
Online Multi-Resource Allocation for Deadline
Sensitive Jobs with Partial Values in the Cloud

Zizhan Zheng∗ and Ness B. Shroff†
∗Dept. of Computer Science, University of California, Davis, CA

†Dept. of ECE and CSE, The Ohio State University, Columbus, OH

Abstract—In many applications including interactive services
and big data analytics, a timely result with a good match is often
more valuable than a perfect yet delayed result. This fact can
be utilized to improve the total utility gain of a cloud computing
platform by allowing partial executionof jobs. A fundamental
challenge, however, is that in many real environments, scheduling
decisions have to be made online without knowledge about
future jobs, which makes it difficult to choose between more
valuable jobs with large deadlines and less valuable jobs that are
more emergent. Moreover, jobs are often heterogeneous in their
utilities, deadlines, and demands for different types of resources.
In this paper, we study the problem of online scheduling for
deadline-sensitive jobs with concave utility functions that can
deliver partial results. We develop efficient online multi-resource
allocation algorithms that achieve low competitive ratiosfor both
continuous and discrete job models.

I. I NTRODUCTION

Cloud computing is becoming the de facto computing
platform for large scale commercial applications due to its
flexibility, elasticity, and cost-effectiveness. Many applications
supported by the cloud, such as web search and big data
analytics, are time-sensitive, where even a slight increase in
delay may hurt user experience and result in revenue loss, as
reported by Google, Amazon, and Microsoft [6], [27], [29].
For example, when Google displayed 30 results instead of 10,
the delay grew from 400ms to 900ms, and the traffic dropped
by about 20% [24]. Moreover, it is often the case that a timely
result with a good match is preferable to the completed but
delayed result. For instance, in a web search, returning the
top few search results in a short period of time is often good
enough [18]. Similarly, approximation analytics that deliveries
approximate results with a delay or an error bound is starting
to find various applications [1]. For these applications,partial
executioncan provide a higher utility gain than full execution,
where each job has to be completely served to reap its value.

In this paper, we study the problem of scheduling deadline
sensitive jobs that can deliver partial values in a cloud environ-
ment. The objective is to utilize partial execution to maximize
the total utility gain from all the jobs subject to their deadline
constraints. A fundamental challenge is that in many real envi-
ronments, scheduling decisions have to be made online without
knowledge about future job arrivals, which makes it difficult
to choose between more valuable jobs (in terms of utility) with
large deadlines and less valuable yet more emergent jobs that

This work has been supported in part by NSF grant CNS-1446582, DTRA
grant HDTRA1-14-1-0058, and a grant from the Army Research Office MURI
grant W911NF-12-1-0385.

are competing for the limited computing resources. Moreover,
jobs are often heterogenous in their utilities, deadlines,as
resource requirements. The situation is further complicated by
the fact that the utility gain of a partially finished job is often
non-linear. For instance, a measurement from 200K queries in
a production trace of Bing search engine [18] shows that the
response quality improves with increasing resources (or time),
and the relationship between the two is close to a concave
function. A similar observation is made in [32] using field
experiment.

An important promise of cloud computing is to enable
fine grained resource sharing to make more efficient use
of computing resources. Since jobs in cloud systems often
require multiple types of resources such as CPU, memory,
and network bandwidth, and different jobs may have very
different demands for different types of resources [15], multi-
resource sharing has received considerable interest in thelast
few years. Efficient and fair multi-resource allocation schemes
have been considered in both the offline setting [15], [20], [26]
and the online setting [21]. However, multi-resource allocation
for deadline sensitive jobs is not well understood yet.

In this work, we develop efficient algorithms for multi-
resource allocation for serving deadline sensitive jobs with
partial values. We consider the online setting where jobs
arrive on the fly and the scheduler has no knowledge about
future arrivals. Each job is characterized by an arrival time, a
deadline, a demand for each type of resource per unit of job
execution, a parallelism constraint that models the maximum
number of units of a job that can be executed at the same
time, and a concave utility function. Jobs are assumed to be
preemptive. We have designed efficient online algorithms for
both continuous and discrete job models (explained below) that
achieve low competitive ratios. To study their performance, we
use the dual fitting technique as a principled approach.

Scheduling of deadline sensitive job have been considered
in both full execution [19], [23], [25] and partial execution
modes [8], [12], [18], [32]. Early works on partial execution
focus on linear utility [8], [12]. Online algorithms for serv-
ing deadline sensitive jobs with non-linear utility have been
recently considered in [18], [32]. In particular, a continuous
job model is considered in [18] where a job can be served
to any partial level, and a discrete job model is considered
in [32], where each job is composed of multiple tasks of unit
length. However, all these works consider a single type of
resource, that is CPU. Moreover, works on partial executionall

assume that jobs can be fully parallelized. In practice, however,
there is often a bound on the maximum number of tasks
that can be served at the same time for any job. We extend
both the continuous and the discrete job models by further
considering multi-resource sharing and parallelism bounds.
While focusing on concave utility functions, we expect thatour
approach can be combined with techniques from full execution
mode [19], [25] to derive efficient solutions for jobs with more
complicated utility functions, e.g., sigmoid utilities [30].

We have made following contributions in this paper.

• For the continuous job model, we show that a simple
deadline oblivious algorithm that solves a convex op-
timization problem in each time slot achieves a small
competitive ratio of 2. For the single resource setting
with linear utility functions, this algorithm reduces to the
FirstFit algorithm and is known to have a competitive
ratio of 2 [8]. However, its performance for general
concave utility functions and multiple resource types
is previously unknown. Moreover, we show that this
algorithm is optimal in the special case of single resource,
fully parallelizable jobs with common deadlines.

• For the discrete job model, we show that if the discrete
counterpart of the local convex optimization problem
in the continuous case can be approximated within a
factor of θ, then a simple deadline oblivious algorithm
is 1+ θ competitive. When there is a single resource and
each task requires one unit of that resource, the local
problem can be solved to optimal by a simple greedy
algorithm. Therefore, our theorem recovers the factor 2
result previously proved using a charging argument in this
special case [17], [22]. However, our result extends to the
more general heterogeneous and multi-resource setting
where the local problem is NP-hard in general. For the
single resource setting with parallelism constraints, we
further develop a deadline aware algorithm that is 1.8-
competitive.

