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Abstract—In many applications including interactive services are competing for the limited computing resources. Moreove
and big data analytics, a timely result with a good match is den  jobs are often heterogenous in their utilities, deadlires,
more valuable than a perfect yet delayed result. This fact @  agoyrce requirements. The situation is further compsitaty
be utilized to improve the total utility gain of a cloud computing . . . . L
platform by allowing partial executionof jobs. A fundamental the f&_‘Ct that the_ utility gain of a partially finished job |sterh_ .
challenge, however, is that in many real environments, sclaeling non-linear. For instance, a measurement from 200K queties i
decisions have to be made online without knowledge about a production trace of Bing search engine [18] shows that the
future jOt_)S, Wh_iCh makes it _difficult to choose bet_ween more response quality improves with increasing resources (foe )t
valuable jobs with large deadlines and less valuable jobs &8t are 544 the relationship between the two is close to a concave

more emergent. Moreover, jobs are often heterogeneous in éir functi A simil b tion i de in 132 ina field
utilities, deadlines, and demands for different types of reources. unction. A similar observation is made in [32] using fie

In this paper, we study the problem of online scheduling for €xperiment.
deadline-sensitive jobs with concave utility functions tlat can An important promise of cloud computing is to enable
dehverl partial rgsults. We de\{elop efficient onlll.ne mqltl{esource fine grained resource sharing to make more efficient use
allocation algorithms that achieve low competitive ratiosfor both - . . -
continuous and discrete job models. of cqmputlng resources. Since jobs in cloud systems often
require multiple types of resources such as CPU, memory,
|. INTRODUCTION and network bandwidth, and different jobs may have very

Cloud computing is becoming the de facto Computingiﬁerent demands for different types of resources [15]|timu
platform for large scale commercial applications due to if§source sharing has received considerable interest itashe
ﬂex|b|||ty, e|asticity, and cost-effectiveness. Many ﬁp@tions few years. Efficient and fair multi-resource allocation eties
supported by the cloud, such as web search and big dB@ye been considered in both the offline setting [15], [284] [
analytics, are time-sensitive, where even a slight ineréas and the online setting [21]. However, multi-resource aikoan
delay may hurt user experience and result in revenue loss,f@isdeadline sensitive jobs is not well understood yet.
reported by Google, Amazon, and Microsoft [6], [27], [29]. In this work, we develop efficient algorithms for multi-
For example, when Google displayed 30 results instead of I8source allocation for serving deadline sensitive jobth wi
the delay grew from 400ms to 900ms, and the traffic droppedrtial values. We consider the online setting where jobs
by about 20% [24]. Moreover, it is often the case that a timebrrive on the fly and the scheduler has no knowledge about
result with a good match is preferable to the completed butture arrivals. Each job is characterized by an arrivaktira
delayed result. For instance, in a web search, returning ttheadline, a demand for each type of resource per unit of job
top few search results in a short period of time is often goakecution, a parallelism constraint that models the marimu
enough [18]. Similarly, approximation analytics that deties number of units of a job that can be executed at the same
approximate results with a delay or an error bound is si@rtitime, and a concave utility function. Jobs are assumed to be
to find various applications [1]. For these applicatigmesitial preemptive. We have designed efficient online algorithnis fo
executioncan provide a higher utility gain than full executionpoth continuous and discrete job models (explained beloat) t
where each job has to be completely served to reap its valaehieve low competitive ratios. To study their performanee

In this paper, we study the problem of scheduling deadlinise the dual fitting technique as a principled approach.

sensitive jobs that can deliver partial values in a cloudrenv  scheduling of deadline sensitive job have been considered
ment. The objective is to utilize partial execution to mai@en in poth full execution [19], [23], [25] and partial executio
the total utility gain from all the jobs subject to their déad modes [8], [12], [18], [32]. Early works on partial executio
constraints. A fundamental challenge is that in many reatenfocus on linear utility [8], [12]. Online algorithms for ser
ronments, scheduling decisions have to be made online mithqhg deadline sensitive jobs with non-linear utility haveehe
knOW|edge about future JOb arrivals, which makes it difﬁculrecenﬂy considered in [18], [32] In particu|ar, a contois

to choose between more valuable jobs (in terms of utilitghwi job model is considered in [18] where a job can be served
large deadlines and less valuable yet more emergent jobs if3aany partial level, and a discrete job model is considered
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assume that jobs can be fully parallelized. In practice,dwa, [I. SYSTEM MODEL AND PROBLEM FORMULATION

there is often a bound on the maximum number of tasks ) _ )

that can be served at the same time for any job. We extend=Onsider a computing cloud with types of resources, e.g.,

both the continuous and the discrete job models by furthefU, memory, and network bandwidth, shared by computing

considering multi-resource sharing and parallelism bsundobs. LetC; denote the capacity of typeresource. A time--

While focusing on concave utility functions, we expect that  Slotted system is assumed. Consider a set of computing jobs

approach can be combined with techniques from full exeoutighat arrive online. Each job consists of multiple tasks, &nd

mode [19], [25] to derive efficient solutions for jobs with neo "epresented by a tuple;, d;, X, Y, f;, {ri;}), wherea; and

complicated utility functions, e.g., sigmoid utilitiesqp d; denote the arrival and the deadline of jpprespectively,
We have made following contributions in this paper. Y; denotes the total number of tasks to be executed for job

