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Abstract

We propose a multi-agent multi-armed bandit (MA-MAB)
framework to ensure fair outcomes across agents while
maximizing overall system performance. For example, in a
ridesharing setting where a central dispatcher assigns drivers
to distinct geographic regions, utilitarian welfare (the sum of
driver earnings) can be highly skewed—some drivers may re-
ceive no rides. We instead measure fairness by Nash social
welfare, i.e., the product of individual rewards. A key chal-
lenge in this setting is decision-making under limited infor-
mation about arm rewards (geographic regions). To address
this, we introduce a novel probing mechanism that strategi-
cally gathers information about selected arms before assign-
ment. In the offline setting, where reward distributions are
known, we exploit submodularity to design a greedy probing
algorithm with a constant-factor approximation guarantee.
In the online setting, we develop a probing-based algorithm
that achieves sublinear regret while preserving Nash social
welfare. Extensive experiments on synthetic and real-world
datasets demonstrate that our approach outperforms baseline
methods in both fairness and efficiency.

Introduction
The multi-agent multi-armed bandit (MA-MAB) framework
models a scenario where M agents compete for A arms over
discrete rounds. In each round, a centralized decision-maker
assigns each agent to an arm and observes the individual re-
ward returned by each agent–arm pair, which can then be ag-
gregated to measure total system performance. Typically this
aggregation is measured by the utilitarian welfare, or sum of
total rewards. One such application is ridesharing, where a
central dispatcher assigns drivers (agents) to geographic re-
gions (arms) based on estimated demand and driver avail-
ability. The dispatcher then observes the individual reward
obtained by each driver in its assigned region.

Maximizing total expected reward is a common objective
in the MA-MAB framework, but it can lead to inequalities in
practice (Joseph et al. 2016). Optimizing for aggregate per-
formance often results in a concentration of profitable arms
among a few agents, disadvantaging others (Kleinberg et al.
2018; Agarwal et al. 2014). This is especially concerning
in applications where fair resource assignment is essential,
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such as in ridesharing platforms, where drivers need equi-
table access to profitable areas (Bubeck, Cesa-Bianchi et al.
2012; Lattimore and Szepesvári 2020), and in content rec-
ommendation systems, where creator exposure should not
be monopolized (Abdollahpouri et al. 2020).

Many MA-MAB studies aim to improve fairness, often by
altering assignment strategies or adding constraints to naive
utilitarian objectives (Joseph et al. 2018; Patil et al. 2021).
A natural baseline is to maximize the sum of agent rewards
(utilitarian welfare), but this can produce highly imbalanced
assignments: profitable arms tend to be concentrated on a
few agents while others receive little or nothing. This ef-
fect—where some agents are effectively “starved” of reward
despite high aggregate system utility—is well documented
in assignment and scheduling literature and is referred to as
starvation. Maximizing total reward without regard to its dis-
tribution can therefore systematically disadvantage certain
agents even when the system as a whole appears efficient.
To address this, a line of work replaces or augments the sum
objective with fairness-aware criteria such as Nash Social
Welfare (NSW), which takes the product (equivalently the
geometric mean) of individual utilities, thereby discourag-
ing assignments that leave any agent with very low reward
and yielding a balanced equity-efficiency trade-off (Heidari
et al. 2018; Zhang and Conitzer 2021). In particular, Jones,
Nguyen, and Nguyen (2023) demonstrated that optimizing
NSW in MA-MAB settings can prevent persistent exclu-
sion and achieve simultaneous improvements in fairness and
overall utility.

However, a common limitation of existing approaches
is their dependence on instantaneous reward feedback for
updating estimates and steering assignment policies, even
though in many real-world scenarios key information is
either unobserved or noisy (Li, Karatzoglou, and Gentile
2016). For instance, in ridesharing platforms, uncertainty
about passenger demand and fluctuating road conditions can
corrupt the platform’s estimates of driver-region rewards.
Those corrupted estimates then propagate into the assign-
ment step, potentially producing assignments that are un-
fair—for example, by repeatedly starving certain drivers
who are misestimated as low-reward. To mitigate such risks,
probing can be used to actively gather targeted information
before making assignments (Oh and Iyengar 2019). Orig-
inating in economics (Weitzman 1979) as a cost-bearing



method to reduce uncertainty in sequential decision-making,
probing has been adapted in domains such as database
query optimization (Deshpande, Hellerstein, and Kletenik
2016; Liu et al. 2008), real-time traffic-aware vehicle routing
(Bhaskara et al. 2020; Xu et al. 2025a), and wireless network
scheduling (Xu et al. 2021; Xu, Zhang, and Zheng 2023).

