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Abstract. We formalize sequential decision—making with informa-
tion acquisition as the Probing-augmented User-Centric Selection
(PUCS) framework, where a learner first probes a subset of arms
to obtain side information on resources and rewards, and then as-
signs K plays to M arms. PUCS encompasses practical scenarios
such as ridesharing, wireless scheduling, and content recommenda-
tion, in which both resources and payoffs are initially unknown and
probing incurs cost. For the offline setting (known payoff distribu-
tions), we present a greedy probing algorithm with a constant-factor
approximation guarantee of { = (e—1)/(2e—1). For the online set-
ting (unknown payoff distributions), we introduce OLPA, a stochas-
tic combinatorial bandit algorithm that achieves a regret bound of
O(VT + InT). We also prove an Q(v/T') lower bound, showing
that the upper bound is tight up to logarithmic factors. Numerical re-
sults using two real-world datasets demonstrate the effectiveness of
our solutions.

1 Introduction

Stochastic multi-armed bandits (MAB) [16] and Multi-player
MABs (MP-MAB) [1] have been extensively studied as general
frameworks for sequential decision making, where the goal is to max-
imize the cumulative reward by sequentially choosing from a set of
options, or “arms” |16} 2]]. These models have been applied in a vari-
ety of domains, including personalized recommendation [18], finan-
cial portfolio management [14], and dynamic resource allocation [1]].

To cope with complex real-world scenarios, the user-centric se-
lection problem has recently been introduced as an extension of
MP-MABs [7]. Consider context recommendation as an example.
The decision-maker recommends multiple pieces of content (mapped
to arms in MP-MABSs) and selects a subset of slots (plays) to allocate
to these arms (assignment decision). Unlike traditional MP-MABs,
the user-centric selection problem allows each arm to be associated
with stochastic units of resources, and multiple plays can pull the
same arm. Applications of the user-centric selection problem are vast
and include personalized content delivery [18] and resource alloca-
tion in ridesharing platforms [7].

As another example, consider the user-centric selection problem
in ridesharing [7]. Pickup locations correspond to arms, and drivers
can be modeled as plays. There is a moving cost to a pickup loca-
tion that is related to the reward. Multiple drivers can drive to the
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same location, but there is a limit on the maximum number of re-
quests (resources) that can be hosted together at any location. This
example clearly illustrates the user-centric selection problem, but in
practice, some information is unknown. For instance, in this example,
the distribution of passenger requests in a certain area is unknown.
The real-time road conditions are also unknown. These unknown fac-
tors can significantly impact the accuracy of decision-making. To this
end, the classic MAB framework relies purely on instantaneous feed-
back received after each decision round to obtain a desired explo-
ration vs. exploitation trade-off.

In such an uncertain environment, probing is a promising ap-
proach for acquiring additional information when searching for the
best alternative under uncertainty. It was initially studied in eco-
nomics [25] and has found applications in database query optimisa-
tion [22, 10} 19]. Recently, it has been used to obtain real-time road
traffic conditions (subject to a cost) before making vehicle-routing
decisions [3]], and for collecting link-quality information for schedul-
ing in wireless access points [26} 27].

In this work, we propose a unified framework that inte-
grates probing strategies with assignment decisions in the con-
text of user-centric selection. We term this abstraction the
Probing-augmented User-Centric Selection (PUCS) framework.
PUCS explicitly couples the probing decision with the subsequent
play-to-arm assignment, enabling us to quantify both the value and
the cost of information acquisition. Concretely, in every round the
decision maker first probes a budget-limited subset of arms to ob-
serve their resources and rewards, and then assigns the K plays to
the M arms accordingly. In the offline case where the reward and
resource distributions are known a priori, we derive a greedy probing
algorithm that achieves a constant approximation factor by exploiting
the submodularity of the objective function. For the more challeng-
ing online setting, we develop a combinatorial bandit algorithm and
prove a regret bound of O(V'T + In*T).

We remark that [30] also considers probing in a similar MP-MAB
setting. However, they do not consider multiple resources for arms
and assume that two or more plays assigned to the same arm can lead
to a collision. In addition, they assume the rewards follow a Bernoulli
distribution, while we consider general distributions. Further, they do
not consider a probing budget as we do.

Contributions.

lows:

e We introduce the PUCS framework for jointly choosing which
arms to probe and how to assign plays in user-centric selection

The primary contributions of this work are as fol-



problems.

e For the offline setting with known distributions, we design a greedy
probing algorithm that admits a constant-factor approximation
guarantee { = (e — 1)/(2e — 1).

e For the online setting with unknown distributions, we propose a
two-phase stochastic combinatorial bandit algorithm (OLPA) and
establish a regret bound O(v'T + In® T) together with an Q(v/T')
lower bound.

e Extensive experiments on real-world datasets demonstrate the em-
pirical effectiveness of our approach over strong baselines.