J, and f; is the utility function for jobj. We assume that all

« For the continuous job model, we show that a simplde tasks of job; are identical, each requiring a single unit
deadline oblivious algorithm that solves a convex opf time, andR;; units of typei resource. Let;; = R;;/C;
timization problem in each time slot achieves a smaflenote the proportion of resour¢eacquired by a task of job
competitive ratio of 2. For the single resource setting In any time slot, at mosK; tasks of jobj can be run in
with linear utility functions, this algorithm reduces tceth parallel. Jobs are assumed to be preemptive; tlasks of job
FirstFit algorithm and is known to have a competitivg are finished byl;, a value off;(x;) is obtained. We assume
ratio of 2 [8]. However, its performance for generathat f;(-) is non-decreasing and concave, gf)§0) = 0.
concave utility functions and multiple resource types Let J denote the set of jobs, arll £ max; d; the time
is previously unknown. Moreover, we show that thitiorizon. Our objective is to maximize the total valuation
algorithm is optimal in the special case of single resourcigom all the jobs subject to the resource constraints and the
fully parallelizable jobs with common deadlines. parallelism constraints in each time slot, and the deadline

o For the discrete job model, we show that if the discreigonstraints of the jobs. Formally, we study the following
counterpart of the local convex optimization problenoptimization problem, where;; denotes the number of tasks
in the continuous case can be approximated within d¢f job j that are served at timg andx = {xz;,}:
factor of 9, then a simple deadline oblivious algorithm

is 1+ 6 competitive. When there is a single resource and max  F(x) = S HO i) 1)
each task requires one unit of that resource, the local jeJ t

problem can be solved to optimal by a simple greedy st ijt <Y;, Vj,

algorithm. Therefore, our theorem recovers the factor 2 7 '

result previously proved using a charging argument in this Zrijxjt <1Vit,

special case [17], [22]. However, our result extends to the

more general heterogeneous and multi-resource setting e _

where the local problem is NP-hard in general. For the zjt < Xj, Vi, t,

single resource setting with parallelism constraints, we xje =0, Vit & [ag,d;],
further develop a deadline aware algorithm that is 1.8- zjp >0, Vi, t.

competitive. ) S ]
where the first constraint indicates that there is no exthaeva

We note that it is useful to understand the performanee serve more thal; tasks of jobj, and the second constraint
of deadline oblivious algorithms as they are often easier 9 the resource capacity constraint for each type of resourc
implement than deadline aware solutions. In addition, #w@y The third constraint indicates the parallelism bound farhea
applicable even when the scheduler does not have the aecujgi in each time slot, and the fourth constraint indicatest th
deadline information about individual jobs when they ariv job j is not available beyond its availability windojw;, d;].
Moreover, it is worth noting that for the continuous JOb mbde We consider an online Setting where the scheduler has no
with a single type of resource and linear utility functions, knowledge about future job arrivals. Our objective is toigies
online algorithms (including the deadline aware ones) @h online algorithms that are efficient in a provable (compatit
competitive ratio less than 1.25 [11], while for the diseretratio) sense. In particular, an online algorithmyisompetitive
model with a single type of resource, no online algorithmgr someg > 1 if it achieves at least /¢ of the optimal offline
can achieve competitive ratio less th&®L ~ 1.618 [17], value in the worst case [3].
even without parallelism constraints. We consider both the continuous and the discrete job mod-

The rest of the paper is organized as follows. We introduegs. In the continuous case, we allawy; to take continuous
the system model and problem formulation in Section Il. Wealues in the optimization problem, and moreover, partial
then present the deadline oblivious online algorithm far thexecution of a task provides partial value. In this case, we
continuous job model and study its performance in Sectibn Ifurther assume thaf;(-) is continuously differentiable. On
Online algorithms for the discrete job model are discussedthe other hand, in the discrete casg, is constrained to take
Section IV. We present the numerical results in Section \d, amteger values. In this casg; can be equivalently defined by
discuss related work in Section VI. We conclude the paper énset of marginal values;;, = f;(k) — f;(k — 1). By the
Section VII. concavity of f;(-), we havev; ;11 < vk, V7, k.



I1l. ONLINE SCHEDULING FORCONTINUOUS TASKS + Zﬁit(l - ij:vjt) + Zvjt(Xj — Zjt)
In this section, we consider the case when @)} are Bt J gt

continuous variables. We further assume tfigt) is contin- = max {fi(z Tjt) — Z(O‘i + 5t + Zﬁit?‘ij)fcﬁ}
uously differentiable for allj. Under these assumptions, we xeX = 7 el ' S '
provide an online algorithm that is 2-competitive. We ferth v s _
show that the algorithm is optimal when all the jobs have a * Z Y+ Zt%txﬂ + Ztﬁ”

J i,

common deadline and are fully parallelizable, and there is a I
single type of resource (different jobs may require differe :ZHj(Oé,ﬂﬁ) + Z%‘Yj + Z%‘th + Zﬂit
amount of resource). In addition to providing useful insggh j J Jit it

the fractional solution also serves as an upper bound to the a
discrete solution. where Hj(a, 8,7) = max(,,jex; {fj(Ztht) =2 (o +

A. Deadline-Oblivious Scheduling 2 Bierij + Wﬁ)x-jt}’ andX; is the feasible set of;; that

. . satisfies the last two constraints in (1).
Consider a time slot. Let y;; 2 ', z;, denote the ) @) o
total number of tasks of job that are served by timg and By the weak duality theorem [2_], the dual funcnon yields an
let J, 2 {j : a; <t < d; andy;,_, < Y;} denote the set upper bound on the optimal solution of the primal problem for
of jobs that are active at time In each time slot, given & @; = 0,8 > 0,7;; > 0,Vi, j,t. The main idea of dual
the allocations made in previous time slots represented Hiing is to set dual variablegy, 5,~) based on the values of

{y;.+-1}, the algorithm finds the optimal allocation to (1) ughe primal variablesc determined by a (deterministic) online
to ¢, by solving the following convex program. algorithm such thatz(a, 5,7) < ¢F(X) for someq > 1,
which then implies that the online algorithmgscompetitive.