We note that it is useful to understand the performance
of deadline oblivious algorithms as they are often easier to
implement than deadline aware solutions. In addition, theyare
applicable even when the scheduler does not have the accurate
deadline information about individual jobs when they arrive.
Moreover, it is worth noting that for the continuous job model
with a single type of resource and linear utility functions,no
online algorithms (including the deadline aware ones) can have
competitive ratio less than 1.25 [11], while for the discrete
model with a single type of resource, no online algorithms
can achieve competitive ratio less than

√
5+1
2 ≈ 1.618 [17],

even without parallelism constraints.
The rest of the paper is organized as follows. We introduce

the system model and problem formulation in Section II. We
then present the deadline oblivious online algorithm for the
continuous job model and study its performance in Section III.
Online algorithms for the discrete job model are discussed in
Section IV. We present the numerical results in Section V, and
discuss related work in Section VI. We conclude the paper in
Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a computing cloud withm types of resources, e.g.,
CPU, memory, and network bandwidth, shared by computing
jobs. LetCi denote the capacity of typei resource. A time-
slotted system is assumed. Consider a set of computing jobs
that arrive online. Each job consists of multiple tasks, andis
represented by a tuple(aj , dj , Xj , Yj , fj , {rij}), whereaj and
dj denote the arrival and the deadline of jobj, respectively,
Yj denotes the total number of tasks to be executed for job
j, andfj is the utility function for jobj. We assume that all
the tasks of jobj are identical, each requiring a single unit
of time, andRij units of typei resource. Letrij , Rij/Ci

denote the proportion of resourcei acquired by a task of job
j. In any time slot, at mostXj tasks of jobj can be run in
parallel. Jobs are assumed to be preemptive. Ifxj tasks of job
j are finished bydj , a value offj(xj) is obtained. We assume
that fj(·) is non-decreasing and concave, andfj(0) = 0.

Let J denote the set of jobs, andT , maxj dj the time
horizon. Our objective is to maximize the total valuation
from all the jobs subject to the resource constraints and the
parallelism constraints in each time slot, and the deadline
constraints of the jobs. Formally, we study the following
optimization problem, wherexjt denotes the number of tasks
of job j that are served at timet, andx , {xjt}:

max
x

F (x) =
∑

j∈J

fj(
∑

t

xjt) (1)

s.t.
∑

t

xjt ≤ Yj , ∀j,

∑

j∈J

rijxjt ≤ 1,∀i, t,

xjt ≤ Xj , ∀j, t,

xjt = 0, ∀j, t 6∈ [aj, dj],

xjt ≥ 0, ∀j, t.

where the first constraint indicates that there is no extra value
to serve more thanYj tasks of jobj, and the second constraint
is the resource capacity constraint for each type of resource.
The third constraint indicates the parallelism bound for each
job in each time slot, and the fourth constraint indicates that
job j is not available beyond its availability window[aj , dj].

We consider an online setting where the scheduler has no
knowledge about future job arrivals. Our objective is to design
online algorithms that are efficient in a provable (competitive
ratio) sense. In particular, an online algorithm isq-competitive
for someq ≥ 1 if it achieves at least1/q of the optimal offline
value in the worst case [3].

We consider both the continuous and the discrete job mod-
els. In the continuous case, we allowxjt to take continuous
values in the optimization problem, and moreover, partial
execution of a task provides partial value. In this case, we
further assume thatfj(·) is continuously differentiable. On
the other hand, in the discrete case,xjt is constrained to take
integer values. In this case,fj can be equivalently defined by
a set of marginal valuesvjk = fj(k) − fj(k − 1). By the
concavity offj(·), we havevj,k+1 ≤ vj,k, ∀j, k.

III. O NLINE SCHEDULING FOR CONTINUOUS TASKS

In this section, we consider the case when allxjt are
continuous variables. We further assume thatfj(·) is contin-
uously differentiable for allj. Under these assumptions, we
provide an online algorithm that is 2-competitive. We further
show that the algorithm is optimal when all the jobs have a
common deadline and are fully parallelizable, and there is a
single type of resource (different jobs may require different
amount of resource). In addition to providing useful insights,
the fractional solution also serves as an upper bound to the
discrete solution.

A. Deadline-Oblivious Scheduling

Consider a time slott. Let yj,t ,
∑t

τ=1 xjτ denote the
total number of tasks of jobj that are served by timet, and
let Jt , {j : aj ≤ t ≤ dj andyj,t−1 < Yj} denote the set
of jobs that are active at timet. In each time slott, given
the allocations made in previous time slots represented by
{yj,t−1}, the algorithm finds the optimal allocation to (1) up
to t, by solving the following convex program.

max
{xjt:j∈Jt}

∑

j∈Jt

fj(xjt + yj,t−1) (2)

s.t. xjt ≤ Yj − yj,t−1, ∀j ∈ Jt,∑

j∈Jt

rijxjt ≤ 1, ∀i,

0 ≤ xjt ≤ Xj, ∀j ∈ Jt.

We note that (2) is a continuous multi-dimensional knapsack
problem with a concave objective function, and can be solved
efficiently [4]. Below is a formal description of the online al-
gorithm. The algorithm is deadline oblivious since the deadline
information is not used in making scheduling decisions.

Algorithm 1 Online Scheduling for Continuous Tasks
yj,t ← 0, ∀j, t;
In each time-slot t,

1: Jt , {j : aj ≤ t ≤ dj andyj,t−1 < Yj};
2: xjt ← optimal solution to (2) givenJt and{yj,t−1};
3: yj,t ← yj,t−1 + xjt

B. Analysis of Algorithm 1

In this section, we study the performance of Algorithm 1.
Our main result is the following theorem.

Theorem III.1. Algorithm 1 is 2-competitive.

To prove the theorem, we employ the dual fitting technique
applied to the Lagrangian dual of the original problem. Dual
fitting and the closely related primal-dual approach have been
proposed as principled approaches for the design and analysis
of online algorithms [7], [14], [16], [33].

We introduce dual variablesαj , βit, and γjt for the first
three constraints in (1). Letα , {αj}, β , {βit}, andγ ,

{γjt}. Let X denote the set ofx that satisfy the last two
constraints in (1). We consider the following dual function

G(α,β, γ) = max
x∈X

∑

j

fj(
∑

t

xjt) +
∑

j

αj(Yj −
∑

t

xjt)

+
∑

i,t

βit(1−
∑

j

rijxjt) +
∑

j,t

γjt(Xj − xjt)

=max
x∈X

∑

j

{
fj(

∑

t

xjt)−
∑

t

(αj + γjt +
∑

i

βitrij)xjt

}

+
∑

j

αjYj +
∑

j,t

γjtXj +
∑

i,t

βit

=
∑

j

Hj(α, β, γ) +
∑

j

αjYj +
∑

j,t

γjtXj +
∑

i,t

βit

whereHj(α, β, γ) , max{xjt}∈Xj

{
fj(

∑
t xjt) −

∑
t(αj +

∑
i βitrij + γjt)xjt

}
, andXj is the feasible set ofxjt that

satisfies the last two constraints in (1).