2 Related Work

Sequential decision-making and online learning have been ex-
tensively studied in various contexts. Classical approaches such as
multi-armed bandits [2 |4] provide foundational strategies for bal-
ancing exploration and exploitation. Recent advancements have ex-
tended these models to more complex scenarios, including combina-
torial bandits [8]], and multi-player MAB [15] which are more rele-
vant to our sequential user-centric selection problems.

Sequential user-centric selection problems can be viewed as a
variant and extension of the multi-player multi-armed bandit (MP-
MAB) framework. MP-MAB models are designed to handle situ-
ations where multiple players compete for shared arms, requiring
strategies that account for both coordination and competition among
players [29] 21]. These models are particularly effective in scenar-
ios like recommendation systems or resource allocation tasks, where
multiple users interact with a common set of options. Unlike tradi-
tional MP-MABS, the user-centric selection problem allows each arm
to be associated with stochastic units of resources and multiple plays
can pull the same arm [[7].

A ridesharing example is considered in [7]] about the sequential
user-centric selection problem. In this scenario, pickup locations can
be mapped to arms, and drivers can be modeled as plays. The cost
of moving to a pickup location is related to the reward, and the
ride requests arriving at each arm can be modeled as the resource.
Multiple drivers can choose to drive to the same location. However,
this approach overlooks the unknown information of the real world,
such as real-time traffic information, which can significantly impact
decision-making.

To address these unknown factors in real-world systems, one can
actively probe the environment and acquire side information before
acting. Selecting which items to probe is, however, computationally
intractable in general—the underlying decision problems are typi-
cally NP-hard [11]. Notably, the work of Golovin and Krause on
adaptive submodularity [12] has provided theoretical guarantees for
greedy algorithms in adaptive settings. This insight has been used
in diverse applications, including active learning [13] and network
monitoring [17]], where limited probing gathers critical information
before decisions are made.

Recent studies [3]], have considered probing strategies at a certain
cost to obtain information about multiple road conditions. However,
they primarily focus on the probing itself without considering how
to make decisions afterward. [26} 27] explored the use of probing to
gather additional information before making decisions in the context
of a wireless network access point serving users. However, their work
is limited to a single-player setting and is only applied in the context
of wireless networks. [30] proposed a general framework that incor-
porates observation (probing) into MP-MABS, but they only consid-
ered probing rewards from a Bernoulli distribution and could not
apply their approach to sequential user-centric selection problems.

In contrast, we introduce the PUCS framework, which jointly mod-
els probing and assignment in sequential user-centric selection prob-
lems, and we consider general distributions. Within this framework
we design both offline and online algorithms and provide theoretical
guarantees for each.

3 Probing-Augmented User-Centric Selection
(PUCS) Framework

In this section, we formalize the Probing-augmented User-Centric
Selection (PUCS) problem. We first describe the sequential
user—centric model without probing and then show how probing is
integrated on top of it.

3.1 Arm, Play, and Resource Model

Consider a sequential user-centric decision problem [7] over 1" €
N time slots, which is a variant of the classic multi-play multi-
armed bandits problem. There are a set of M € NT arms and a
set of K € N plays. In each time slot, the decision is to assign the
K plays denoted by [K] := {1,2,..., K} to the arm set denoted by
[M] := {1,2,..., M}. Each play can only be assigned to one arm
and different plays can be assigned to the same arm.

Each arm m € [M] has Dy ,, units of resource in time slot
t, where Dy ,, is an i.i.d. sample from a distribution with support
{1,2,..., Dmax}. Let pm = [pPm,a : ¥d € {1,2,..., Dmax}|
denote the probability mass function of Dy n,, where pm.q =
P[D;,,, = d]. We define a probability mass matrix P € R X Pmax
with Py, d = D, a-

Each play assigned to an arm consumes one unit of resource for
that arm. If the play k gets one unit of resource from arm m in time
slot ¢, it receives a reward R ,, x, again an ii.d. sample from an
unknown distribution. We denote the expectation of Ry ., i as:

tms = E[Remi], Vte[T],me[M]ke K]

We define the reward mean matrix as g € RM*¥ with p,, p =

tm, k. We denote the m-th row of p by p,, and hence p,, =

[pm.1 fim. x| - We further let { Fip,  }me ) ke k] denote the

cumulative distribution function (CDF) of rewards for each arm-play

pair. As shown below, { ', 1 } (rather than just p) are needed to eval-
uate the objective functions, because the objective functions depend
on the entire distribution of rewards, not just their expected values.

Thus, the resource and reward associated with arm m €
{1,2,..., M} is characterized by a list of the random vectors
(D Rmi1y ooy R i), where Dy, = [Dy 2 VE € {1,2,...,T}]
and Ry, = [Re,m.k @ VE € {1,2,...,T}], Vk € [K]. We assume
that Dy, and R¢ m ik, Ym € [M],Vk € [K], are i.i.d. from each
other and across time slots.

