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Abstract: Automatic fractures detection in X-ray material tomography using machine learning 
will significantly benefit material monitoring in an efficient way. This problem can be treated as 
Salient object detection (SOD) to identify the most interesting regions within a 2D image. 
Weakly-supervised annotations like scribble are explored recently due to their flexibility to label 
winding objects and low-cost compared to annotating per-pixel saliency masks. However, using 
scribble labels to learn salient object detection in X-ray material tomography has not been 
explored. In this paper, we explore unsupervised outlier detection with 3D structural information 
to solve the fracture detection in X-ray material tomography, which is under limited exploration 
in literature. We evaluate on 3D x-ray material tomography at different time stamps and show the 
experimental results.   
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1. Introduction  
 
Fractures are three-dimensional (3D) features that have 3D effects on the 
flow properties of materials [1]. Considering fractures are characteristically 
rough and uneven, flow across hem would preserve a meandering trajectory 
of least resistance defined by local pressure gradients. The fracture topology 
is heavily determined by them with specific variation in aperture and surface 
roughness. Therefore, fractures are optimally explored and characterized in 
three dimensions and in-situ, and accurate depiction of fracture aperture and 
roughness is important for both intuitive understanding and meaningful 
numerical modeling. Figure 1 shows one 2D slice sample (x, y direction) 
from 3D X-ray material tomography (x, y, z direction). The key barrier to 
learn an effective machine learning model for fracture detection is the 
insufficiency of fracture annotation. From Figure 1, we can observe that it 
will be very time-consuming and expensive to annotate fracture for every 
pixel in an image, while scribble annotations are easier to provide as shown 
in the sample. 
 
Automatic fracture detection using machine learning is an important tool as it has the potential to identify the 
fracture region and the changing fracture behavior quickly and accurately. In the LAMDA project, automatic 
fracture detection is especially important in the workflow between the new X-ray tomography instrument and the 

Figure 1: Multiple 2-D slice samples 
with fractures annotated by scribbles 
in 3D X-ray material tomography. 
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ThermoFisher PFIB. This pair of instruments will use stepwise in-situ loading and X-ray imaging at 1~𝜇m 
resolution to create cracks and defects in the sample. Then, the damaged sample will be removed and transferred to 
the ThermoFisher plasma focused ion beam scanning electron microscope (PFIB) for ion milling and SEM with 
nanometer resolution. The coupling between the two instruments depends on identification of the region on interest 
in the tomography dataset. Consider the respective volumes: The tomography sample volume is (1~mm)3 and the 
PFIB sample volume is (1000~nm)3; the volume ratio is on the order of 109, making selection of the optimal PFIB 
sampling volume a 1 in a billion problem. In other tomography-PFIB labs, the workflow from beginning to end can 
be a single week; the 1 in a billion problem needs to be solved rapidly and automatically. 
 
In this paper, we explore unsupervised deep outlier detection techniques [2] to solve fracture detection in X-ray 
material tomography, which is under limited exploration in literature. Existing works focus on traditional images 
like scene/objects, which are very different from X-ray material tomography. Anomaly detection is a binary 
classification between normal and abnormal patterns. However, it is impossible to train a fully supervised model 
for this task, because we often lack unusual samples, and anomalies may have unexpected patterns. Therefore, 
anomaly detection models are often estimated in a class of learning settings, i.e., when the training data set contains 
only images from the normal class and the anomaly sample is not available during training. At the time of the test, 
examples that differed from normal training data sets were classified as anomalies. 

To address this, we first focus on 2D-slice fracture detection, and then extend the focus to 3D segmentation by 
exploring the structure information between any two continuous 2D slices. Specifically, we propose a 3D 
segmentation model based on Patch Distribution Modeling (PaDiM) [2] and Convolutional LSTM Network [3] by 
capturing the spatial and temporal information along 3 directions. 
 
2. Unsupervised Outlier Detection Algorithm  

 
Given the 3D X-ray material tomography 𝑋  =   {𝑥!}├{!#$}

& , and 𝑥! is a 2D slice, the goal is to detect the fractures 
in each slice. The general observation is that the fracture regions at continuous slices are consistent with each other. 
To detect the fractures from normal regions, we follow the 2D anomaly detection and localization approach, i.e., 
Patch Distribution Modeling (PaDiM) [2], which concurrently detects and localizes anomalies in images in a one-
class problem setting.  

For each slice, we first deploy a pretrained Convolutional Neural Network (CNN) to extract patch embedding to 
save the computation costs and mitigate the insufficiency of well-annotated training data. Specifically, we adopt 
pretrained ResNet-50 [4] network as the backbone to extract the layer-wise 3D feature maps. After that, each patch 
of the normal images is associated to its spatially corresponding activation scores in the ResNet-50 activation maps. 
Activation scores from various layers are then concatenated to obtain new embedding features carrying information 
from diverse semantic levels and resolutions. Hence, a raw input image is able to be patched into a grid of (𝑖, 𝑗) 	∈
	[1,𝑊] 	×	[1, 𝐻]  positions, in which 𝑊 ×𝐻  is the resolution of the largest activation map used to achieve 
embeddings. To incorporate the temporal information across continuous slices, we adopt Conv-LSTM [3] to refine 
the 3D features with a new reconstruction output for the next step process.  
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To learn the normal image characteristics at position (𝑖, 𝑗) , we assume that each path 𝑋!"  is generated by a 
multivariate Gaussian distribution𝑁(µ!" , 𝛴!"). The goal is to calculate the mean and covariance for normal image 
characteristics. In fact, each possible patch position is associated with a multivariate Gaussian distribution by the 
matrix of Gaussian parameters. The extracted patch embedding vectors preserve information from various semantic 
levels. Each estimated multivariate Gaussian distribution can capture the information from different layers as well 
and the covariance contains the inter-level correlations.  

3. Experimental Results 
Considering we have no ground-truth pixel-level fracture annotation, we provide the segmentation results by 
visualizing the fracture masks. Here Stamp 𝑡@𝑘 denotes the 𝑡 time stamp and the	𝑘-th slice per 450-slice 3D cube 
at time 𝑡.	 From the experiments, we notice that there is consistent pattern across different time stamps at the same 
location, also there is a consistent across continuous slices per same time stamp.  

 Stamp 49@40 

Stamp 49@39 

Stamp 49@38 

Stamp 48@38 
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Stamp 47@38 

Stamp 46@38 
 

4. Conclusion and Future Work 
 
In this paper, we explored the fractures on 2D slice first (x, y direction) and then integrate them together to reach 
3D segmentation (x, y, z direction) by exploring the temporal connection between any continuous slices. The output 
of this project will provide by integrating three directions, which casts a light in 3D anomaly detection. Thus, we 
plan to continue working on this problem by exploring both spatial and temporal information to help fracture 
detection by manually annotating scribble labels, making it possible to explore weakly supervised segmentation 
technique [5]. Secondly, we will combine the explainable AI techniques into the segmentation models, aiming to 
provide more hints on specific patterns for fractures. 
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