By the weak duality theorem [2], the dual function yields an
upper bound on the optimal solution of the primal problem for
any αj ≥ 0, βit ≥ 0, γjt ≥ 0, ∀i, j, t. The main idea of dual
fitting is to set dual variables(α, β, γ) based on the values of
the primal variables̃x determined by a (deterministic) online
algorithm such thatG(α, β, γ) ≤ qF (x̃) for some q ≥ 1,
which then implies that the online algorithm isq-competitive.

The main trick of our proof is to set the dual variables of
the global problem according to the optimal dual solutions
associated with the local problems solved in each time slot.
This way, we have a connection between the dual solution
and the online solution obtained by Algorithm 1, the latter
is simply the summation of the local dual solutions over all
the time slots, thanks to the convexity of the local problems.
Let x̃jt denote the allocation made for jobj at time t by
Algorithm 1, ỹj,t =

∑
τ≤t x̃jτ , and ỹj = ỹj,T . Recall that

{x̃jt} is the optimal solution to the convex program (2).
Consider the Lagrangian function associated with the convex
program at timet:

L(x, µ, a, b, c) =
∑

j∈Jt

fj(xjt + yj,t−1) +
∑

j∈Jt

µjtxjt

+
∑

j∈Jt

ajt(Yj − yj,t−1 − xjt)

+
∑

i

bit(1 −
∑

j

rijxjt)

+
∑

j∈Jt

cjt(Xj − xjt)

By the KKT conditions [2], there exist unique multipliers
µ∗
jt ≥ 0, a∗jt ≥ 0, b∗it ≥ 0, and c∗jt ≥ 0, such that

▽xL(x̃, µ
∗, a∗, b∗, c∗) = 0, µ∗

jt = 0 if x̃jt > 0, a∗jt = 0 if
x̃jt + ỹj,t−1 < Yj , b∗it = 0 if

∑
j rij x̃jt < 1, c∗jt = 0 if

x̃jt < Xj .

Given the solution{x̃jt} found by Algorithm 1, we define
the dual variables as

αj =f ′
j(ỹj)1ỹj=Yj

, βit = b∗it,

γjt =f ′
j(ỹj)1x̃jt=Xj and ỹj<Yj

It is clear thatαj ≥ 0, βit ≥ 0, γjt ≥ 0, ∀i, j, t. Moreover, we
have the following properties.

Lemma III.1. Hj(α, β, γ) ≤ fj(ỹj)− f ′
j(ỹj)ỹj .

Proof. We first claim that for anyt ∈ [aj , dj], αj+
∑

i βitrij+
γjt ≥ f ′

j(ỹj). If ỹj = Yj or ỹj < Yj and x̃jt = Xj , then
αj + γyt = f ′

j(ỹj) by definition and the claim is clearly true.
Supposẽyj < Yj and x̃jt < Xj . Thenαj = γjt = 0. By the
KKT conditions, we havea∗jt = 0 sincex̃jt + ỹj,t−1 ≤ ỹj <
Yj , andc∗jt = 0 sincex̃jt < Xj . Moreover,

0 =
∂L

∂xjt

(x̃, µ∗, a∗, b∗, c∗)

= f ′
j(x̃jt + ỹj,t−1) + µ∗

jt − a∗jt −
∑

i

b∗itrij − c∗jt (3)

(a)

≥ f ′
j(x̃jt + ỹj,t−1)−

∑

i

βitrij

(b)

≥ f ′
j(ỹj)−

∑

i

βitrij

where (a) follows fromµ∗
jt ≥ 0 anda∗jt = c∗jt = 0, and (b)

follows from the concavity offj(·). The claim then follows.
Let t(j) , argmint∈[aj,bj]

(αj +
∑

i βitrij + γjt). We have

Hj(α, β, γ) = max
yj≥0

fj(yj)− (αj +
∑

i

βit(j)rij + γjt(j))yj .

≤ max
yj≥0

fj(yj)− f ′
j(ỹj)yj = fj(ỹj)− f ′

j(ỹj)ỹj

Lemma III.2. For any t,
∑

i βit ≤
∑

j f
′
j(ỹjt)x̃jt.

Proof. Sinceβit = b∗it = 0 if
∑

j rij x̃jt < 1, we have
∑

i

βit =
∑

i

βit

∑

j

rij x̃jt

=
∑

j

∑

i

b∗itrij x̃jt

(a)

≤
∑

j

f ′
j(ỹjt)x̃jt

where (a) follows from (3) andµ∗
jt = 0 when x̃jt > 0.

Proof of Theorem 1: From Lemmas III.1 and III.2, we have

G(α, β, γ)

=
∑

j

Hj(α, β, γ) +
∑

j

αjYj +
∑

i,t

βit +
∑

j,t

γjtXj

≤
∑

j

(fj(ỹj)− f
′
j(ỹj)ỹj) +

∑

j

αjYj +
∑

i,t

βit +
∑

j,t

γjtXj

(a)
=

∑

j

fj(ỹj) +
∑

j,t

(
αj − f

′
j(ỹj) + γjt

)
x̃jt +

∑

i,t

βit

(b)

≤
∑

j

fj(ỹj) +
∑

j,t

f
′
j(ỹjt)x̃jt

(c)

≤
∑

j

fj(ỹj) +
∑

j

fj(ỹj) = 2
∑

j

fj(ỹj)

where (a) follows from the fact thatαj = 0 if ỹj < Yj and
γjt = 0 if x̃jt < Xj , (b) follows from Lemma III.2 and the
fact thatαj+γjt ≤ f ′

j(ỹj), and (c) follows from the concavity
of fj(·) (see Figure 1 for an explanation).

xj1 xj2 xj3 xj4

fj

f ′
j(

∑
τ≤2

xjτ)xj2

fj(
∑
t≤4

xjt)

Fig. 1:An example that shows
∑

j
f ′
j(
∑

τ≤t
xjτ)xjt ≤ fj(

∑
t
xjt).

Remark 1: When fj(·) is a linear function for allj, i.e.,
fj(yj) , vjyj for some vj > 0 for all j, and there is
a single type of resource, sayi, and Rij = 1 for all j,
Algorithm 1 reduces to the simple FirstFit algorithm, which
is known to be 2-competitive (and this bound is tight) [8].
However, its performance for general concave valuations and
multiple resource types ispreviously unknown.

C. Jobs with Common Deadlines

We now consider the special case when all the jobs have the
same deadlineT . We show that Algorithm 1 is optimal when
there is a single type of resource and there is no parallelism
constraint. However, optimality is not guaranteed if either of
the two conditions does not hold as we show below.