Let Ct,m C [K] denote the collection of plays that pull arm m
in time slot ¢. The action profile of all plays is denoted by C; :=
{C¢,m : m € [M]}.Let |C},m| denote the number of plays assigned
to arm m in time ¢.

Below we give two examples of the above model.

e Ridesharing Services: Plays can be mapped to cars, arms to pickup
locations, resources to passengers, and rewards to fares. The deci-
sion maker must decide which cars to send to which locations and
multiple cars can be sent to the same location.

e Content Recommendation: Plays can be mapped to recommenda-
tion slots, arms to different content pieces, resources to user en-
gagement (e.g., clicks or views), and rewards to the engagement
level (e.g., watch time or read depth). The decision maker needs



to assign content to recommendation slots and the same piece of
content can be assigned to multiple slots.

3.2 Probing Model

In the original user-centric selection problem [7], similar to the
classic multi-armed bandits setting, the instantaneous reward associ-
ated with an arm and the number of resource units available at an arm
is observed only when the arm is played (i.e., assigned to a play). A
key observation of this paper is that probing can often be utilized to
gather additional on-demand information in practice. For example,
in ridesharing, probing can be used to check real-time traffic condi-
tions [3] or get more accurate information about passenger availabil-
ity and fare rates. Similarly, in content recommendation, probing in
the form of A/B tests or surveys can be used to gauge user interest
before making broader recommendations.

Probing differs fundamentally from prediction: it measures the
current state directly (e.g., actual queue length, current link qual-
ity), avoiding model-drift errors that accumulate in time-varying sys-
tems. However, probes consume limited system resources such as
driver detours, sensing bandwidth, or user attention. We therefore as-
sume a per-round budget that restricts the learner to probe at most
I arms, modeling the realistic “sense-some-but-not-all” constraint
used in prior work on adaptive sensing and opportunistic measure-
ment [3| 27]]. Because the platform (e.g., Transportation Network
Company (TNC) backend [S], recommender engine, WLAN con-
troller) controls where to send drivers, which articles to A/B-test,
or which channels to sense, it can decide which subset S; of arms to
probe in each round, consistent with existing deployments.

To this end, we assume that in each time slot ¢, the decision maker
can probe a subset of arms S; C [M] before the arm-play assign-
ment is made. For each probed arm m € S, the decision maker im-
mediately observes the realization of both Dy ., and Ry y,,k, for all
k € [K]. This is a reasonable assumption in practice. For example, a
single probe at a pickup location reveals its current vacancy and pro-
vides an estimate of the nearby traffic conditions, which determines
the pickup cost.

Let N¢,m denote the realization of Dy p,, and X¢ m, « the realiza-
tion of R¢,m,k, and let Xy, m = [X¢,m,kx : Vk € [K]]. In each time
slot, the decision maker first probes a subset of arms S; C [M] and
based on the values of Nt ,, and X¢ m, V m € S, the decision
maker assigns K plays to M arms and each play gets a reward if it
receives one unit of resource from the assigned arm.

We then derive the total rewards from an arm m by distinguishing
two cases. First, assume that m is in the probing set S;. If play & re-
ceives one unit of resource from arm m, the reward received by play
k is the same as the probed value, which is X n, . That is, we as-
sume that probing is accurate and the random variable R; ., i stays
the same within a time round. Similarly, we assume the random vari-
able Dy ,, stays the same within a time round. That is, the decision
maker observes the actual amount of resources, Ny, through prob-
ing if m € S¢. If N¢,m > |Ct,m|, each play receives one unit of re-
source and the total rewards returned by arm mis >, €Com Xit,m,k-
If Nim < |Ct,m|, only N¢ , plays get resource, and the remaining
|Ct,m|— Nt,m plays in Ct, ., do not get resources. We further assume
that the plays associated with larger rewards are given priority. For-
mally, let X¢,m (Ct,m) := {Xt,m,kx : k € Ci,m } and let X%, be the
sequence generated by sorting X, m (Ct,m ) from largest to smallest.
Then the total rewards returned by arm m is Z1g <N Xiom.q if

Ne¢,m < |Ct,m|. To summarize, if m € Sy, the total rewards returned

by arm m is

J
Rgrrz()b(ct,m§ Xt,’rru Nt,m) = Z Xz?;l’b’l
i=1
j = min{Nt,ma |Ct1m|}

We then consider the case when arm m is not in the probing set
St. In this case, if play k receives one unit of resource from arm
m, the reward received by play k is a sample of Ry n, k. Further,
the value of D; ,, (i.e., the actual number of resources of arm m in
time slot ¢) is unknown, although we assume it is fixed within a time
round. If Dy, > |Cy,m|, each play receives one unit of resource,
and the expected total rewards returned by arm m is > €Cy.p Hom k-
If D¢ < |Ct,m|, only Ds r, units of resource are allocated, and
|Ctm| — Di,m plays in Cy ., do not get resources. In this case, we
assume that the plays associated with larger expected rewards are
given priority. Formally, let ptm (Ct,m) := {ptm,k : k € Ct,m} and
et be the sequence generated by sorting fi,, (Ct,m ) from largest
to smallest. Then the expected total rewards returned by arm m is
ZlSiSDt,m iomts if Dt < |Ct,m|. From the assumed indepen-
dence between Dy, and (R¢ m.1, ..., Ri,m, Kk ), it can be shown that
the total expected reward returned by arm m is

