31

Sarsa(A) Gridworld Example

Path taken

Action values increased
by one-step Sarsa

i

>)

Action values increased
by 10-step Sarsa

Action values increased
by Sarsa(2) with 2=09

—

—»]

-

¥

v
v

i

¥

——

-

-

-l O

o

32

Agenda

* On-Policy Monte-Carlo Control

* On-Policy Temporal-Difference Learning

e Off-Policy Learning

Off-Policy Learning

* Evaluate target policy m(als) to compute v;(s) or g, (s, a)
* While following behavior policy u(als)
S0, Ao, Ry, o, ST—1, Ar—1 R ~ 1
* Why is this important?
* Learn from observing humans or other agents
* Re-use experience generated from old policies 1, 5, ... T¢_1

* Learn about optimal policy while following exploratory policy

* Learn about multiple policies while following one policy

Importance Sampling

* Estimate the expectation of a different distribution

Ex-plf (X)] = XP(X)f(X)

P(X)

=20X) mf(x)

PX)
Q(X)

= Ex..g [f(X)]

Importance Sampling for Off-Policy Monte-Carlo

* Recall constant—a MC: V(S;) « V(Sy) + a(Gt — V(St))
* Use returns generated from u to evaluate

* Weight return G; according to similarity between policies
Gt = Rey1 + YRex2 + V?Repz + -+ vy 1Ry
Ur(s) = Ex (G¢|S¢ =)
= EAt,St+1,At+1,...,ST~7T[f(At: St+1, Aes1r o ST)ISE = 5]

= Ep, St Arr, ST~ loe.r-1f (At Sex1s Arsas 0 ST)ISe = 5]

Importance Sampling for Off-Policy Monte-Carlo

P;Tr(At, St+1 At+1 - ST—1, Ar-1,5T)

= T(Ae| S)P (Se+11Se, Ae) T(Aps11Se41) - P(ST|ST-1, AT—1)
= [Ti=t T(Ak|SIOD(Sk+11Sk, Ak)

T—1
t 1 (A|S1)p (Sk+1[Sk, Ak) 1[1 (Ag|Sk)
k=t L(AkISOP(Sk+11Sk, Ar) - L _1 1 (AklSi)

Pt:T-1 =

e Update value towards corrected return
* V(S) =V (S) + a(prr-1G: —V(S))
e Cannot use if i is zero when 1 is hon-zero

* Importance sampling can dramatically increase variance

Importance Sampling for Off-Policy TD

Use TD targets generated from u to evaluate

Weight TD target R + yV (S") by importance sampling

Only need a single importance sampling correction

V(S5:) + V(5¢) +

| m(At|St) N B
“ (MAfst) (Res1 +9V(5e1)) = V(5 t))

Much lower variance than Monte-Carlo importance sampling

Policies only need to be similar over a single step

38

Q-Learning

We now consider off-policy learning of action-values Q (s, a)
No importance sampling is required

Next action is chosen using behavior policy A¢p1~u(- |S¢)
But we consider alternative successor action A'~m(: |S;)

And update Q (5S¢, A;) towards value of alternative action

Q(St, At) + Q(S5:,A¢) + o (Rr+1 + vQ(St11, A/) — Q(S¢, At))

Q-Learning (Off-policy Control)

* We now allow both behavior and target policies to improve
* The target policy is greedy w.r.t. Q(s,a)
7(S¢41) = argmax Q(S;y1,)
al
* The behavior policy is e.g. e-greedy w.r.t. Q(s,a)

* The Q-learning target then simplifies:

Rer1 +7vQ(Sex1,A)
=Rit1 +7Q(Se+1, argmax Q(St+1,3"))

a

=Rep1 + max YQ(St41,2")
=

40

Q-Learning (Off-policy Control)

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy) or another

Take action A, observe R, S’ behavior policy
Q(S,A) + Q(S,A) + a[R + ymax, Q(S’,a) — Q(S, A)]
S« 5 N

until S is terminal greedy

41

Convergence of Q-Learning

Theorem:
If (i) all (state, action) pairs are generated infinitely often,
(ii) given (state, action), the next state is generated independently
at each occurrence of the (state, action) pair,
(iii) the learning rate satisfies Y.,,.q @, = © and Y50 @z < o,
(iv) a few other technical conditions are satisfied,

then Q(s, a) converges to g, (s, a) with probability one.