Example 1 (common deadline and multiple resources): Con-
sider two types of resources, and three jobs wherea1 =
1, d1 = 2, X1 = Y1 = 1, f1(x) = 2x, r11 = 0.2, r21 = 0.8,
a2 = 1, d2 = 2, X2 = Y2 = 2, f2(x) = x, r12 = 0.5, r22 =
0.5, and a3 = 2, d3 = 2, X3 = Y3 = 2, f3(x) = 2x, r13 =
0.8, r23 = 0.2. By solving the LPs, Algorithm 1 serves 1 unit
of job 1 and 0.4 unit of job 2 in the first time slot and 1.25 units
of job 3 in the second time slot, and has a total valuation of
f1(1)+f2(0.4)+f3(1.25) = 4.9. On the other hand, a schedule
that serves 2 units of job 2 in the first time slot, and 1 unit of
job 1 and 1 unit of job 3 in the second time slot is feasible,
and has a higher valuation off1(1) + f2(2) + f3(1) = 6.

Example 2 (common deadline and parallelism constraint):
Consider two jobs and a single type of resource, where for
both jobs, aj = 1, dj = 2, Xj = 0.75, and rj = 1.
Y1 = 0.5, Y2 = 2. Both jobs have the samefj that is strictly
concave. Then Algorithm 1 serves 0.5 units of both jobs at
time 1, and0.75 unit of job 2 at time 2 due to the parallelism
constraint. However, an optimal schedule serves 0.25 unit of
job 1 and 0.75 unit of job 2 in each time slot, and obtains a
higher utility whenfj is strictly increasing.

Before we prove Algorithm 1’s optimality for the common
deadline case, we first establish its following properties.For
any time slott, we again letJt denote the set of active jobs
at t. Let J1

t ⊆ J(t) denote the subset of jobs with̃xjt > 0,
andJ2

t ⊆ J1
t the subset ofJ1

t with ỹj,t < Yj .

Lemma III.3. In Algorithm 1, for any jobs inJ2
t , f ′

j(ỹj,t)/rj
are the same.

Proof. For any jobs inJ2
t , we haveµ∗

jt = 0 anda∗jt = 0 by
the KKT conditions. From (3), we then havef ′

j(ỹj,t) = b∗t rj
for any j (we omit indexi since there is only one type of
resource). The statement then follows.

It follows that, without loss of optimality, we can assume
that if two jobs start with the same ratio off ′

j(ỹj,t)/rj in the
beginning of timet, then using Algorithm 1 either both of
them are served or non of them are served int, and they end
up with the same ratio at the end oft, unless one of them is
fully served duringt. By induction and the common deadline
assumption, we then have the following result:

Lemma III.4. Supposej1 ∈ J1
t andj2 ∈ J1

t . Then (1) for any
time slott′ > t wherej1 ∈ J1

t′ , we must havej2 ∈ J1
t′ unless

ỹj2,t′−1 = Yj2 ; (2) f ′
j1
(ỹj1)/rj1 = f ′

j2
(ỹj2)/rj2 if ỹj1 < Yj1

and ỹj2 < Yj2 .

To establish the optimality of the algorithm, we redefineβt

(we omit the resource indexi for the single resource case) as
follows. For any time slott, we setβt = 0 if

∑
j rj x̃jt < 1.

Otherwise, we lett′ ≥ t denote the last time slot wherexjt′ >
0 for somej ∈ Jt, and setβt = minj∈Jt:xjt′>0 f

′(ỹj)/rj . We
then setαj = f ′

j(ỹj)−mint≥aj
βtrj if ỹj = Yj , andαj = 0

otherwise.

Lemma III.5. αj ≥ 0 for all j.

Proof. The statement is clearly true wheñyj < Yj . Assume
ỹj = Yj . Let t denote the last time slot wherẽxjt > 0. We
either haveβt = 0, or βt = f ′

j(ỹj)/rj , or βt = f ′
j′(ỹj′)/rj′

for somej′ with x̃j′t > 0. In the last case, we must have
f ′
j′(ỹj′)/rj′ ≤ f ′

j(ỹj)/rj by the greedy way that jobs are
served, which implies the statement.

Lemma III.6. For any jobj and time slott ≥ aj , (1) f ′
j(ỹj)−

αj − βtrj ≤ 0 if x̃jt = 0 and (2)f ′
j(ỹj) − αj − βtrj = 0 if

x̃jt > 0.

Proof. To show the first property, consider any time slot
t ≥ aj with x̃jt = 0. First assumẽyj < Yj . Thenαj = 0.
Moreover, we must haveβt ≥ f ′

j(ỹj)/rj by the definition
of βt. On the other hand, wheñyj = Yj , the claim follows
directly from the definition ofαj .

We then prove the second property. Consider any time slot
t ≥ aj with x̃jt > 0. First assumẽyj < Yj . Thenαj = 0.
Moreover, by the the definition ofβt and the common deadline
assumption, we must haveβt = f ′

j(ỹj)/rj . On the other hand,
when ỹj = Yj , we either haveβt = 0, or βt = mint′≥aj

βt′ .
In both cases, the second property holds.

Theorem III.2. Algorithm 1 is optimal when all the jobs have
the same deadline and share a single type of resource.

Proof. We defineG(α, β) andH(α, β) similar toG(α, β, γ)
and H(α, β, γ) with the parallelism constraints removed.
Using Lemma III.6, we can show thatH(α, β) satisfies the
same condition in Lemma III.1. We then haveG(α, β) ≤∑
j

fj(ỹj) +
∑
t

(βtrj + αj − f ′
j(ỹj))x̃jt =

∑
j

fj(ỹj) by the

second property of Lemma III.6.

IV. ONLINE SCHEDULING FORDISCRETETASKS

In this section, we study the discrete setting wherexjt

are constrained to be integers. We first show that a deadline
oblivious algorithm similar to Algorithm 1 again provides a
small approximation factor as long as the discrete counterpart

Algorithm 2 Online Scheduling for Discrete Tasks
xst ← 0,∀s, t;
In each time-slot t,

1: St ← {s ∈ S : as ≤ t ≤ ds, xst′ = 0 for t′ < t};
2: xst ← apply ALGO to find a solution to (5) onSt

of the local problem can be well approximated. To prove this
result, we reformulate the problem by taking a task view, and
utilize Fenchel duality [2] that is more suitable to our dual
fitting argument in the discrete case.

A. Deadline-Oblivious Scheduling

We first observe that in the discrete case, the original
problem (1) can be converted into the following equivalent
form. For each jobj, we createYj tasks where thek-th task
takes a value equal to thek-th marginal valuation of the job,
determined byfj(·), and all the tasks of jobj have the same
arrival time and deadline, and the same resource requirement.
Let as, ds, vs, {ris} denote the arrival time, deadline, the
value, and the resource requirement of a tasks. We then treat
each task as a single unit job. LetSj denote the set of tasks
of job j, and letS =

⋃
j Sj be the entire set of tasks from all

the jobs. We can then rewrite problem (1) by taking the task
view as follows, wherexst is the binary decision variable that
denotes whether the tasks is scheduled in timet or not.

max
x

F (x) =
∑

s∈S

vs(
∑

t

xst) (4)

s.t.
∑

t

xst ≤ 1, ∀s,

∑

s∈S

risxst ≤ 1,∀i, t,

∑

s∈Sj

xst ≤ Xj,∀j, t,

xst ∈ {0, 1} ∀j, t,

xst = 0, ∀j, t 6∈ [aj , dj].