Rm(ct,m; I""my pm)

J
::]E |: I—l'i(r)zr,lz:| I .7 = min{Dt,M7 |Ct,m|}

i=1

[Ct,ml d Dmax [Ct,ml
sort sort
= § Pm,d E Kmyi | + E Pm,d § Hom,i
d=1 i=1 d=|Cy m|+1 i=1

by adapting a similar argument in [7]. In the special case that
Wm,ky = Mm,k, for any ki,ke € [K], the above definition of
R (Ct,m; lm, Pm) reduces to the definition in [[7].

To model the probing overhead, we further assume that up to I
arms can be probed in a single time round and the final total rewards
obtained for probing S; and action profile C; is

Rl — (1= a(]Se)))

DR+ DY Ram

meSt me[M]\S¢

where a : {0,1,...,I} — [0,1] is a non-decreasing function and
a(0) = 0, a(I) = 1. Here a(S) captures the probing overhead as
the percentage of reward loss, which is monotonic with the size of
S. This is appropriate because the probing impact often scales with
the system’s overall performance. In many scenarios, the opportunity
cost of probing - such as time, resources, or energy - depends on the
potential rewards that could have been achieved without probing. A
similar approach has been adopted in [30, 27].

3.3 Objective and Regret

We then define the objective of our Probing-augmented
User-Centric Selection (PUCS) problem. Recall that in each time
slot ¢, the decision maker first picks a subset of arms S; to probe
and observes the instantaneous rewards and amount of resources for
each arm in the probed set. It then determines the set of plays Cy
assigned to each arm m.

We first consider the offline case where p,, and the reward
CDFs {Fum k}me[m],ke[k] are known a priori. In this case, it



suffices to consider each time slot separately and we drop the
subscript ¢ to simplify the notation. We first observe that when
the probing set S is fixed and the observations from probing
are given, the optimal assignment can be obtained. Formally, let
Piotat (Ss {Nms X }my {Pm, bm }mes) denote the maximum ex-
pected reward in a time slot with probing set S and the given re-
alizations of rewards and resources. That is,

hmtal(s, {Nm, Xm}m€Sy {Pm, Ime}meéS)

= max

cmax | > Ron(Cons on, Pr)
me[M] meM\S

+> REL""(Cm;Xm,Nm)>

meS

)

st. Cmy NCmy =0, Ymi #ma, mi,mse € [M]

where the constraints ensure that each play is assigned to at most one
arm. This problem can be solved by adapting Algorithm 1 in [7] that
considers the special case when S is empty. This is further elaborated
in Observation 1 in the Appendix of the full version [28].

From the above discussion, the joint probing and assignment prob-
lem simplifies to finding an optimal probing set S. Let f(S) denote
the the optimal total expected reward that can be obtained for a given
probing set S, that is

f(S) = ]EXtymykat)m)k Piotal (37 {N'rm Xm}m:
N, m~Dt m
meS, i€[K]

{pm7 la"m}més) .

Then the offline problem is to finding a probing set .S to maximize
R(S) := (1 — «(]S])) f(S), that is,

S* = arg snglfaz\)/(l] R(S) )
Finding the optimal solution to this problem is hard for general re-
ward and resource distributions. Fortunately, there is an efficient
approximation algorithm with a constant approximation factor as
we show in the next section by exploring the structure of f(S).
Specifically, we say that an offline algorithm is an {-approximation
(0 < ¢ <1)ifitachieves an expected R(S:) of at least (R(S7).

In the more challenging online setting with unknown p,, and
I, we quantify the performance of a probing policy via the regret
Rregret (T), which is defined as the difference between the cumulative
reward of the optimal probing policy and the cumulative reward of
our probing strategy. In this scenario, it is challenging to achieve sub-
linear regret with respect to the optimal S; as commonly considered
in the MAB literature. Instead, our objective is to achieve sublinear
C-approximation regret, defined as follows [9]:

T
Reewet (¢, T) =Y CR(ST) = Y R(St) (3)

t=1

4 The Offline Setting

In the offline PUCS setting, the probability mass matrix P and the
true CDF {F, x } me[nm],ke[x] Of rewards for each arm-play pair are
known. This offline case is an important contribution of our work, as

it establishes the first constant-factor approximation guarantee and
serves as the foundation for the online algorithm developed later. We
aim to determine the optimal probing set that maximizes the expected
total reward, which is in the equation (2). This maximization problem
is computationally challenging; in fact, similar problems in related
settings have been shown to be NP-hard in prior work [[11]. Conse-
quently, we design a surrogate objective function fprob(.S) that cap-
tures the marginal value of probing. We further prove that this surro-
gate is both monotonic and submodular. Leveraging these properties,
a greedy algorithm (Algorithm[I)) provably achieves a constant-factor
approximation to the optimal offline solution.