{If}?&} Z fi(@ie + yje-1) ) The main trick of our proof is to set the dual variables of
J€Je the global problem according to the optimal dual solutions

St xj <Y -y, VjeE, associated with the local problems solved in each time slot.

Z iz <1, Vi, This way, we have a connegtion between. the dual solution

o and_ the online solunc_)n obtained by Algorithm _1, the latter

0<ay <X, Vi€ Ji. is simply the summation of the local dual solutions over all

the time slots, thanks to the convexity of the local problems

We note that (2) is a continuous multi-dimensional knapsatlet z;; denote the allocation made for jop at time ¢ by
problem with a concave objective function, and can be solvédgorithm 1, y;, = > _, z;, andy; = y;r. Recall that
efficiently [4]. Below is a formal description of the onlin¢ a {z;:} is the optimal solution to the convex program (2).
gorithm. The algorithm is deadline oblivious since the dieed Consider the Lagrangian function associated with the conve
information is not used in making scheduling decisions.  program at time’:

L(Ialuvaabv C) = Z f]('rjt + yj.,tfl) + Z Mt Tt

Algorithm 1 Online Scheduling for Continuous Tasks

- JEJt JEJt
Yje < 0,V5,1;
In each time-slot t, + Z a;e(Yj — yje—1 — Tjt)
1: J; £ {j ta; <t < dj andyj,tﬂ < Y}}, jeJt
2: zj; + optimal solution to (2) given/; and{y;,:—1}; 1 .
3D Yt < Yjie—1 + Tjt + Z bit(1 Z r1-7$3t)
% J
B. Analysis of Algorithm 1 + Z cjt(Xj — xjt)
. . . jeJ.
In this section, we study the performance of Algorithm 1. e
Our main result is the following theorem. By the KKT conditions [2], there exist unique multipliers

Wiy = 0,a3 > 0, 0; > 0, and ¢, > 0, such that
Vo L(Z, p*,a*,b%,¢*) = 0, uj, = 0 if z;z > 0, aj, = 0 if
To prove the theorem, we employ the dual fitting technique: + yj:—1 < Yj, b = 0 1f 3 ri;70 < 1, ¢, = 0 if
applied to the Lagrangian dual of the original problem. Dual;; < Xj.
fitting and the closely related primal-dual approach havenbe  Given the solution{Z;,} found by Algorithm 1, we define
proposed as principled approaches for the design and &alyge dual variables as
of online algorithms [7], [14], [16], [33]. L .
We introduce dual variables;, 5;;, andv;; for the first a; =f; (i) lg,=v;,  Bit = by,
three constraints in (1). Let = {a;}, 8 = {Bu}, andy = Vit =F5(U)1z,=x, andi; <y,
{vj:}. Let X denote the set ok that satisfy the last two
constraints in (1). We consider the following dual function

Theorem IIl.1. Algorithm 1 is 2-competitive.

It is clear thato; > 0, B;x > 0, v;: > 0, V4, j,t. Moreover, we
have the following properties.

GlaB,7) = Elea%;fj(; Tje) + zj:aj(yj - ;xﬂ) Lemma .1, Hj(a,B,7) < fi(¥;) — f;(¥;)¥;-



Proof. We first claim that foranye laj,d;], aj+>"; ﬁzmj
Yie = fi(g;). W y; = Y; ory; <Y and zj = Xj, then

aj + vyt = fi(y;) by definition and the claim is clearly true.

Supposey; < Y; andz;; < X;. Thena; = v;; = 0. By the

KKT conditions, we havez.’;-t =0 sincez;; + yj—1 < yj <
Y;, andcj, = 0 sincez;; < X;. Moreover,

oL

(Q).I'jt

= Fj @0+ Tjar) + 15— afe — Y _birig— ¢ (3)

(@)
> i@t +Yja-1) Zﬂitﬁj

0=

(T, u*,a*, b, c")

> fg UJ Z/B’Ltrlj
where (a) follows fromu?, > 0 andaj, = cj, = 0, and (b)
follows from the concawty off;(+). The claim then follows.
Let t(5) £ argmin, aj_’bj](ozj + >, Burij + vj¢)- We have
Hj(a, B,7) = max f; (yj) — (o + Z Bit(i)Tig + Vjti))Yi-

S?g%fj(yj) f(yj) = f(y;) — f/(%)gg

Tj Tjz Tjz Tja
Fig. 1:An example that shows: , f; (3=, <, zjr)zje < f3(30, jt).