Note that we have ignored the precedence constraint in the
above formulation, which requires thatk-th task of jobj to
be scheduled before itsk + 1-th task. This is without loss
of optimality due to the concavity offj(·). Similar to the
continuous case, we consider a deadline-oblivious algorithm
that solves in each time slot the following discrete counterpart
of problem (2), whereSt , {s ∈ S : as ≤ t ≤ ds, xst′ =
0 for t′ < t} denotes the set of active tasks at timet.

max
{xst:s∈St}

∑

s∈St

vsxst (5)

s.t.
∑

s∈St

risxst ≤ 1,∀i,

∑

s∈Sj

xst ≤ Xj, ∀j,

xst ∈ {0, 1} ∀s.

Our deadline oblivious online algorithm for the discrete case
is given in Algorithm 2, where ALGO is an arbitrary algorithm
that solves the local problem.

B. Analysis of Algorithm 2

We again use the dual fitting technique to study the per-
formance of Algorithm 2. Instead of Lagrangian duality, we
consider Fenchel duality [2], which is more suitable to the
task view of the problem in the discrete setting. Consider a
general optimization problem

max f1(x)− f2(x)

s.t. x ∈ X1 ∩X2

wheref1 andf2 are real-valued functions onRn, X1 andX2

are subsets ofRn. The dual problem is defined as follows:

min q(λ) = g2(λ) − g1(λ)

s.t. λ ∈ Λ1 ∩ Λ2,

where
g1(λ) = inf

x∈X1

{x′λ− f1(x)}, g2(λ) = sup
x∈X2

{x′λ− f2(x)},

Λ1 = {λ : g1(λ) > −∞}, Λ2 = {λ : g2(λ) < ∞}.

We again have the weak duality property, that is, any feasible
dual solution provides an upper bound to the primal optimal.
To derive the Fenchel dual of our problem, we introduce
dual variablesλst for each tasks and time slott, and set
f1(x) =

∑
s∈S vs(

∑
t xst), f2(x) = 0, andX1 = X2 = X

including all feasiblexst in (4). We then have the following
dual function:

q(λ) = g2(λ)− g1(λ)

= max
x∈X

{∑

s

vs

(∑

t

xst

)
−
∑

s,t

λstxst

}
+max

x∈X

∑

s,t

λstxst

(6)

where we only consider the set ofλ such thatg1(λ) andg1(λ)
can be achieved at feasiblexst. In the following, we always
set dual variables such thatλst = λs for all t. In this case,
the dual function can be further simplified as

q(λ) = max
x∈X

{∑

s

vs

(∑

t

xst

)
− λs

∑

s,t

xst

}
+max

x∈X

∑

s,t

λsxst

= max
x∈X

{∑

s

(vs − λs)
∑

t

xst

}
+max

x∈X

∑

s,t

λsxst

≤
∑

s:vs>λs

(vs − λs) + max
x∈X

∑

s,t

λsxst (7)

Using the dual function, we can prove the following perfor-
mance bound for Algorithm 2.

Theorem IV.1. If in each time slot, ALGO finds a solution
that is within a factorθ ≥ 1 of the optimal solution to the
local problem, then Algorithm 2 is1 + θ competitive.

Proof. Given the online solutioñxst found by Algorithm 2,
we set the dual variables as follows:

λs =

{
0 if

∑
t x̃st = 1,

vs if
∑

t x̃st = 0.

Let V ,
∑

s vs
∑

t x̃st denote the value of the online solution
found by Algorithm 2. We first show that the first part ofq(λ)

is upper bounded byV . From the definition ofλs, we have
vs > λs iff

∑
t x̃st = 1. It follows that

∑
s:vs>λs

(vs − λs) ≤∑
s:vs>λs

vs ≤
∑

s vs
∑

t x̃st = V .
We then show that the second part ofq(λ) is upper bounded

by θV . To see this, letX′ ⊇ X denote the set ofxst that may
violate the first constraint in (4) while still satisfying the other
constraints, andVt ,

∑
s vsx̃st the total value obtained by the

algorithm at timet. We then observe that

max
x∈X

∑

s,t

λsxst ≤ max
x∈X′

∑

s,t

λsxst

(a)

≤
∑

t

max
x∈X′

∑

s

λsxst

(b)
=

∑

t

max
x∈X′

∑

s:λs>0

vsxst

(c)

≤
∑

t

max
x∈X′

∑

s∈St

vsxst

(d)

≤
∑

t

θVt = θV,

where (a) follows from the fact that in problem (4), all
the constraints except the first one are separable overt, (b)
follows from the fact that there is no benefit to consider
any task withλs = 0, (c) follows from that for any tasks
with as ≤ t ≤ ds, if s 6∈ St, then s has been scheduled
before t in Algorithm 2, henceλs = 0, and (d) follows
directly by comparing the separated dual problem with the
local problem (5). The theorem then follows by combining
the first part and the second part.

Remark 1: When there is a single type of resource and each
task requires one unit of that resource, Algorithm 2 is 2-
competitive, since in this case, the local problem (5) can be
easily solved by a simple greedy algorithm that always serves
active tasks with highest values subject to the parallelism
constraint. Thus, our dual fitting argument provides a new
proof to the factor 2 result previously proved by a charging
argument in [17] and [22], for the single resource setting with
unit demand per task. Note that the factor 2 is tight for the
greedy algorithm, which can be shown by simple examples.

Remark 2: For the general multi-resource setting, the local
problem at each time slot can be viewed as an integral
multi-dimensional knapsack problem. This problem is hard to
approximate within a factor ofΩ(m

1
B+1

−ǫ) for every fixedB
unlessNP = ZPP [9], whereB = 1/maxi,j rij . Thus, the
competitive ratio of any online algorithm is likely to depend
on m, the number of resource types. On the other hand, in
practice, the pool of a certain type of resource in a data center
is usually substantially larger than the amount required by
any single task [28], [31]. Hence, we expect thatB → ∞. We
then discuss two algorithms to the local problem with different
performance guarantees.