4.1 Offline Greedy Probing

For small problems, the optimal solution for the offline setting can
be obtained by solving Problem (Z) with an exhaustive search. For
larger instances, however, a more efficient solution is needed. In this
section, we derive a greedy algorithm that provides a constant factor
approximation. One work [23]] states that a simple greedy algorithm
with an objective function that is monotone and submodular can ob-
tain an approximation factor of an approximation factor of 1 — 1/e.
Based on this, we construct our objective function furon(S) that is
monotone and submodular shown in Lemma [3 and Lemma H] and
design an Offline Greedy Probing algorithm to obtain the approxi-
mation solution.

Let hprob denote the value of the optimal assignment for the special
case where all the plays can only select the probed arms. Formally,
given a probing set .S and the realization of rewards X,,, and number
of resources N, Aprob (S, { X, Nm mes) is defined as

b
Pprob = omax <Z RYY (Cm;Xm,Nm)>
mes meS

S.t. le ﬂC’m2 = @, Vm1 ;é meo, M1, My € S

4

hprob has an optimal assignment policy based on Observation 1 in
the Appendix of the full version [28]. We then define

Jorov(5) = Ex,,, x~Ry, i, Frpro (S, {Xom; No Fmes)-
mjég,wkg?qx]

Here R, denotes a random reward whose CDF is F}, x, so the ex-
pectation in fprob(.S) is taken with respect to Fyy, i; this is precisely
how {F, &} enter Algorithm|[I] firon(S) is monotone and submod-
ular shown in Lemma [ and Lemma [4] which is used for proving
Theorem[I]

Similarly, we use funprobed to denote the value of the optimal as-
signment for the case where all the plays can only select the unprobed
arms. Formally, given a probing set S, we have

funprobed(s) = max E Rm(cm; Hm, pm)
Cm C[K], (®)]
me[M]\S \MmMEM\S

S.t. le ﬂCmZ = (Z), VYmq 75 mo, M1, M2 € [M]\S

We note that if S = 0, R(S) = f(S) = funprobea(:S). With these
notations, we are ready to explain our greedy probing algorithm for
the offline setting (Algorithm[I). It starts by initializing I empty sets
S; fori = 0to I — 1, where [ is the probing budget (lines 1-2). In
each iteration from 1 to I — 1, the algorithm selects the arm m that,
when added to the current set S;_1, provides the maximum marginal
increase in the expected reward function fypb (line 4). The algorithm



Algorithm 1 Offline Greedy Probing

Input: P, {Fn i }mem) ke[K]
Output: S*': the probing set
I: fort =0to ] —1do
2 S0
3: fori=1to ] —1do
4 m < argmax
me[MI\S; 1
Si +— S;i_1 U {m}
0 j < argmax; ((1 — (i) foron (5:))
: SPT S
if (1 — a(5)) foron (S5) < funprobea()) then
SPT

(forob (Si—1 U {m}) — foron(Si-1))

R I A

then updates the probing set S; to include the newly selected arm
(line 5). It determines the optimal probing set S by selecting the
set that maximizes the adjusted reward function (1 — (%)) forob (S3),
where «(i) captures the probing cost as a function of the set size
(lines 6-7). If the adjusted reward for the selected probing set S; is
less than the reward obtained without probing, funpmbed(@), then the
final probing set S*" is set to be empty (lines 8-9).

To show that the greedy algorithm is nearly optimal, we first estab-
lish the following properties. The proofs are given in the Appendix
of the full version [28]].

Lemma 1. Given a probing set S, it holds that

f(s) S fpmb(s) + funpmbed(s)-

Lemma 2. fuyproned(S) is monotonically decreasing, i.e., for any
S Q T Q [M], funpmhed(s) 2 fun])robed(T)~

Lemma 3. f,.,;(S) is monotonically increasing, i.e., for any S C
T C [M], forob(S) < foron(T).

Lemma 4. f,,,,(S) is submodular.

Lemma 5. Let S; be the i-th probing set found by Algorithm ] line
5, S* be the one that maximizes (1 — a(|Ss])) f (Si) (Algorithm
line 6), S”" be the final output ofAlgorit/Emlines 7-9. Then it holds
that fuprovea(0) < R(S"") and (1 — a(|S™|)) fpron(5™) < R(S").