Remark 1 When f;(-) is a linear function for allj, i.e.,
fily;) = vjy; for somewv; > 0 for all j, and there is
a single type of resource, say and R;; = 1 for all j,
Algorithm 1 reduces to the simple FirstFit algorithm, which
is known to be 2-competitive (and this bound is tight) [8].
However, its performance for general concave valuatiomk an
multiple resource types igreviously unknown

C. Jobs with Common Deadlines

We now consider the special case when all the jobs have the
same deadling’. We show that Algorithm 1 is optimal when
there is a single type of resource and there is no parallelism
constraint. However, optimality is not guaranteed if eitbé
the two conditions does not hold as we show below.

Example 1 (common deadline and multiple resources): Con-

(I
o sider two types of resources, and three jobs where=
Lemma lll.2. For anyt, 3=, Bie < > fi(Ujt)Te- 1,dy =2,X, =Y, =1, fi(z) = 22,711 = 02,79 = 0.8,
Proof. Sincef;, = bf, = 0 if 3. r;;3;; < 1, we have 0z =1,dy =2, Xp =15 =2, fo(w) = 2,112 = 0.5, =
! Bt it ! Z Tigt < W v 0.5, anda3 =2,d3 =2,X3=Y; = 2,f3($) = 2x,1r13 =
By = B; " O.S,rgg =0.2. By splvmg thg LPs, Algquthm 1 serves 1 un]t
Z ! Z ! Z 7 of job 1 and 0.4 unit of job 2 in the first time slot and 1.25 units
of job 3 in the second time slot, and has a total valuation of
- Z Z biyrij T f1(D)+£2(0.4)+ f3(1.25) = 4.9. On the other hand, a schedule
that serves 2 units of job 2 in the first time slot, and 1 unit of
(Z) Zf = job 1 and 1 unit of job 3 in the second time slot is feasible,
Uit )5t and has a higher valuation ¢f (1) + f2(2) + f3(1) =
- ~ Example 2 (common deadline and parallelism constraint):
where (a) follows from (3) antht =0 whenz;; > 0. Consider two jobs and a single type of resource, where for
Proof of Theorem 1: From Lemmas 1.1 and 11.2, we haveboth jobs,a; = 1,d; = 2,X; = 0.75, andr; = 1.

G(a, B,7)
= ZHJ'(‘X757’7) +Zay‘yj +Zﬂit +Z’thXj

<ij () — 13 @3)75) +ZO‘JY+ZBM+ZVNX
= Zf] Yi) + Z (O‘J fJ Yi) “'%t)%t + Z/th
S ij(ﬂj)-FZf;@jt)fjt

(©

< Zf] Yi ‘|’ny Yi) *QZJCJ Yi)

where (a) follows from the fact that; = 0 if y; < Y; and
vt = 0if 2;; < Xj, (b) follows from Lemma 1.2 and the

Y1 = 0.5,Y, = 2. Both jobs have the samg that is strictly
concave. Then Algorithm 1 serves 0.5 units of both jobs at
time 1, and0.75 unit of job 2 at time 2 due to the parallelism
constraint. However, an optimal schedule serves 0.25 unit o
job 1 and 0.75 unit of job 2 in each time slot, and obtains a
higher utility when; is strictly increasing.

Before we prove Algorithm 1's optimality for the common
deadline case, we first establish its following propertfes:.
any time slott, we again let/; denote the set of active jobs
att. Let J! C J(t) denote the subset of jobs with;, > 0,
andJ? C J! the subset of/} with g, , < Y.

Lemma lI1.3. In Algorithm 1, for any jobs in/?, fi@j) /i
are the same.

Proof. For any jobs inJ?, we haveu’, = 0 andaj, = 0 by
the KKT conditions. From (3), we then havé(y;.) = b;r;

fact thata; ++;, < fi(y;), and (c) follows from the concavity for any j (we omit indexi since there is only one type of

of f;(-) (see Figure 1 for an explanation).

resource). The statement then follows.



It follows that, without loss of optimality, we can assumélgorithm 2 Online Scheduling for Discrete Tasks
that if two jobs start with the same ratio ¢f(y;)/r; in the s < 0,Vs,%;
beginning of timet, then using Algorithm™ 1 either both of In each time-siot t,
them are served or non of them are served, iand they end 1 St {s € S:as <t <ds,zp =0fort’ <t}
up with the same ratio at the end gfunless one of them is 2 %=t < @pply ALGO to find a solution to (5) oss;
fully served duringt. By induction and the common deadline
assumption, we then have the following result: of the local problem can be well approximated. To prove this

_ L ) L result, we reformulate the problem by taking a task view, and
Lemma |”,‘4‘ Supposg; € {t andjz € J;. Then (11) forany iiize Fenchel duality [2] that is more suitable to our dual
time slott’ > t wherej; € J;,, we must havg, € J,; unless fitting argument in the discrete case.

gjz,t’:l = }/jz; (2) f]ll (.fyvjl)/rjl = f]lg (gjz)/’r]é if gjl < }/jl
andy;, <Yj,. A. Deadline-Oblivious Scheduling

To establish the optimality of the algorithm, we redefihe =~ We first observe that in the discrete case, the original
(we omit the resource indexfor the single resource case) aproblem (1) can be converted into the following equivalent
follows. For any time slot, we set3; = 0 if Zj 7T < 1. form. For each jobj, we createY; tasks where thé-th task
Otherwise, we let’ > t denote the last time slot wherg,, > takes a value equal to theth marginal valuation of the job,