Our work extends the NSW-based multi-agent multi-
armed bandit (MA-MAB) framework by incorporating a
probing mechanism to gather extra information, refining re-
ward estimates and improving the exploration-exploitation
balance while ensuring fairness. The decision-maker first
probes a subset of arms for detailed reward data, then as-
signs agents fairly according to an objective that incorpo-
rates a fairness measure. In the offline setting, where reward
distributions are known, we develop a greedy probing al-
gorithm with a provable performance bound, leveraging the
submodular structure of our objective. For the online setting,
we propose a combinatorial bandit algorithm with a derived
regret bound.

Integrating probing into MA-MAB poses the challenge
of balancing exploration and exploitation while maintain-
ing fairness. Related probing problems have been shown to
be NP-hard (Goel, Guha, and Munagala 2006), and while
previous works (Zuo, Zhang, and Joe-Wong 2020), have ex-
plored probing strategies in MA-MAB, they have simplified
assumptions, such as limiting rewards to Bernoulli distri-
butions and ignoring fair assignment. Our framework over-
comes these limitations by considering general reward dis-
tributions, ensuring fairness, and introducing a probing bud-
get to optimize performance under exploration constraints.

The primary contributions of our work are as follows:
(1) We extend the multi-agent MAB framework with a

novel probing mechanism that tests selected arms before as-
signment. This approach ensures fairness through Nash So-
cial Welfare optimization, departing from previous work that
focuses solely on the sum of rewards (Zuo, Zhang, and Joe-
Wong 2020).

(2) For known reward patterns in offline setting, we de-
velop a simple yet effective greedy probing strategy with
provable performance guarantees, while maintaining fair-
ness across agents.

(3) For the online setting where rewards are unknown, we
propose an algorithm that balances exploration and fairness,
proving that probing and fair assignment do not compromise
asymptotic performance.

(4) Experiments on both synthetic and real-world data
demonstrate that our method achieves superior performance
compared to baselines, validating the effectiveness of the
probing strategy and our algorithm.

Related Work
The multi-armed bandit (MAB) framework has been key for
sequential decision-making under uncertainty (Lai and Rob-
bins 1985; Garivier and Cappé 2011; Kumar and Kleinberg
2000; Zhang et al. 2020). While early MAB models involve
a single decision-maker choosing one arm per round, many
real-world problems involve multiple agents acting simul-
taneously (Martı́nez-Rubio, Kanade, and Rebeschini 2019),

each potentially choosing different arms (Hossain, Micha,
and Shah 2021). Most existing multi-agent MAB methods
focus on maximizing the total sum of rewards, which can
unfairly favor some agents. To address this, researchers have
proposed fairness-aware approaches (Joseph et al. 2016),
with Nash Social Welfare (NSW) (Kaneko and Nakamura
1979) proving effective because it maximizes the product of
agents’ utilities.

In practice, key aspects of reward distributions are often
unknown (Slivkins 2019; Lattimore and Szepesvári 2020).
Existing fair MA-MAB methods generally rely on passive
feedback (Liu and Zhao 2010; Gai and Krishnamachari
2014). Probing, or “active exploration,” seeks extra infor-
mation by testing a subset of arms before committing (Chen
et al. 2015; Amin, Rostamizadeh, and Syed 2014), and is
valuable when exploring poorly understood arms is risky
(Golovin and Krause 2011; Bhaskara et al. 2020).

Recent single-agent studies formally introduce probing
costs: Aaron D. Tucker et al. (2023) analyze bandits with
costly reward observations, giving matching Θ(c1/3T 2/3)
bounds; Eray Can Elumar, Cem Tekin, and Osman Yağan
(2024) allow paying to probe one arm per round and achieve
Õ(
√
KT ) regret; and Observe-Before-Play bandits (Zuo,

Zhang, and Joe-Wong 2020) permit a limited number of
pre-observations each round. Offline work has also exam-
ined submodular probing for routing problems (Bhaskara
et al. 2020). However, the bulk of probing research still
optimizes aggregate metrics—coverage, latency, or total re-
ward—without incorporating inter-agent equity. This leaves
a gap between fair multi-agent MAB methods that rely on
passive feedback and probing strategies that ignore fair-
ness. We close this gap by coupling cost-aware, submodular
probe selection with NSW-oriented assignment, so informa-
tion gained through active exploration translates directly into
fair outcomes for all agents.