A local greedy algorithm: We can consider a direct extension
of the single resource greedy algorithm to the multi-resource
setting. Letrs , maxi ris denote the amount ofdominant

resource [15] required by tasks. The algorithm first sorts
the set of active tasks byvs/rs, and picks the set of tasks
with the highest ratios subject to the resource budget and the
parallelism constraint. The total value of all selected tasks
is then compared with the value of the next task on the
list, and the larger of the two is taken as the final solution
to the local problem. The algorithm has a complexity of
O(nt lognt) wherent is the number of active tasks at time
t. Moreover, it can be shown that the algorithm achieves an
approximation factor ofmin(2, B

B−1)m, which approaches to
m when B → ∞. This result can again be proved using a
dual fitting argument by considering the Lagrangian dual of
the local problem.

A local primal-dual algorithm : We can also apply the primal-
dual algorithm proposed in [5] to the local problem. The main
idea is to view the Lagrangian dual variablebi associated with
the first constraint in (5) as the unit price for using resource i.
Initially, bi = 1 for all i. In each round, the algorithm picks a
tasks with the highest ratio ofvs/

∑
i risbi, and updatesbi =

bi(e
B−1m)

ris
1−max

s′
r
is′ . The algorithm stops when either all the

active tasks are scheduled or
∑

i bi > e
B−1m, wheree is the

base of the natural logarithm. This algorithm has a complexity
of O(n2

t), and an approximation factor ofeB
B−1m

1
B−1 , which

approaches toe whenB → ∞. Thus, this algorithms works
better than the greedy algorithm for largem and largeB.

C. Deadline Aware Scheduling

In this section, we study the benefit of deadline awareness in
the design of partial scheduling algorithms. For simplicity, we
focus on the single resource setting where each task requires
a single unit of that resource, while keeping the parallelism
constraint. LetC denote the total units of the available
resource. In this case, Algorithm 2 is 2-competitive by always
picking the set of active tasks with highest values (subject
to the parallelism constraint) in each time slot. The main
inefficiency of this myopic strategy is that it can potentially
miss the set of tasks that are slightly less valuable but are
more emergent than the scheduled ones. The main idea of the
deadline aware algorithm is to schedule a few tasks with small
deadlines in addition to those tasks with high values in each
time slot. This idea has been applied before in continuous job
scheduling with linear utility [12] and unit job scheduling[10].
However, none of these works consider jobs with parallel
tasks subject to a parallelism constraint. Our algorithm can
be viewed as a discrete counterpart of the algorithm in [12]
with the parallelism constraint taken into account.

The algorithm works as follows (see Algorithm 3). Consider
a time slott. Recall thatSt is the set of active tasks att. From
the concavity of job values, among the set ofk remaining tasks
of job j, it is sufficient to consider the firstmin(Xj , k) tasks
with the highest values. LetS′

t denote these tasks from all the
active jobs. These tasks are first sorted by their values non-
increasingly (line 2). Letvh denote the value of theh-th task
on the list. LetSp

t denote the firstp tasks on the list, and̄vp
the average value of these tasks. LetSt(p, ρ) ⊆ S′

t\S
p
t denote

the set of remaining tasks with values no less thanρv̄p where
ρ is a parameter to be determined. We note that the greedy

Algorithm 3 Deadline Aware Scheduling for Discrete Tasks
In each time-slott,

1: S′
t ← set of active tasks that can be scheduled att;

2: Sort the tasks inS′
t by task values non-increasingly;

3: if |S′
t| ≤ C or vC+1 ≤ ρv̄p then

4: Schedule the firstmin{|S′
t|, C} tasks on the list;

5: else
6: Schedule the firstp tasks on the list and theC − p tasks in

St(p, ρ) with the minimum deadlines

solution simply picks the firstmin{|S′
t|, C} tasks on the list.

In contrast, our algorithm picks all these tasks only if there
is no extra task available (that is,|S′

t| ≤ C), or vC+1 ≤ ρv̄p,
that is when the value of theC + 1-th task on the list is
significantly less than the average value of the firstp tasks
(line 3-4). Otherwise, the algorithm picks the firstp tasks of
highest values, and use the remaining resource to serve the
C − p tasks inSt(p, ρ) with the minimum deadlines, wherep
is again a parameter to be determined (line 5-6).

Note that our algorithm retains theO(nt lognt) complexity
in each time slot, wherent is the number of active tasks in time
slot t. Below we prove that Algorithm 3 is 1.8-competitive,
where we also determine the values ofρ andp.

Theorem IV.2. Algorithm 3 is 1.8-competitive by takingρ =
2/3 and p = C/2.

Proof. Let At denote the set of tasks scheduled at timet in
Algorithm 3. LetA1

t = At ∩ Sp
t andA2

t = At\A1
t . Let Mt ⊆

At denote the set of scheduled tasks where the corresponding
job achieves the maximum parallelism att. In other words,
any s ∈ Mt belongs to a jobj such thatXj tasks ofj are
scheduled at timet. For any active tasks ∈ St\At, there are
three possibilities: (1)s ∈ SC

t \Sp
t , then we haveds ≥ ds′ for

any tasks′ ∈ A2
t ; (2) s ∈ S′

t\S
C
t , then eithervs < ρv̄p or

ds ≥ ds′ for any tasks′ ∈ A2
t ; (3) s ∈ St\S′

t.

We again adopt a dual fitting argument. Given the solution
found by Algorithm 3, we set the dual variablesλ as follows.
If task s is not scheduled by its deadline,λs = vs. For the
set of scheduled tasks, theirλ are determined in a recursive
way starting fromT . Consider any time slott, and suppose the
value ofλ has been determined for any tasks scheduled aftert.
For s ∈ A1

t \Mt, λs = 0. Let λ′
t denote the maximumλ value

for any task inSt(p, ρ)\At, andλ′
t = 0 if St(p, ρ)\At = ∅.

For s ∈ A2
t\Mt, λs = min(vs, λ

′
t). For s ∈ A1

t ∩Mt, λs =
λ
s
j
t
, wherej is the job thats belongs to andsjt is the first

task of j that is not scheduled at timet. For s ∈ A2
t ∩ Mt,

λs = min(vs,max(λ′
t, λs

j
t
)). Let λt , maxs∈S′

t\Mt
λs.

Let A =
⋃

t At denote the set of tasks scheduled by
Algorithm 3. Let Vt =

∑
s∈At

vs denote the total value
obtained at timet in Algorithm 3, andV =

⋃
t Vt. For the

single resource unit demand setting and from the definition of
dual variables, (7) can be simplified as follows:

q(λ) ≤
∑

s:vs>λs

(vs − λs) + max
x∈X

∑

s,t

λsxst

≤
∑

s∈A

vs −
∑

s∈A

λs +
∑

t

(
λt|At\Mt|+

∑

s∈Mt

max(λt, λs)
)

≤ V +
∑

t

(∑

s∈A2
t :λt≥λs

(λt − λs) +
∑

s∈A1
t

λt

)

Let gt ,
∑

s∈A2
t :λt≥λs

(λt − λs) +
∑

s∈A1
t
λt. We distinguish

the following cases:
1) |S′

t| ≤ C: we haveλt = 0 andgt = 0.
2) |S′

t| > C and vC+1 ≤ ρv̄p: we haveλt ≤ vC+1 ≤

ρv̄p. Hence, gt
Vt

≤ (C−p)λt+pρv̄p∑
s∈A2

t
vs+pv̄p

≤ (C−p)λt+pρv̄p
(C−p)λt+pv̄p

≤

(C−p)ρ+pρ

(C−p)ρ+p
= ρC

(C−p)ρ+p
.