0 for somej € J;, and set; = minje s, .z, >0 f'(¥;) /5. We determined byf;(-), and all the tasks of joh have the same
then seta; = f7(y;) — mingsa, Ber; if g =Y, anda; =0 arrival time and deadline, and the same resource requitemen
otherwise. Let ag,ds,vs,{ris} denote the arrival time, deadline, the
value, and the resource requirement of a tasWe then treat
each task as a single unit job. L&} denote the set of tasks
Proof. The statement is clearly true wheh < Y;. Assume Of job j, and letS = (J; S; be the entire set of tasks from all
y; = Y;. Lett denote the last time slot whefg; > 0. We the jobs. We can then rewrite problem (1) by taking the task
either haves, = 0, or 8; = fi(y;)/rj, of B = f,(yj)/ry VIEWaS follows, wherer, is the binary decision variable that
for some;j’ with Z;;, > 0. In the last case, we must havedenotes whether the taskis scheduled in time or not.

Lemma IIl.5. «; > 0 for all j.

() /rie < fi(y;)/r; by the greedy way that jobs are Fx) — 4
served, which irr'%plies the statement. O max  F(x) S;US(Z: Tst) )
Lemma lll.6. For any job; and time slot > aj, (1) f}(y;)— s.t. szt <1, Vs,

g-j — Bﬂ‘j <0if %jt =0 and (2) f;(@}) —aj — ﬁﬂ”j =0if +

Lt > 0. Zrisxst S LVivta

Proof. To show the first property, consider any time slot ses

t > a; with z;, = 0. First assumey; < Y;. Thena; = 0. Z Tor < X5,V 1,

Moreover, we must havel, > fi(y;)/r; by the definition sc3,
of 5;. On the other hand, whep, = Y, the claim follows .
directly from the definition ofy;. To €40, 1} W,’t’

We then prove the second property. Consider any time slot st =0, Vit & laj, djl.
t > a; with z;, > 0. First assumgy; < Y;. Thena; = 0. Note that we have ignored the precedence constraint in the
Moreove_r, by the the definition qlﬂtNand the common deadline gpoye formulation, which requires thatth task of jobj to
assumption, we must hayg = f;(y;)/r;. On the other hand, pe scheduled before its + 1-th task. This is without loss
wheny; = Yj, we either haves, = 0, or 5, = miny>a; . of optimality due to the concavity of;(-). Similar to the
In both cases, the second property holds. L)' continuous case, we consider a deadline-oblivious alyorit
Theorem I11.2. Algorithm 1 is optimal when all the jobs havethat solves in each time slot the following discrete coyraer
the same deadline and share a single type of resource. ~ Of problem (2), wheres; = {s € 5 :a, <t < ds, x50 =

_ o 0 for t' < t} denotes the set of active tasks at time
Proof. We defineG(«, 3) and H(«a, 8) similar to G(«, 3,7)

and H(a,$3,7) with the parallelism constraints removed. max, szxst )
Using Lemma 1I1.6, we can show thdf (o, 3) satisfies the {mas€Se} 3,
same~condition in Lemma I/II.Nl. We then hafwé(a,ﬁ) < st Z rists < 1V,
> fi(y) + ;(ﬂtm + oy — fj(;)ze = > fi(y;) by the o5,
J J
second property of Lemma III.6. O Z rs < Xj, Vi,
SES]'

IV. ONLINE SCHEDULING FORDISCRETETASKS

In this section, we study the discrete setting where o €401} Vs
are constrained to be integers. We first show that a deadlingur deadline oblivious online algorithm for the discreteea
oblivious algorithm similar to Algorithm 1 again provides as given in Algorithm 2, where ALGO is an arbitrary algorithm
small approximation factor as long as the discrete couatérpthat solves the local problem.



B. Analysis of Algorithm 2 is upper bounded by’. From the definition of\,, we have
vs > N\, iff 3, T = 1. It follows thatzs:vs>/\s (vs — As) <
sws>A, Us < Zs Us Zt gSt =V.

We then show that the second pariyoh) is upper bounded
6V. To see this, IeK’ O X denote the set of; that may
late the first constraint in (4) while still satisfyingettother
constraints, and; £ >« UsZst the total value obtained by the

We again use the dual fitting technique to study the p
formance of Algorithm 2. Instead of Lagrangian duality, w
consider Fenchel duality [2], which is more suitable to ths
task view of the problem in the discrete setting. Consider\}%}
general optimization problem

max fi(z) — fo() algorithm at timet. We then observe that
st. xe X1NX
x 1hhA2 max Z AsZst < max Z AsTst
where f; and f, are real-valued functions diR", X; and X, 85t st
n H ] . (a)
are subsets oR"™. The dual problem is defined as follows: < Z m%fz Aotus
. reX’
min g(A) = g2(A) — g1(A) t s
st Ae ANy, ¢
1 2 zt:ffé%é? Z Vs Tst
where " 5126 >0
g1(\) = inf {55/)\ — fi(x)}, g2(\) = sup {I/)\ — fa(x)}, < max Z VsTst
zeXy z€Xo " zeX! =
Ar={A:g1(A) > —oo}, Az ={A:g2()) < oo} )
We again have the weak duality property, that is, any feasibl = Z oV, =6V,

dual solution provides an upper bound to the primal optimal. )
To derive the Fenchel dual of our problem, we introduc¥here (&) follows from the fact that in problem (4), all
dual variables),; for each tasks and time slott, and set the constraints except the first one are separable Qi)

fi@) = Y oegvs(X,as0), fo(2) = 0, and X; = Xp = X follows from the fact that there is no benefit to consider

including all feasibler,; in (4). We then have the following @ny task withA, = 0, (c) follows from that for any task

dual function: with ay, < t < d,, if s ¢ S;, thens has been scheduled
before ¢ in Algorithm 2, henceA, = 0, and (d) follows
q(A) = g2(A) — g1(A) directly by comparing the separated dual problem with the
_ local problem (5). The theorem then follows by combining
- s s - As s /\s s .
xex { ;v (zt:x t) ; v t} + r:?ea%; r ‘the first part and the second part. O
(6)