Problem Formulation
In this section, we define the fair multi-agent multi-
armed bandit (MA-MAB) problem by extending the clas-
sical multi-armed bandit framework to incorporate fairness,
multi-agent interactions, and the effect of probing decisions.
The goal is to optimize both fairness and utility while ac-
counting for probing overhead.

Agents, Arms, and Rewards
We consider a set of M agents, indexed by [M ] =
{1, . . . ,M}, and a set of A arms, indexed by [A] =
{1, . . . , A}. For every pair (j, a) with j ∈ [M ] and a ∈ [A],
let Dj,a denote an unknown reward distribution with cumu-
lative distribution function Fj,a and mean µj,a ∈ [0, 1].

At each round t ∈ [T ], the decision-maker first selects
a probing set St ⊆ [A], receiving for each j ∈ [M ] and
a ∈ St a fresh reward Rj,a,t drawn i.i.d. from Dj,a. If
a /∈ St, it instead relies on the current estimate µj,a (true
mean in offline analysis). Using these observed rewards and
estimates, the decision-maker then assigns each agent j to
an arm aj,t ∈ [A].



Let Rt = {Rj,a,t | j ∈ [M ], a ∈ St} denote the set of
rewards revealed by probing in round t. All rewards lie in
[0, 1].

Illustrative Mappings. (a) Ridesharing. Agents j are
drivers; arms a are pickup zones obtained by a 0.01◦×0.01◦
city grid. Before dispatching, the platform may probe a
handful of zones (querying live app pings) to refine demand
estimates, then assign drivers under a fairness objective. (b)
60 GHz WLAN Scheduling. Here agents are client devices,
arms are access-points, and probing corresponds to brief
beam-sounding measurements before scheduling transmis-
sions.

Fairness Objective: Nash Social Welfare
To balance efficiency and equity, we maximize the (ex-
pected) Nash Social Welfare (NSW). An assignment policy
at round t is a matrix πt = [πj,a,t] ∈ [0, 1]M×A where πj,a,t

is the probability that agent j receives arm a. Given St, the
realized rewards Rt, and the mean matrix µ = [µj,a], we
define the instantaneous NSW as

NSW(St, Rt,µ, πt) =
∏

j∈[M ]


∑
a∈St

πj,a,t Rj,a,t

+
∑
a/∈St

πj,a,t µj,a

 .

so each agent’s utility contributes multiplicatively, discour-
aging assignments that leave any agent with a very low ex-
pected reward (e.g., a driver stranded without passengers).

The policy must satisfy∑
a

πj,a,t = 1 (∀ j),
∑
j

πj,a,t ≤ 1 (∀ a),

ensuring, in expectation, one arm per agent and no arm over-
booked. As in Jones, Nguyen, and Nguyen (2023), πj,a,t

may be fractional, reflecting randomized assignment com-
monly used in online platforms.

Why Nash Social Welfare? We adopt Nash Social Wel-
fare (NSW) as our fairness objective for three key reasons:
(i) Pareto efficiency —maximizing the geometric mean
never sacrifices total reward when a Pareto-improvement is
possible; (ii) Scale invariance — multiplying all utilities
by the same constant leaves the maximizer unchanged, pre-
venting bias due to units of measurement; (iii) Balanced
equity-efficiency trade-off — NSW penalizes inequality
more gently than max–min fairness while still discouraging
highly skewed assignments, offering a smooth continuum
between purely utilitarian and purely egalitarian objectives
(Caragiannis et al. 2019; Thomson 2011).

Probing Overhead
Probing incurs a cost that increases with the size of the prob-
ing set. Since probing provides additional reward realiza-
tions but also consumes resources, we model the effective
(instantaneous) reward at time t as follows:

Rtotal
t =

(
1− α(|St|)

)
ERt

[
NSW(St, Rt,µ, πt)

]
,

where α : {0, 1, . . . , I} → [0, 1] is a non-decreasing over-
head function satisfying α(0) = 0 and α(I) = 1. Here, the
expectation ERt

[·] is taken over the reward realizations Rt

(with rewards drawn i.i.d. from the corresponding Dj,a).
This formulation accounts for the trade-off between ex-

ploration and exploitation. When more arms are probed, the
decision-maker obtains more accurate information about re-
ward distributions, leading to better assignment decisions.
However, probing incurs costs, such as time delays, energy
consumption, or computational overhead, which reduce the
net benefit. For instance, in a wireless scheduling scenario,
probing more channels provides better estimates of chan-
nel conditions but increases latency, reducing the system’s
effective throughput (Xu et al. 2021). This formulation is
appropriate because the probing impact often scales with
the system’s overall performance, and similar scaling effects
have been modeled in prior work (Xu et al. 2021, 2025a).
The function α(|St|) captures this diminishing return, en-
suring that excessive probing is discouraged.