3) |S′
t| > C, vC+1 > ρv̄p, and λt = λs′ for somes′ 6∈

SC
t ∪ St(p, ρ): we haveλt ≤ vs′ ≤ ρv̄p, gt ≤ ρv̄pC,

Vt = pv̄p +
∑

s∈A2
t
vs ≥ pv̄p + (C − p)ρv̄p. Hence,

gt
Vt

≤ ρC
p+(C−p)ρ .

4) |S′
t| > C, vC+1 > ρv̄p, andλt = λs′ for somes′ ∈ SC

t ∪
St(p, ρ): we haveλs ≥ min{vs, λt} for anys ∈ A2

t , and
gt ≤ Cv̄p − (C − p)ρv̄p, andVt = pv̄p +

∑
s∈A2

t
vs ≥

pv̄p + (C − p)ρv̄p. Hence,gt
Vt

≤ C−(C−p)ρ
p+(C−p)ρ .

We then findρ and p that minimize the worst-casegt/Vt

among the above four cases. Letδ1 = ρC
p+(C−p)ρ and δ2 =

C−(C−p)ρ
p+(C−p)ρ . Note that δ1 = δ2 if ρC = C − (C − p)ρ,
that is whenρ = C

2C−p
. Moreover, for thisρ, δ1 (and

δ2) is minimized at p = C/2. Taking p = C/2 and
ρ = C

2C−p
= 2/3, we haveδ1 = δ2 = 1.8. It follows that

q(λ) ≤ V +
∑

t 0.8Vt = 1.8V .

V. NUMERICAL RESULTS

In this section, we study the performance of our algorithms
with numerical results. For both continuous and discrete job
models, our algorithms achieve clearly higher utility gains
compared with commonly adopted heuristics that ignore the
heterogeneous multi-resource requirements.

Setup: We consider a data center with 100 units of CPU and
100 units of memory resources. 100 jobs are generated. The
number of job arrivals in each time slot follows a Poisson
distribution with a mean of 10, independent of other time-
slots. The availability window size of jobj, that is,dj − aj,
follows an exponential distribution, independent of otherjobs.
Each job has 100 units of tasks and a parallelism bound of
20. The utility of job j is modeled as a concave function
of the form fj(xj) = vjx

α
j with α < 1. Here, we consider

α = 1/2 and the coefficientvj is generated from a uniform
distribution in [1,5]. We have also tried other types of concave
functions including the logarithmic function and observed
similar results. Each job is either CPU-heavy or memory-
heavy with equal chance. Each task of a CPU-heavy job
requiresR1 units of CPU and 1 unit of memory, and each
task of a memory-heavy job requires 1 unit of CPU andR2

units of memory, whereR1 andR2 are uniformly distributed
in [1, R]. Each figure below shows the average results over 10
independent scenarios generated for a given set of parameters.

Continuous Tasks: In the continuous setting, we compare
Algorithm 1 with the offline optimal and two heuristics. The
first heuristic, called s-greedy, always serves the jobs with
highest marginal values (subject to the parallelism constraint)
and ignores the resource requirements of jobs. The second

heuristic, called equal-opp, schedules all the jobs with equal
opportunity (subject to the parallelism constraint). Figure 2(a)
shows the utility gains of these algorithms under differentjob
availability window sizes. We observe that all the algorithms
achieve higher utility gains when the availability window size
increases, that is when jobs become less delay constrained,
which is expected. Algorithm 1 always performs much better
than the two heuristics. Moreover, it is close to the offline
optimal for smaller availability windows. The gap becomes
bigger for large window size due to the deadline oblivious
nature of the algorithm.

Discrete Tasks: In the discrete setting, we consider two ver-
sions of Algorithm 2 that solve the local problem using the lo-
cal greedy algorithm (m-greedy for short), and the primal-dual
approach (primal-dual for short), respectively. We compare
them with the discrete counterparts of the two heuristics inthe
continuous setting mentioned above. In Figure 2(b), we again
vary the availability window size and observe similar result
as in the continuous case. In Figure 2(c), we vary the value
of R that measures the heterogeneity of resource demands.
We observe that our algorithms achieve bigger improvement
whenR becomes larger, which indicates the benefit of being
resource aware. We further observe that the two versions of
Algorithm 2 have similar performance, which is consistent
with our discussion in Section IV-B for smallm.

We further compare Algorithm 3 (deadline-aware for short)
with the two heuristics in the single resource unit demand
setting. We observe that our algorithm achieves a bigger
improvement over the greedy algorithm for a larger availability
window due to its deadline awareness.

VI. RELATED WORK

Earlier works on deadline-sensitive job scheduling with
partial execution focus on linear utility functions [10], [11],
[13]. More recently, partial execution with non-linear utility
functions has been considered in [18], [32]. However, all these
works consider the CPU resource only, and none of them
consider the parallelism bound. In addition, all these works
apply a charging argument in establishing their competitive
ratio results, which cannot be easily extended to the more
complicated setting that we consider.

Deadline-sensitive job scheduling under the full execution
mode has also been considered [19], [23], [25]. In this setting,
constant approximation ratios are only known for some special
cases. Recently, an interesting online algorithm is proposed
in [25] with its competitive ratio parameterized by the slack-
ness of jobs, where a pending job can preempt a running
job only if its value is significantly higher. We expect that
this idea can potentially be combined with our approaches to
address more complicated utility functions such as sigmoid
utilities [30].