[DB] p. 254
Tsitsiklis, Asynchronous Stochastic Approximation and Q-Learning, 1994

SARSA vs. Q-learning

* SARSA is on-policy: behavior and target policies are the same
Q-learning is off-policy: behavior and target policies are different
* In e-greedy step, SARSA needs € to decay for achieve optimality
* Q-learning directly learns the optimal policy and does not need € to decay

* Q-learning has higher variance than SARSA

SARSA vs. Q-learning

* “SARSA will approach convergence allowing for possible penalties from
exploratory moves, whilst Q-learning will ignore them.

* That makes SARSA more conservative - if there is risk of a large negative reward close
to the optimal path, Q-learning will tend to trigger that reward whilst exploring,
whilst SARSA will tend to avoid a dangerous optimal path and only slowly learn to
use it when the exploration parameters are reduced. “

https://stats.stackexchange.com/questions/326788/when-to-
choose-sarsa-vs-g-learning

Cliff Walking Example

Sarsa
R = —l -25 .
Safer path
Sum of -50
Optimal path || rewards Q-learning
| . 1
s The Cliff g aunng
T S ePISOCE 75
— R=-100 __
- -100 . | | | .
0 100 200 300 400 500
e=0.1 Episodes

45

SARSA vs. Q-learning

* “In practice, the conservation of SARSA can make a big difference if mistakes are
costly - e.g. you are training a robot not in simulation, but in the real world. You
may prefer a more conservative learning algorithm that avoids high risk, if there
was real time and money at stake if the robot was damaged.”

* “If your goal is to train an optimal agent in simulation, or in a low-cost and fast-
iterating environment, then Q-learning is a good choice, as it learns the optimal
policy directly. If your agent learns online, and you care about rewards
gained whilst learning, then SARSA may be a better choice.”

https://stats.stackexchange.com/questions/326788/when-to-
choose-sarsa-vs-g-learning

Relationship Between DP and TD

Full Backup (DP)

Sample Backup (TD)

lterative Policy Evaluation
V(s) < E[R+~yV(S) | s]

TD Learning
V(S) & R+~V(S)

Q-Policy Iteration Sarsa
Q(s;a) < E[R+~Q(S", A) | s, 4] Q(S,A) & R+7Q(S', A)
Q-Value lteration Q-Learning

Qs;a) < E |R+7 max Q(5".a) | 5,2

where x & y = x — x4+ a(y — x)

Q(S, A) & R+ max Q(S',)

47

Expected Sarsa

* Similar to Q-learning except the update rule is replaced by

Q(St.:At.) — Q(St.-.At) + « [Rt+1 + W’Ew[Q(St+1=At+1) | St+1] — Q(StaAt)]

— Q(St, A +a| R+ Y m(alSe1)Q(Sev1,) — Q(Si, A)|

« when 7 is the greedy policy with respect to Q(+,-), it reduces to Q-learning

 when 1 is the policy used to generate the next action (e.g., e-greedy), it moves
deterministically in the same direction as Sarsa moves in expectation

* Generalizes Q-learning and reliably improves Sarsa (with small additional
computational cost)

48

Maximization Bias

* Finding target policy involves taking maximization of estimated values
* In Q-learning, the target policy is the greedy policy given the current action values

* In Sarsa, the target policy is often e-greedy

* In both methods, maximum over estimated values is used implicitly as an
estimate of the maximum true value

» Maximization bias: E;;(Q(s, argmax,Q(s,a)) # g (s, a)

N(—0.1,1) 1

Double Q-learning, for estimating Q1 ~ Q2 ~ q.

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q1 (s,a) and Q2(s,a), for all s € 8*,a € A(s), such that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using the policy e-greedy in Q1 + @2
Take action A, observe R, S’
With 0.5 probabilility:

Q1(S, 4) Q1(5,4) + a(R +1Qs (', argmax, Q(S', @) - Qu(S, 4))
else:

Qx(S, 4) + Qs(S, 4) +a (R +1Q1(S', argmax, Qs(S', a)) — Qa(S, 4))
S+ S

until S is terminal

50