Decision Problem
At each round t, the decision-maker proceeds in two stages:

Probing Stage: Select a probing set St ⊆ [A] that bal-
ances exploration (gathering new information) and exploita-
tion (leveraging current knowledge). Upon selecting St, the
system probes the corresponding arms and obtains their re-
ward realizations. That is, for each a ∈ St and each agent
j ∈ [M ], a reward Rj,a,t is sampled i.i.d. from the distribu-
tion Dj,a.

Assignment Stage: Based on the observed rewards Rt for
arms in St (and the known mean rewards µj,a for arms not
in St), choose a probabilistic assignment policy πt ∈ ∆A to
assign arms to agents.

The decision-maker’s goal is to select (St, πt) in each
round so as to maximize Rtotal

t and thereby achieve sub-
linear cumulative regret.

Regret and Performance Measure
To evaluate the performance of our online learning ap-
proach, we define regret by comparing the achieved reward
with the optimal reward obtained in an offline setting.

In the offline setting, the decision-maker has full knowl-
edge of µ and can directly compute the optimal probing set
and assignment policy (S∗

t , π
∗
t ) that maximizes the expected

NSW objective:

(S∗
t , π

∗
t ) = argmax

S,π

(
1−α(|S|)

)
ERt

[
NSW(S,Rt,µ, π)

]
.

This serves as a performance benchmark.
In contrast, the online setting requires the decision-maker

to learn µ over time while making sequential decisions
based on observed rewards. The cumulative regret measures
the performance gap between the online strategy and the of-
fline optimal policy:

Rregret(T ) =

T∑
t=1

[ (
1− α

(
|S∗

t |
))

· ERt

[
NSW(S∗

t , Rt,µ, π
∗
t )
]
− Rtotal

t

]
.

(1)



Efficient algorithms aim to ensure that Rregret(T ) grows
sublinearly with T , thereby balancing fairness, overall util-
ity, and the cost of probing.

The Offline Setting
In the offline setting, all reward distributions are known in
advance, reducing the problem to a static optimization over
the probing set S without the time index t. Given any fixed
S, the optimal assignment policy π (Cole and Gkatzelis
2015) can be computed, allowing the effective reward to be
expressed as a function of S.

This optimization is computationally challenging, as sim-
ilar problems have been shown to be NP-hard (Goel, Guha,
and Munagala 2006). To address this, we develop a greedy
algorithm based on submodular maximization techniques to
obtain an approximate solution while accounting for probing
costs.

Optimization Objective and Probing Utility
Since the offline setting is static, we drop the time index
t. The decision-maker is now tasked with selecting a prob-
ing set S ⊆ [A] from the A available arms. For each agent
j ∈ [M ] and each arm a ∈ [A], let Dj,a denote the known
reward distribution with CDF Fj,a and mean µj,a. When an
arm a is probed (i.e. a ∈ S), a reward realization Rj,a is
observed (drawn i.i.d. from Dj,a); otherwise, the decision-
maker relies on the mean reward µj,a.

Given a probing set S, an assignment policy π = [πj,a]
can be applied to assign arms to agents. For any fixed S,
one may compute the optimal assignment policy that maxi-
mizes the expected Nash Social Welfare (Cole and Gkatzelis
2015). Hence, we define the effective objective as

R(S) =
(
1− α(|S|)

)
· ER

[
NSW(S,R,µ, π∗(S))

]
,

π∗(S) denotes the optimal assignment policy given S, and
α(|S|) is the probing overhead function.

Directly optimizing R(S) is challenging due to both the
combinatorial nature of the set S and the multiplicative form
of NSW. To address this, we decompose R(S) into two
components.

Defining a Simplified Utility g(S). To isolate the contri-
bution of probed arms and simplify the multiplicative struc-
ture, we define

g(S) = max
π∈∆A

S

E

[ ∏
j∈[M ]

(∑
a∈S

πj,a Rj,a

)]
,

where

∆A
S =

{
π ∈ RM×A

+ |πj,a = 0, ∀a /∈ S, ∀j ∈ [M ],∑
a∈S

πj,a ≤ 1, ∀j ∈ [M ]
}
.

Since only arms in S yield random rewards, this formula-
tion ensures that g(S) is naturally monotonic in S.