Theorem 1. Ler S* := argmaxgcin R(S). Algorithm [I| outputs
a subset S”" such that R (S”") > (R (S™) where { =

e
2e—1°

Lemma [] and Theorem [1] are our main contributions. In conclu-
sion, our algorithm effectively balances the trade-off between the
benefit of probing more arms and the associated costs, ensuring that
the selected probing strategy obtains nearly optimal reward in the
offline setting.

4.2  Time Complexity Analysis

For each of the I iterations (the probing budget), the algorithm
computes the marginal gain in fjrop for up to M arms, with each eval-
uation taking O (M) time and each time to compute fprob, Which is re-
lated to compute a maximum weighted matching needs O((M K)?).
After the iterations, computing funprobed () using [7, Algorithm 1]
has a complexity of O((M K)?). The total complexity is O(I - M -
(M K)?) for the iterations, plus O((M K)?) for the post-selection
computation. If fyop requires sample-based estimation for general
distribution, the complexity becomes O(IMW (M K)?), where W
is number of samples.

5 The Online Setting

The online case constitutes our second main contribution and com-
plements the offline analysis. Here the probability—mass matrix P,
the reward mean matrix g, and the true CDF {Fn & }me[m] ke [K]
of rewards for each arm—play pair are unknown. The learner now
faces two coupled challenges: (i) deciding where to probe under the
probing overhead, and (ii) continually updating resource and reward
estimates—together with their confidence bounds—so that the of-
fline greedy routine (Alg.[I) can be invoked each round and the sub-
sequent assignment remains optimistic-for-exploration. To address
these challenges, we embed the offline greedy algorithm (Alg. [T in-
side a two-phase online algorithm (OLPA) and derive regret guaran-
tees under general reward distributions.

5.1 Parameters

We use the history from steps 1 to ¢ to maintain four empirical

. B . e ()
summaries for each arm—play pair. The resource probability p,, ", =
13 1{Dm,; = d} (the empirical probability that arm m realizes
resource level d), the observation count ngfg w = HRimy #
null}1{k € Cj .} (how many times (m, k) has been observed), the
empirical mean ﬂﬁfjk = (X!, HRimx # null}R;m i 1{k €
C’i,m})/ nffl)  (average observed reward), and the empirical CDF
FO (z) = (S, HRims # null}1{Rims < z}1{k €

C’i,m}) / nffl) i (distribution of observed rewards) are updated online
forallm € [M], k € [K],d € [Dmax), and z € R. By [20| Lemma
9], we construct a confidence interval for empirical mean ﬂgfl)k with

high probability as stated below.
Lemma 6. Foranym € [M], k € [K] and 6 € (0, 1),

PVt > 1, poni — il > €] <6,

In(y/n(, +1/6)
where ¢ (1 +nl® ) —Vmr T ifnifl)’k >0

o ) T
and eV, = +00 otherwise
m,k — .

By incorporating the confidence interval, the algorithm can bal-
ance exploration and exploitation, ensuring that it does not overly
rely on potentially inaccurate estimates of the rewards.

5.2 Online Learning for Joint Probing and
Assignment (OLPA)

The contribution of our online algorithm (OLPA) (Algorithm [2)
is to incorporate the greedy probing idea from Algorithm [I] to im-
plement a two-phase update mechanism for joint probing and as-
signment. In the probing phase, the agent selects a subset of arms
to probe based on the expected information gain within the bud-
get (by invoking Alg. [T]on the current estimates). In the assignment
phase, the agent assigns plays to arms optimally using the realized
rewards/resources for probed arms and UCB scores (i.e., mean esti-
mates combined with confidence bounds) for unprobed arms under
the same feasibility constraints.

Initialization (lines 1-5): The algorithm initializes estimates for

resource probabilities 135:? 4» mean rewards ﬂifl)k, play counts nfr? PR

confidence bounds 552),1«
(t)

unseen pairs start with n,
UCB behavior at cold start.

and CDFs F‘r(;)k (x) for all arms and plays;

. = 0 (hence large egy? ;) to ensure valid



Update Function (lines 6-14): The UPDATEESTIMATES function
refines these estimates after both probing and_assignment in each
round, and refreshes effl) &, according to Lemma (6[so that subsequent
decisions remain guidecf by statistically valid confidence bounds.

Probing Phase (lines 16-17): At each time step ¢, the algorithm
selects a probing set S} using current estimates, maximizing the sur-
rogate marginal-value objective (Sec. |4) based on P® and {F Tsf)k},
subject to the probing overhead/budget.

Assignment Phase (lines 19-20): After probing, the algorithm de-
termines the play—arm assignment C; that maximizes the expected
total reward: realized outcomes from probed arms are combined with
UCB scores derived from ﬂs? % and ef;? i, for unprobed arms, preserv-
ing feasibility and exploration.

Iteration: The process repeats over the time horizon 7", with es-
timates updated after probing and after assignment each round; the
regret guarantee in Theorem [2]is obtained under these updates.