Remark 1 When there is a single type of resource and each
where we only consider the set dfsuch thaig; (A) andgi (\)  task requires one unit of that resource, Algorithm 2 is 2-
can be achieved at feasibig,. In the following, we always competitive, since in this case, the local problem (5) can be
set dual variables such that, = A for all ¢. In this case, easily solved by a simple greedy algorithm that always serve
the dual function can be further simplified as active tasks with highest values subject to the parallelism

constraint. Thus, our dual fitting argument provides a new
9 = *ex { sz(szt) —As ;I“} + 2?‘%; Asst proof to the factor 2 result prev?ous%/ provedp by a charging

° k argument in [17] and [22], for the single resource settinthwi

= max { Z(vs - Xs) stt} + ma;(cz AsTst unit demand per task. Note that the factor 2 is tight for the
x€ s t xR greedy algorithm, which can be shown by simple examples.

< Y (s A) +21€a))éz)\sxst (7) Remark 2 For the general multi-resource setting, the local
505> A st problem at each time slot can be viewed as an integral

Using the dual function, we can prove the following perfofulti-dimensional knapsack problem. This problem is hard t
mance bound for Algorithm 2. approximate within a factor a2(m =+ ~°) for every fixedB

unlessNP = ZPP [9], where B = 1/ max; ; ;. Thus, the
Theorem IV.1. If in each time slot, ALGO finds a SO|Uti0ncompetitive ratio of any online algorithm is likely to degkn
that is within a factorf > 1 of the optimal solution to the on m, the number of resource types. On the other hand, in
local problem, then Algorithm 2 i$ + 6 competitive. practice, the pool of a certain type of resource in a dataecent
is usually substantially larger than the amount required by
any single task [28], [31]. Hence, we expect tliat> co. We
) B then discuss two algorithms to the local problem with défer
A, = { 0 if > Tq =1, performance guarantees.

Vs |f Zt Est =0. . . . .

A local greedy algorithm: We can consider a direct extension

LetV £ > . Us 2, Zs denote the value of the online solutiorof the single resource greedy algorithm to the multi-reseur
found by Algorithm 2. We first show that the first partg@f\) setting. Letr, £ max; r;s denote the amount oflominant

Proof. Given the online solutiorx,; found by Algorithm 2,
we set the dual variables as follows:



resource [15] required by task The algorithm first sorts Algorithm 3 Deadline Aware Scheduling for Discrete Tasks
the set of active tasks by, /rs, and picks the set of tasksIn each time-slot,

with the highest ratios subject to the resource budget a@d th: Si < set of active tasks that can be scheduled; at
parallelism constraint. The total value of all selectecksas 2 Sort the tasks ir; by task values non-increasingly;

is then compared with the value of the next task on thé 'f [5t| < C orveia < pty then

. . . . 4. Schedule the firsmi f task the list;
list, and the larger of the two is taken as the final solution’ chedule the firstain{|S;|, ('} tasks on the list

to the local problem. The algorithm has a complexity ofs.  Schedule the firsp tasks on the list and thé' — p tasks in
O(ntlogn;) wheren, is the number of active tasks at time Si(p, p) with the minimum deadlines
t. Moreover, it can be shown that the algorithm achieves an

approximation factor ofnin(2, Z;)m, which approaches to so1tion simply picks the firstnin{| S|, C'} tasks on the list.

m when B — oo. This result can again be proved using @, contrast, our algorithm picks all these tasks only if eher
dual fitting argument by considering the Lagrangian dual @f ., extra task available (that isS!| < C), of ve41 < piy,

the local problem. that is when the value of the€ + 1-th task on the list is

A local primal-dual algorithm : We can also apply the primal- significantly less than the average value of the firsiasks

dual algorithm proposed in [5] to the local problem. The maitiine 3-4). Otherwise, the algorithm picks the figstasks of

idea is to view the Lagrangian dual variableassociated with highest values, and use the remaining resource to serve the
the first constraint in (5) as the unit price for using resetrc C — p tasks inS;(p, p) with the minimum deadlines, wheye
Initially, b; = 1 for all 7. In each round, the algorithm picks ais again a parameter to be determined (line 5-6).

tasks with the highest ratio ob, /3, risb;, and updates; = Note that our algorithm retains th@(n, logn,) complexity
bi(eB—lm)W_ The algorithm stops when either all then each time slot, where; is the number of active tasks in time
active tasks are scheduled i, b; > e®~1m, wheree is the slot t. Below we prove that Algorithm 3 is 1.8-competitive,
base of the natural logarithm. This algorithm has a complexiwhere we also determine the valuespoéndp.

of O(n?), and an approximation factor og%mﬁ, which
approaches te when B — co. Thus, this algorithms works
better than the greedy algorithm for largeand largeB.