Defining the Non-probing Utility h(S). Complementar-
ily, we define the non-probing utility as

h(S) = max
π∈∆A

[A]\S

∏
j∈[M ]

(∑
a/∈S

πj,a µj,a

)
,

where

∆A
[A]\S =

{
π ∈ RM×A

+ |πj,a = 0, ∀a ∈ S, ∀j ∈ [M ],∑
a∈[A]\S

πj,a ≤ 1, ∀j ∈ [M ]
}
.

This formulation captures the baseline utility achievable
by assigning exclusively among the unprobed arms. Similar
to g(S), the assignment policy ensures that each agent’s total
assignment probability does not exceed one, allowing partial
assignments across multiple arms.

Log Transformation and Piecewise-Linear Approxima-
tion. Taking logarithms converts the product

∏
j(. . . ) into

the sum log g(S). Unfortunately, the resulting set func-
tion is still non-additive—its marginal gain depends on
the current value g(S)—and generally non-submodular, so
classical greedy guarantees no longer apply. Even a much
simpler problem is already intractable: selecting at most
k items to maximise a strictly concave, increasing func-
tion of their total weight is NP-hard to approximate within
any constant factor (Ahmed and Atamtürk 2011). Con-
sequently, directly optimising log g(S) is computationally
challenging. To regain tractability, we adopt the classical
idea of piecewise-linear upper envelopes for concave func-
tions(Salhi 1994; Tawarmalani and Sahinidis 2013). Specif-
ically, we construct a piecewise-linear, concave, and non-
decreasing function ϕ : [0, xmax] → R such that for
all x > 0, we have ϕ(x) ≥ log(x). We then define
fupper(S) = ϕ

(
g(S)

)
. This construction yields an objective

that (i) upper-bounds log
(
g(S)

)
and (ii) exhibits diminish-

ing returns, as explained next.

Piecewise-Linear Upper Bound Construction
To approximate log

(
g(S)

)
in a tractable manner, we con-

struct ϕ as follows:

• Upper Bound Assumption: Assume that xmax is an up-
per bound on g(S), i.e., for all S, g(S) ≤ xmax.

• Partitioning: Partition the interval [0, xmax] into seg-
ments with breakpoints τ0, τ1, . . . , τL (with 0 < τ0 <
τ1 < · · · < τL = xmax). Moreover, choose the parti-
tion sufficiently fine so that there exists a constant η > 0
(with η sufficiently small) such that τi+1 − τi ≤ η for all
i, and, importantly, for any S ⊆ [A] and any arm a /∈ S,
g(S ∪ {a})− g(S) ≤ η. This guarantees that for every S
and a, both g(S) and g(S∪{a}) lie within the same linear
segment of ϕ.

• Tangent Lines: For each breakpoint τi, define the tangent
line Tτi(z) = log(τi) +

1
τi
(z − τi). By the concavity of

log(·), for every z ∈ [τi, τi+1] we have log(z) ≤ Tτi(z).



We then define ϕ(z) = max0≤i<L Tτi(z), so that for all z >
0, ϕ(z) ≥ log(z). By construction, ϕ is concave and non-
decreasing. In particular, if x ∈ [τi, τi+1] and y ∈ [τj , τj+1]
with x < y (so that τi ≤ τj), the slopes on these segments
are given by 1/τi and 1/τj , respectively. Since τi < τj , we
have 1

τi
≥ 1

τj
. Thus, for any 0 < x < y ≤ xmax and any

increments d, d′ ≥ 0 (with d, d′ ≤ η so that x+d and y+d′

lie within single linear segments), it holds that

ϕ(x+ d)− ϕ(x)

d
=

1

τi
≥ 1

τj
=

ϕ(y + d′)− ϕ(y)

d′
.

Additional Assumption. In order to handle the case when
the increments differ (i.e., when d < d′), we assume (see
Appendix for a detailed proof) that the partition is suffi-
ciently fine so that if x ∈ [τi, τi+1] and y ∈ [τj , τj+1] with
τi ≤ τj , then d

d′ ≥ τi
τj

. In addition, for analytical conve-
nience, we view the offline benchmark through the alloca-
tion classes associated with probed and unprobed arms.

Finally, define the composed function fupper(S) =
ϕ(g(S)). In Lemma 3, we show that fupper(S) is sub-
modular, which enables the approximation guarantee of our
greedy probing strategy. The proof is provided in the Ap-
pendix in the full version (Xu et al. 2025b).

Submodularity Properties
Utilizing the construction above, we establish the following
key properties (proofs are in the Appendix). These lemmas
are fundamental for proving Theorem 1, as they help estab-
lish the submodularity and approximation guarantees of Al-
gorithm 1.