Remark on novelty. OLPA departs from existing multi-play ban-
dit methods in two key aspects: (i) it uses a custom UCB assignment
rule whose confidence radius E,Efl) & captures the joint uncertainty of
rewards and remaining resources; (ii) it couples that UCB rule with
our offline greedy probing routine, forming a unified two-phase pol-
icy that first selects which arms to probe under overhead and then
assigns plays using UCB scores.

5.3 Theoretical Analysis

We provide a theoretical analysis of our online algorithm (OLPA),
demonstrating that it achieves sublinear regret and near-optimal per-
formance under reasonable assumptions. We have the following the-
orem.

Theorem 2. The regret of Algorithm[2)is bound by

e—1 V2 KT\?
regret\ 1 < — I
Rgt(zeil,T)f 2M6<1n 5 )
2
+ 4D o K EE[M] knel%i Lo,k 2In Sﬁ

Comparison with the no-probing variant. We note that the
constant in the \/T-term of Theorem [2| arises from a loose up-

per bound used in the proof: (1 — «(]S¢])) - (Zme[]\/l]\st ‘Cm|) :

(ZmE[M]\St max Mm,k) <K (Zmew] [max um,k)The in-
equality is tight only when S; = @ (probing disabled), so our
worst-case guarantee coincides with that of a no-probing algorithm;
whenever |S¢| > 0 the left-hand side is strictly smaller, implying a
reduced constant bound while the O (VT 4 In® T) rate is preserved.

Experiments (Section 6) show that this reduced constant leads
to clearly lower cumulative regret, confirming that probing deliv-
ers practical improvements even though both variants share the same
asymptotic order. The regret scales linearly with K and logarithmi-
cally with M, which is consistent with multi-play bandit settings.
The complete proof, incorporating probing and UCB estimate errors,
is in the Appendix of the full version [28].

Lower bound. As a complement to the upper regret bound, the
regret is lower bounded by Q(+/T') in the worst-case scenario. The
proof, based on a standard two-environment construction, is in the
Appendix of the full version [28] and shows that our upper bound is
tight up to constant factors.

Algorithm 2 Online Learning for Joint Probing and Assignment
(OLPA)

1: p¥) )« 0,Ym € [M],d € [Dina]

B (%) =1,Y2 € Rym € [M],k € [K]
: function UPDATEESTIMATES(M, X¢,m, Nt,m)

(t=1)p D +1{Dm e =Nt m}

2 a0, +0,Ym € [M],k € [K]

3: 0l 0,Vm € [M],k € [K]

4: €l +oo,Vm € [M],k € [K]
5

6

T ﬁv(:w,),d - T
VYm € [M],d € [Dmax]

8l e nl" Y+ 1{k € Cim},
Ym € [M], k € [K]

I

(t—1) - (t—1)
) NG (Mgt By o+ Xt m1{kE€CE,m})
9: B e < . . ON ,
vm € [M],k € [K]
N nC D ECD o0 V1R, o <X }1{EECE.m
10: F,(,f,)k(x)<— T Fme ) {n§;> p =X JHRECh, })7
m,k
Ve € R,m € [M], k € [K]
11: for m € [M] do
12: for k € [K] do
13: if ), # 0 then
ln( nii)k+l/5)
" @0, | (Lrn,) )

2(nii)
15: fort =1,2,...,T do

16: SP < Algorithm (P(t)v {Fr(rf,)k}me[M],ke[K])
17: Probe each arm m € SP" and get (X¢,m, Nt,m)
18: UPDATEESTIMATES(SY", X4, m» Nt,m)

19: Determine the optimal action profile C; = arg max
R;Otal(sfr7 {Nt,ma Xt,m}mes,

(b, o) + € b mgs, C)

20: Do assignment by the optimal action profile,
get arm set Smat, (Xe,m, Ne,m)
21: UPDATEESTIMATES(Smat» X¢,m» Nt,m)

6 Experiments

In this section, we evaluate our algorithm and compare it with
baselines for the ridesharing problem. We utilize two real-world
datasets: the NY YellowTaxi 2016 dataset [24] and the Chicago Taxi
Trips 2016 dataset [6]. The NY YellowTaxi dataset contains trip
records, including pickup and dropoft locations, passenger counts,
and trip durations in New York City from 3/22/2016 to 3/31/2016.
For the Chicago Taxi Trips 2016 dataset, we randomly select a subset
of the data spanning from 1/9/2016 to 9/29/2016. These two datasets
allow us to evaluate our approach across different urban environ-
ments.