C. Deadline Aware Scheduling Proof. Let A; denote the set of tasks scheduled at titria
Algorithm 3. LetA] = A, N SY and A7 = A\ A}. Let M, C

thén dtgf Sneg?or;'r.z\g :2#2&“;%bzrlleg:.?grggagg?es.?nwwaig'eessfit denote the set of scheduled tasks where the corresponding
'9 parti uling a‘gori ' ! job achieves the maximum parallelism zatin other words,

focus on the single resource setting where each task r@qugﬁy s € M, belongs to a jobj such thatX; tasks of; are
. . . . . t 1

a single unit of that resource, while keeping the param"sscheduled at time. For any active task € ét\At there are
constraint. LetC denote the total units of the availablethree OSSibilitieS"(l) € SO\ SP, then we havei,> d., for
resource. In this case, Algorithm 2 is 2-competitive by afsva y tapsks’ c AQ_'(Z) s e tS/\St'é then eithero s - pf_} or
picking the set of active tasks with highest values (subje5p> 4. for an t'asks’ c AQ% (31&) S € S\8! s p

to the parallelism constraint) in each time slot. The mai’ = ™ y PV )
inefficiency of this myopic strategy is that it can poterial We again adopt a dual fitting argument. Given the solution

miss the set of tasks that are slightly less valuable but 4Rnd by Algorithm 3, we set the dual variablgsas follows.
more emergent than the scheduled ones. The main idea of fhiSK s is not scheduled by its deadling, = v;. For the
deadline aware algorithm is to schedule a few tasks withlsm&ft Of scheduled tasks, theirare determined in a recursive
deadlines in addition to those tasks with high values in eay®y starting fromil". Consider any time slat and suppose the
time slot. This idea has been applied before in continuokis jgalue of)\lhas been determined for any tasks s_cheduled after
scheduling with linear utility [12] and unit job schedulifg]. 7O 5 € A/ \M;, A = 0. Let; denote the maximun value
However, none of these works consider jobs with parall@’ any tagk inS:(p, p)\Ar, and Xy = 0 if St({% PN\A: = 0.
tasks subject to a parallelism constraint. Our algorithm c&©' s € 4 \,Mtv As = min(vg, A). Fors € Ay 0 M, As =

be viewed as a discrete counterpart of the algorithm in [12};. Wherejj is the job thats belongs to ands; is the first
with the parallelism constraint taken into account. task of j that is not scheduled at time For s € A7 N M,

The algorithm works as follows (see Algorithm 3). Consideks = min(vs, max(Af, A;)). Let A, £ max,eg\ a1, As-

a time slott. Recall thatS, is the set of active tasks atFrom Let A = |J, A, denote the set of tasks scheduled by
the concavity of job values, among the sekabmaining tasks Algorithm 3. Let V; = ., v, denote the total value
of job j, it is sufficient to consider the firshin(X;, k) tasks optained at timet in Algorithm 3, andV = U, Vi. For the

with the highest values. Lef; denote these tasks from all thesingle resource unit demand setting and from the definition o
active jobs. These tasks are first sorted by their values nefira| variables, (7) can be simplified as follows:

increasingly (line 2). Let;, denote the value of thk-th task
on the list. LetS? denote the firsp tasks on the list, and, ¢(\) < Y (vs—A)+ Elea))fz AsTst

Theorem IV.2. Algorithm 3 is 1.8-competitive by taking=
2/3 andp =C/2.

the average value of these tasks. Ketp, p) C S;\ S denote 505> As s,k
the set of remaining tasks with values no less tpanwhere < V. — A+ (/\ ANM,| + max( . \ )
p is a parameter to be determined. We note that the greedy — ; ° ; ° zt: [ ANM| S;\;t (s %)



= 2)+ DN

s€Al

Let gt = 3 cazn o, (At = As) + 2 c a0 Ae. We distinguish
the following cases:
1) |S;| < C: we have\; =0 andg; = 0.
2) |S]] > C andvcq1 < pvp: we haved, < voyqr <
= g (C—p)Ai+ppv (C—p)Ai+ppv
puy- Henoe, § < (PR < (CRRRRE <
(C—p)ptpp _ pC
(C—p)ptp = (C—p)ptp”
IS;| > C, voyr1 > pvp, and Ay = Ay for somes’ ¢
S’tc U St(p, p): we havel, < vy < pop, g¢ < pt,C,
Vi = pup, + ZseAf vs > pup + (C — p)pt,. Hence,

3)

9t < pC

Vi = p+(C—p)p”

|S] > C,vcq1 > pop, andA, = Ay for somes’ € SU
Si(p, p): we have\; > min{v,, \; } foranys € A2, and
g9t < Cvp — (C = p)pvp, andV; = pv, + ZseAf Vs =
pUp + (C — p)pop. Hence,g—i < %.