Lemma 1 (Monotonicity of g(S)). For any S ⊆ T ⊆ [A],
we have g(S) ≤ g(T ).

Lemma 2 (Monotonicity). For any S ⊆ T ⊆ [A], we have
fupper(S) ≤ fupper(T ).

Lemma 3 (Submodularity). For any S ⊆ T ⊆ [A] and
a /∈ T ,

fupper(S∪{a})−fupper(S) ≥ fupper(T ∪{a})−fupper(T ).

Lemma 4 (Monotonicity of h(S)). For any S ⊆ T ⊆ [A],
we have h(S) ≥ h(T ).

Lemma 5. For any probing set S, we have:

R(S) = (1− α(|S|))ER

[
NSW(S,R,µ, π∗(S))

]
≤ (1− α(|S|))(g(S) + h(S)).

Greedy Algorithm and Approximation
Finally, we can greedily pick arms one by one to maxi-
mize the incremental gain in fupper(S), subject to budget
I . By standard results on submodular maximization with
cardinality constraints (Iyer and Bilmes 2013), this yields
a (1−1/e)-approximation for maximizing fupper. Moreover,
we can combine it with the overhead term (1 − α(|S|)) to
trade off between total payoff and probing cost.

Algorithm 1 first initializes I+1 empty probing sets
S0, S1, . . . , SI (lines 1–2). In each iteration i (lines 3–5),

it selects the arm a that maximizes the marginal gain
fupper(Si−1 ∪ {a}) − fupper(Si−1) and updates Si. The
candidate sets Sj are then sorted by the adjusted reward
(1 − α(|Sj |))fupper(Sj) (line 7). The algorithm iterates
through these sets (lines 8–14), returning an empty set if the
highest-ranked Sj does not exceed h(∅) (lines 9–10). Other-
wise, it computes the expected reward R(Sj) (line 11) and
proceeds to the next candidate if (1 − α(|Sj |))fupper(Sj)
exceeds ζR(Sj) (lines 11–12). If all conditions are met, Sj

is returned as the final probing set Spr (lines 14).

Algorithm 1: Offline Greedy Probing

Input: {Fm,a}m∈[M ], a∈[A], α(·), I, ζ ≥ 1.
Output: Spr

1: for i = 0 to I do
2: Si ← ∅
3: for i = 1 to I do

4: a← arg max
a∈[A]\Si−1

[
fupper(Si−1 ∪ {a})
− fupper(Si−1)

]
5: Si ← Si−1 ∪ {a}
6: Π← {0, 1, . . . , I}
7: sort Π so that if i precedes j, then (1 −

α(|Si|)) fupper(Si) ≥ (1− α(|Sj |)) fupper(Sj)
8: for each j in Π (largest to smallest upper-bound) do
9: if (1− α(|Sj |)) fupper(Sj) < h(∅) then

10: Spr ← ∅; return Spr

11: if (1− α(|Sj |)) fupper(Sj) > ζR(Sj) then
12: continue
13: else
14: Spr ← Sj ; return Spr

Theorem 1. Let S∗ be an optimal subset maximizingR(S).
Then the set Spr returned by Algorithm 1, for any ζ ≥ 1,
satisfies

R(Spr) ≥ e− 1

2e− 1

1

ζ
R(S∗).

Theorem 1 provides the main theoretical guarantee of our
work, with a detailed proof in the Appendix. Our algorithm
effectively balances exploring additional arms and probing
costs, ensuring a near-optimal reward in the offline setting.

The Online Setting
In the online setting, we consider a system with M agents
and A arms over T rounds. Unlike the offline setting where
rewards are known, here they are unknown, requiring a bal-
ance between exploration and exploitation.

The Online Fair Multi-Agent UCB with Probing
(OFMUP) algorithm (Algorithm 2) maintains empirical
statistics for each agent–arm pair (j, a), including an em-
pirical CDF estimate F̂j,a, and constructs upper confidence
bounds (UCBs). Our key contribution in the online setting
is integrating Algorithm 1 into the online framework and de-
signing a novel UCB-based strategy. This enables efficient
learning while ensuring fairness across agents. The proce-
dure executes the following steps:



1. Initialization (Lines 1–4). Each agent–arm pair (j, a)

starts with: F̂j,a,t ← 1, Nj,a,t ← 0, µ̂j,a,t ← 0, wj,a,t ← 0.
These serve as optimistic estimates before data collection.
The confidence bound Uj,a,t is defined later.
2. Warm-Start Rounds (Lines 5–10). For the first MA
rounds, each agent–arm pair is explored at least once under
assignment constraints. The selection follows:

(et)j,a =

{
1, if j = jt and a = at,

0, otherwise,
This ensures each agent samples all arms and each arm is
probed multiple times.
3. Main Loop (Lines 11–16). For t > MA, the algorithm
iterates as follows:
a. Probe Set Selection (Line 12).