Given the similarity between the two datasets, we apply the same
data processing method for both. The geographical coordinates of
pickup locations are discretized into bins of 0.01 degrees for both lat-
itude and longitude. The frequency of passenger counts within these
bins is normalized to derive the probability mass function (PMF),
representing the distribution of passengers in each grid cell. Vehi-
cle locations are randomly pre-sampled within the dataset bounds
and fixed throughout the experiments. Figure ] visualizes the result-
ing Manhattan street network (left) and one example environment
with pre-sampled vehicles, pickup requests, and the discretization
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Figure 1: (2): Arms number M = 3, plays number K = 2, Bernoulli distribution for reward, Dm.x = 5. (b): Arms number M = 5, plays
number K = 3, Bernoulli distribution for reward, Dmax = 7. (¢): Arms number M = 3, plays number K = 2, General distribution for
reward, Dmax = 5. (d): Arms number M = 10, plays number K = 6, General distribution for reward, Dyax = 7. Data from NY YellowTaxi

2016.

Figure 2: Visualization of the NY YellowTaxi dataset and the
environment setting. Left: Manhattan road network used to sample
vehicle and pickup locations. Right: an example of environment
configuration.

Table 1: Cumulative regret at 1000/2000/3000 steps on the Chicago
Taxi Trips dataset.

Set. | M | K Distr. Alg. 1000 2000 3000
(a) 3 2 Bernoulli OLPA 67.67 112.09 151.40
GR 117.79 220.55 309.40

Non-Probing 87.84 122.22 170.62

RR 120.16 223.61 327.28

(b) 5 3 | Bernoulli OLPA 133.15 225.79 292.60
GR 330.30 655.82 1002.47

Non-Probing | 178.82 288.53 357.26

RR 292.88 580.72 831.95

(c) 3 2 General OLPA 37.71 72.86 94.27
GR 184.84 361.42 538.00

Non-Probing 54.01 89.28 118.10

RR 183.80 359.63 537.37
d [ 10 ] 6 General OLPA 1961.19 | 3323.28 | 4357.97
GR 1865.01 | 3546.49 | 5254.05
Non-Probing | 1967.15 | 3635.66 | 5275.73
RR 1853.63 | 3545.97 | 5226.82

grid (right).

The reward is based on the Manhattan distance between a vehi-
cle and a pickup location. The distances are normalized to the [0,
1] range, where closer distances correspond to higher rewards. We
consider two types of reward distributions: (1) a Bernoulli distribu-
tion with mean i, x, representing the normalized reward for arm
m and play k, assumed i.i.d. across ¢, m, and k; and (2) a discrete
distribution with support [0.1, 0.4, 0.7, 1.0], where probabilities for
each level are derived from the distribution of normalized rewards.
Cumulative regret is computed using Equation (3), where R(S*) is
obtained through exhaustive search. Specific details are provided in
the Appendix of the full version [28].

6.1 Baselines

We compare OLPA with three baselines. Non-Probing (OnLin-
ActPrf [7]) disables probing altogether and solves the assignment
optimally from current estimates. RR (Random Probing, Random
assignment) first samples a random number ¢ < I of arms, probes
them uniformly at random, and then allocates plays by an indepen-
dent uniform draw—capturing an uninformed exploration strategy.
GR (Greedy Probing, Random assignment) uses the same greedy
probing strategy as Algorithm 2]in our approach. However, instead
of performing optimal assignment, it randomly selects arm-play pairs
for assignment after probing.

6.2 Results

We compare all algorithms across different settings using the
datasets described above. All four panels of Fig.[T]are generated from
the NYYellowTaxi 2016 data. Fig. [Ta] gives the results when there
are 3 locations and 2 vehicles, and the reward distribution is i.i.d.
Bernoulli. After 800 time steps, our OLPA algorithm significantly
outperforms the others, particularly GR and RR, which accumulate
much higher regret. In Fig. [Tb] we consider a slightly larger setting
with 5 locations and 3 vehicles. As the horizon grows, the gap be-
tween RR and the other strategies widens, yet OLPA still maintains
the lowest regret. Besides the Bernoulli distribution, we also evalu-
ate under the general four-level reward distribution (Fig. [Ic), where
OLPA continues to lead, followed by Non-Probing and GR, with RR
worst of all. Finally, in the largest setting (Fig. the performance
gap between GR, RR, and the other methods widens even further, yet
OLPA still achieves the lowest cumulative regret, demonstrating its
robustness across problem scales and reward models.

Table [T] reports cumulative regret at 1 k, 2 k, and 3 k steps on
the Chicago Taxi Trips dataset. In every configuration OLPA at-
tains the smallest regret—e.g. in setting (b) it reduces regret by over
30% compared to Non-Probing and by a factor of 3+ relative to
GR/RR—confirming that probing yields large constant-level gains
in practice.

7 Conclusion

We introduce PUCS, a probing-augmented framework for sequen-
tial user-centric selection. In the offline case (known distributions)
we give a greedy probing algorithm with a constant-factor guarantee;
in the online case we couple this routine with a UCB-style assign-
ment to obtain OLPA, whose regret is 5(\/T ) with a strictly smaller
leading constant than the no-probing variant. Experiments on two
large taxi-trip datasets show consistent gains over strong baselines,
indicating that PUCS can benefit practical systems such as content
recommendation and ridesharing dispatch.
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