We then findp andp that minimize the worst-casg./V;

4)

among the above four cases. L&t = 17-5—(%76;;% and d, =
SE=E2 Note thatdy = 6y if pC = C — (C - p)p,
that is whenp = QCcfp. Moreover, for thisp, ¢; (and
d2) is minimized atp = (/2. Taking p = C/2 and

p = Cc_p = 2/3, we haves; = &, = 1.8. It follows that

q(\) <V +3°,08V, =1.8V. O
V. NUMERICAL RESULTS

In this section, we study the performance of our algorithms
with numerical results. For both continuous and discreke jé

heuristic, called equal-opp, schedules all the jobs withagq
opportunity (subject to the parallelism constraint). Fey@(a)
shows the utility gains of these algorithms under diffefjebt
availability window sizes. We observe that all the algarith
achieve higher utility gains when the availability windoizes
increases, that is when jobs become less delay constrained,
which is expected. Algorithm 1 always performs much better
than the two heuristics. Moreover, it is close to the offline
optimal for smaller availability windows. The gap becomes
bigger for large window size due to the deadline oblivious
nature of the algorithm.

Discrete Tasks In the discrete setting, we consider two ver-
sions of Algorithm 2 that solve the local problem using the lo
cal greedy algorithm (m-greedy for short), and the primaédd
approach (primal-dual for short), respectively. We corepar
them with the discrete counterparts of the two heuristidhén
continuous setting mentioned above. In Figure 2(b), weragai
vary the availability window size and observe similar résul
as in the continuous case. In Figure 2(c), we vary the value
of R that measures the heterogeneity of resource demands.
We observe that our algorithms achieve bigger improvement
when R becomes larger, which indicates the benefit of being
resource aware. We further observe that the two versions of
Algorithm 2 have similar performance, which is consistent
with our discussion in Section IV-B for smath.

We further compare Algorithm 3 (deadline-aware for short)
with the two heuristics in the single resource unit demand
setting. We observe that our algorithm achieves a bigger
mprovement over the greedy algorithm for a larger avdlilgbi
window due to its deadline awareness.

models, our algorithms achieve clearly higher utility gain

compared with commonly adopted heuristics that ignore the

heterogeneous multi-resource requirements.

Setup We consider a data center with 100 units of CPU a

100 units of memory resources. 100 jobs are generated.

VI.

Earlier works on deadline-sensitive job scheduling with
rtial execution focus on linear utility functions [10],1]],
['11§]. More recently, partial execution with non-linear liyi

RELATED WORK

number of job arrivals in each time slot follows a POiSSOR,ctions has been considered in [18], [32]. However, albth
distribution with a mean of 10, independent of other time&yorks consider the CPU resource c;nly and none of them

slots. The availability window size of jop, that is,d; — a;,
follows an exponential distribution, independent of otjodrs.

consider the parallelism bound. In addition, all these sork
apply a charging argument in establishing their competitiv

Each job has 100 units of tasks and a parallelism bound @fiy" results, which cannot be easily extended to the more
20. The utility of job j is modeled as a concave fU”Ct'Orl:omplicated setting that we consider.

of the form f;(x;) = v;z§ with o < 1. Here, we consider
a = 1/2 and the coefficient; is generated from a uniform

distribution in [1,5]. We have also tried other types of caves

functions including the logarithmic function and observegd,qqq Recently

Deadline-sensitive job scheduling under the full exeautio
mode has also been considered [19], [23], [25]. In thisrsgtti
constant approximation ratios are only known for some sppeci
an interesting online algorithm is pregos

similar results. Each job is either CPU-heavy or memorys 1557 with its competitive ratio parameterized by the &ac
heavy with equal chance. Each task of a CPU-heavy joRss of jobs, where a pending job can preempt a running
requires 7, units of CPU and 1 unit of memory, and eachy,, o1y it its value is significantly higher. We expect that

task of a memory-heavy job requires 1 unit of CPU aig

units of memory, wherd?; and Ry are uniformly distributed

this idea can potentially be combined with our approaches to
address more complicated utility functions such as sigmoid

in [1, R]. Each figure below shows the average results over }Qiiac [30].

independent scenarios generated for a given set of paremete \,,iti resource sharing has received a lot of attention re-

Continuous Tasks In the continuous setting, we compareently since the seminal work [15]. Previous works on multi-

Algorithm 1 with the offline optimal and two heuristics. Theresource sharing mainly focus on the offline case [20], [26].
first heuristic, called s-greedy, always serves the job$i wiThe main objective is to design new fairness metrics that are
highest marginal values (subject to the parallelism cairgy suitable to the multi-resource setting. Note that a concave
and ignores the resource requirements of jobs. The secanitity function can also be used to model fairness in additi
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Fig. 2: Simulation Results. In (a) and (bR = 8. In (c), the mean availability window size is 6.

to efficiency. In particular, the multi-resource version @f
fairness proposed in [20] is a concave function. An online

multi-resource sharing problem is considered in [21], vweher 14]
is assumed that once an agent arrives, it will never leave the
system, and there is no deadline constraint.

VII. CONCLUSION

[13]

[15]

[16]

Partial execution is emerging as a promising approach to
improve the efficiency of cloud systems by exploiting th9_7]
fact that many applications are deadline sensitive, antepre

a timely result with a good match. In this paper, we stu

the

Ne)

problem of online multi-resource allocation for segvin

deadline sensitive jobs with partial values. Previous worki9]
on partial execution mainly focus on CPU resource only. We
consider the problem in the context of multi-resource stwari [,
an important paradigm for achieving fine grained resource
sharing in cloud systems. Assuming that the utility funcsio

are concave and the jobs are preemptive, we have desig

efficient online algorithms with low competitive ratios.
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