St ← ALGORITHM 1
(
F̂j,a,t, α(·), I, ζ

)
,

where I is the probing budget and α(·) the overhead func-
tion. This subroutine greedily selects St ⊆ [A] based on
F̂j,a,t.
b. Probing and Updates (Line 13). Each arm in St is
probed, revealing rewards Rj,a,t, and updating F̂j,a,t, Nj,a,t,
µ̂j,a,t, and wj,a,t. The confidence bound is:

Uj,a,t = min(µ̂j,a,t + wj,a,t, 1).

c. Policy Optimization (Line 14). The optimal policy is:
πt ← arg max

πt∈∆A
(1− α(|St|)) · ERt

[NSW(St, Rt, Ut, πt)],

where NSW(·) is the Nash social welfare objective.
d. Arm Pulls and Final Updates (Lines 15–16). Each agent
j pulls aj,t ∼ πt, observes Rj,aj,t,t, and updates F̂j,aj,t

,
Nj,aj,t

, µ̂j,aj,t
, wj,aj,t

, and Uj,aj,t
.

Analysis
In this section, we present our regret analysis for the pro-
posed OFMUP algorithm. Detailed proofs and Lemma 8 are
deferred to the Appendix.

Smoothness of the NSW Objective
Lemma 6 (Smoothness of the NSW Objective). Let µ, ν ∈
[0, 1]M×A be two reward matrices. For any probing set S ⊆
[A] and observed rewards R, we have∣∣∣NSW(S,R, µ, π)−NSW(S,R, ν, π)

∣∣∣
≤

M∑
j=1

A∑
a=1

πj,a

∣∣∣µj,a − νj,a

∣∣∣.
Concentration of Reward Estimates
Lemma 7 (Concentration of Reward Estimates). Let δ ∈
(0, 1). Then with probability at least 1 − δ

2 , for all t > A,
a ∈ [A], and j ∈ [M ], we have∣∣∣µj,a − µ̂j,a,t

∣∣∣ ≤
√

2(µ̂j,a,t − µ̂2
j,a,t) ln

(
2MAT

δ

)
Nj,a,t

+
ln
(

2M AT
δ

)
3Nj,a,t

= wj,a,t

Algorithm 2: Online Fair Multi-Agent UCB with Probing
(OFMUP)
Input: A,M, T, I, c, α(·),∆ etc.

1: Initialize:
2: for j = 1→M, a = 1→ A do
3: F̂j,a,t ← 1, Nj,a,t ← 0, µ̂j,a,t ← 0,
4: wj,a,t ← 0

5: for t = 1→MA do
6: jt ← ((t− 1) mod M) + 1
7: at ← ((t− 1)/M) + 1
8: πt ← et, St ← {at}
9: agent jt pulls arm at

10: observe Rjt,at,t, update F̂jt,at,t, µ̂jt,at,t,
wjt,at,t, Njt,at,t

11: for t = MA+ 1→ T do
12: St ← ALGORITHM 1

(
F̂j,a,t, α(·), I, ζ

)
13: probe each arm in St, observe Rj,a,t,

update F̂j,a,t, Nj,a,t, µ̂j,a,t, wj,a,t,
Uj,a,t = min(µ̂j,a,t + wj,a,t, 1)

14: πt ← arg max
πt∈∆A

[
(1− α(|St|))·
ERt

[
NSW(St, Rt, Ut, πt)

]]
15: each agent j pulls aj,t∼πt, observe Rj,aj,t,t

16: update:
F̂j,aj,t,t, Nj,aj,t,t, µ̂j,aj,t,t, wj,aj,t,t, Uj,aj,t,t

Main Regret Guarantee
Combining the smoothness of the NSW objective, the con-
centration bounds, and the auxiliary technical results, we ob-
tain our main regret guarantee.
Theorem 2. For any δ ∈ (0, 1), with probability at least 1−
δ, the cumulative regretRregret(T ) of the Online Fair multi-
Agent UCB with Probing algorithm (Algorithm 2) satisfies

Rregret(T ) = O
(
ζ
(√

M AT + M A
)
lnc
(

M AT
δ

))
,

for some constant c > 0.
Theorem 2 shows that our probing-based algorithm

achieves sublinear regret with a provable constant-factor im-
provement over the non-probing baseline. This gain arises
from faster elimination of suboptimal arms and more in-
formed assignment decisions. Experimental results confirm
that probing consistently lowers regret across all time hori-
zons. Full proofs of Lemmas 6–8 and Theorem 2 are pro-
vided in the Appendix.