Multi-resource sharing has received a lot of attention re-
cently since the seminal work [15]. Previous works on multi-
resource sharing mainly focus on the offline case [20], [26].
The main objective is to design new fairness metrics that are
suitable to the multi-resource setting. Note that a concave
utility function can also be used to model fairness in addition

2 4 6 8 10

600

800

1000

1200

1400

Availability Window

U
til

ity

offline
Algorithm 1
s−greedy
equal−opp

(a) Continuous tasks with varying
availability window size

2 4 6 8 10

600

800

1000

1200

1400

Availability Window

U
til

ity

m−greedy
prima−dual
s−greedy
equal−opp

(b) Discrete tasks with varying avail-
ability window size

2 4 6 8 10
600

800

1000

1200

1400

Resource Demand Heterogenity

U
til

ity

m−greedy
prima−dual
s−greedy
equal−opp

(c) Discrete tasks with varying re-
source demand heterogeneity

2 4 6 8 10
1000

1200

1400

1600

1800

2000

Availability Window

U
til

ity

deadline−aware
s−greedy
equal−opp

(d) Discrete tasks with single re-
source and unit demand

Fig. 2: Simulation Results. In (a) and (b),R = 8. In (c), the mean availability window size is 6.

to efficiency. In particular, the multi-resource version ofα-
fairness proposed in [20] is a concave function. An online
multi-resource sharing problem is considered in [21], where it
is assumed that once an agent arrives, it will never leave the
system, and there is no deadline constraint.

VII. C ONCLUSION

Partial execution is emerging as a promising approach to
improve the efficiency of cloud systems by exploiting the
fact that many applications are deadline sensitive, and prefer
a timely result with a good match. In this paper, we study
the problem of online multi-resource allocation for serving
deadline sensitive jobs with partial values. Previous works
on partial execution mainly focus on CPU resource only. We
consider the problem in the context of multi-resource sharing,
an important paradigm for achieving fine grained resource
sharing in cloud systems. Assuming that the utility functions
are concave and the jobs are preemptive, we have designed
efficient online algorithms with low competitive ratios.

REFERENCES

[1] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A.Wierman,
and M. Yu. Grass: Trimming stragglers in approximation analytics. In
Proc. of NSDI, 2014.

[2] D. P. Bertsekas.Nonlinear Programming, 2nd edition. Athena Scientific,
1999.

[3] A. Borodin and R. El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 2005.

[4] K. M. Bretthauer and B. Shetty. The nonlinear knapsack problem
algorithms and applications.European Journal of Operational Research,
138:459–472, 2002.

[5] P. Briest, P. Krysta, and B. Vöcking. Approximation techniques for
utilitarian mechanism design.SIAM Journal on Computing, 40(6):1587–
1622, 2011.

[6] J. Brutlag. Speed matters for Google web search. http://services.google.
com/fh/files/blogs/googledelayexp.pdf, 2009.

[7] N. Buchbinder and J. Naor. The design of competitive online algorithms
via a primal-dual approach.Foundations and Trends in Theoretical
Computer Science, 3(2-3):93–263, 2007.

[8] E.-C. Chang and C. Yap. Competitive online scheduling with level of
service.Journal on Scheduling, 6:251–267, 2003.

[9] C. Chekuri and S. Khanna. On multi-dimensional packing problems.
SIAM Journal on Computing, 33(4):837–851, 2004.

[10] F. Y. Chin, M. Chrobak, S. P. Fung, W. Jawor, J. Sgall, andT. Tichý.
Online competitive algorithms for maximizing weighted throughput of
unit jobs. Journal on Scheduling, 4:255–276, 2006.

[11] F. Y. L. Chin and S. P. Y. Fung. Online scheduling with partial job
values: Does timesharing or randomization help?Algorithmica, 37:149–
164, 2003.

[12] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T.Tichý, and
N. Vakhania. Preemptive scheduling in overloaded systems.In Proc. of
ICALP, 2002.

[13] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T.Tichý, and
N. Vakhania. Preemptive scheduling in overloaded systems.Journal of
Computer and System Sciences, 67:183–197, 2003.

[14] N. R. Devanur and Z. Huang. Primal dual gives almost optimal energy
efficient online algorithms. InProc. of SODA, 2014.

[15] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
S. Shenker. Dominant resource fairness: Fair allocation ofmultiple
resource types. InProc. of NSDI, 2011.

[16] A. Gupta, R. Krishnaswamy, and K. Pruhs. Online primal-dual for non-
linear optimization with applications to speed scaling. In10th Workshop
on Approximation and Online Algorithms (WAOA), 2012.

[17] B. Hajek. On the competitiveness of on-line schedulingof unit-
length packets with hard deadlines in slotted time. InConference on
Information Sciences and Systems, 2001.

[18] Y. He, S. Elnikety, and C. Y. James Larus. Zeta: Scheduling interactive
services with partial execution. InProc. of SoCC, 2012.

[19] N. Jain, I. Menache, J. S. Naor, and J. Yaniv. Near-optimal scheduling
mechanisms for deadline-sensitive jobs in large computingclusters.
ACM Transactions on Parallel Computing, 2(1), 2015.

[20] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework.IEEE/ACM
Transactions on Networking, 21(6):1785–1798, 2013.

[21] I. Kash, A. D. Procaccia, and N. Shah. No agent left behind: Dynamic
fair division of multiple resources.Journal of Artificial Intelligence
Research, 51:579–603, 2014.

[22] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B.Schieber, and
M. Sviridenko. Buffer overflow management in qos switches. In Proc.
of STOC, 2001.

[23] G. Koren and D. Shasha. Dover: an optimal on-line scheduling
algorithm for overloaded real-time systems. InReal-Time Systems
Symposium, 1992.

[24] G. Linden. Marissa Mayer at Web 2.0. http://glinden.blogspot.com/
2006/11/marissa-mayer-at-web-20.html, 2006.

[25] B. Lucier, I. Menache, J. S. Naor, and J. Yaniv. Efficientonline
scheduling for deadline-sensitive jobs. InProc. of SPAA, 2013.

[26] D. C. Parkes, A. D. Procaccia, and N. Shah. Beyond dominant resource
fairness: Extensions, limitations, and indivisibilities. ACM Transactions
on Economics and Computation, 3(1):1785–1798, 2015.

[27] E. Schurman and J. Brutlag. The user and business impactof server
delays, additional bytes, and http chunking in web search. In OReilly
Velocity Web Performance and Operations Conference, 2009.

[28] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. Lau. An online auction
framework for dynamic resource provisioning in cloud computing. In
Proc. of Sigmetrics, 2014.

[29] S. Souders. Velocity and the bottom line. http://radar.oreilly.com/2009/
07/velocity-making-your-site-fast.html, 2009.

[30] V. Srivastava and F. Bullo. Knapsack problems with sigmoid utilities:
Approximation algorithms via hybrid optimization.European Journal
on Operational Research, 236(2):488–498, 2014.

[31] L. Zhang, Z. Li, and C. Wu. Dynamic resource provisioning in cloud
computing: A randomized auction approach. InProc. of INFOCOM,
2014.

[32] Y. Zheng, B. Ji, N. B. Shroff, and P. Sinha. Forget the deadline:
Scheduling interactive applications in data centers. InProc. of IEEE
Cloud, 2015.

[33] Z. Zheng and N. B. Shroff. Online welfare maximization for electric
vehicle charging with electricity cost. InProc. of ACM e-Energy, 2014.