Experiments
We evaluate our framework using controlled simulations
and a real-world ridesharing case study. In our simulated
environment, we consider a multi-agent multi-armed ban-
dit (MA-MAB) setting with M agents and A arms (e.g.,
M = 12, A = 8 for small-scale and M = 20, A =
10 for large-scale scenarios). For each agent–arm pair
(j, a), rewards are generated as i.i.d. samples from a fixed
distribution Dj,a with mean µj,a. In the real-world set-
ting, we apply our framework to the NYYellowTaxi 2016



(a) (b) (c) (d)

Figure 1: (a): Agents number M = 12, arms number A = 8, Bernoulli distribution for reward. (b): Agents number M = 20, arms number
A = 10, Bernoulli distribution for reward. (c): Agents number M = 12, arms number A = 8, General distribution for reward. (d): Agents
number M = 20, arms number A = 10, General distribution for reward. Data from NYYellowTaxi 2016.

dataset (Shah, Lowalekar, and Varakantham 2020), treat-
ing vehicles as agents and discretized pickup locations
(binned into 0.01° grids) as arms. Rewards are determined
by the normalized Manhattan distance between vehicles and
pickup points—closer distances yield higher rewards. Vehi-
cle locations are randomly pre-sampled within city bounds
and remain fixed, underscoring the practical effectiveness of
our approach.

(a) (b)

Figure 2: Scalability analysis across two dimensions: (a) Fixed
arms number A = 8 with varying agents; (b) Fixed agents number
M = 20 with varying arms.

To test different conditions, we consider two reward dis-
tributions: a Bernoulli distribution (with rewards 0 or 1 and
with mean rewards µ in [0.3, 0.8]) and a discrete distribution
(with rewards sampled from {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}).
Cumulative regret is computed as in Equation (1), with the
optimal reward determined via exhaustive search. For nu-
merical stability, cumulative Nash social welfare is aggre-
gated using the geometric mean of per-agent rewards. We
further verify that our offline objective fupper(S) closely ap-
proximates log(g(S)) (difference 0.03), confirming the va-
lidity of our formulation. All experimental settings satisfy
the assumptions outlined in our paper.

Baselines
Three algorithms serve as our comparison baselines: Non-
Probing, a fair MAB algorithm from Jones, Nguyen, and

Nguyen (2023) without probing capability, focusing only
on optimal assignment with current information; Random
Probing with Random assignment (Random P+A), which
randomly selects a fixed number of arms for probing and
then assigns the arms randomly; and Greedy Probing with
Random assignment (Greedy P+A), which uses the same
greedy probing strategy as our algorithm but performs ran-
dom assignment after probing.

Results
Figure 1 shows OFMUP’s performance across different
tests. In small-scale tests (M = 12, A = 8), OFMUP reduces
regret by 85% vs. Random P+A and 60% vs. Greedy P+A
after 3000 steps. The advantage is greater in medium-scale
tests (M = 20, A = 10), where regret is 88% lower than
Random P+A and 80% lower than Greedy P+A at T=3000,
showing improved scalability. For discrete rewards, OFMUP
continues to outperform. The gap with other methods grows
as it learns reward patterns, reducing regret by 85% vs. Ran-
dom P+A and 65% vs. Non-Probing at T=3000. Notably,
Random P+A’s regret is slightly higher in small-scale tests
due to fairness computation via the geometric mean and in-
creased variability with smaller samples. These results vali-
date our theoretical analysis—OFMUP effectively balances
exploration and exploitation while ensuring fairness. The ex-
periments further confirm the crucial role of probing in gath-
ering information and guiding assignment. We further ex-
amine scalability by independently varying agent numbers
(Figure 2). OFMUP performs well in all our tests, and its
advantage over the other methods grows as the problems be-
come more complex.

Conclusion
We propose a fair MA-MAB framework combining selec-
tive probing with Nash Social Welfare objectives for effi-
cient information gathering and equitable assignments. Our
offline greedy algorithm attains a constant-factor approxi-
mation bound and the online extension guarantees sublinear
regret. Experiments on synthetic and real-world rideshar-
ing data show refined reward estimates, improved explo-
ration–exploitation balance, and superior performance over
baselines, demonstrating practical applicability.
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