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Address-Free Memory Access Based on Program
Syntax Correlation of Loads and Stores

Lu Peng, Jih-Kwon Peir, Qianrong Ma, and Konrad Lai

Abstract—An increasing cache latency in next-generation pro-
cessors incurs profound performance impacts in spite of advanced
out-of-order execution techniques. One way to circumvent this
cache latency problem is to predict load values at the onset of
pipeline execution by exploiting either the load value locality
or the address correlation of stores and loads. In this paper, we
describe a new load value speculation mechanism based on the
program syntax correlation of stores and loads. We establish a
symbolic cache (SC), which is accessed in early pipeline stages
to achieve a zero-cycle load. Instead of using memory addresses,
the SC is accessed by the encoding bits of base register ID plus
the displacement directly from the instruction code. Performance
evaluations using SPEC95 and SPEC2000 integer programs on
SimpleScalar simulation tools show that the SC achieves higher
prediction accuracy in comparison with other load value specula-
tion methods, especially when hardware resources are limited.

I. INTRODUCTION

T ODAY’S high-performance processor pipeline permits
overlapping instruction execution to achieve more than

one instruction per cycle (IPC) average execution rate. The
available instruction-level parallelism (ILP) constrains this
parallel execution because dependent instructions must wait for
the data produced by the source instructions. The severity, in
terms of execution delays, depends primarily on the speed that
the producer instruction can generate the needed data.

Memory load latency presents a classical pipeline bottleneck
even when the data is located in the first-level cache . Usu-
ally, the load data from is not ready until late stages of
the pipeline while the dependent instruction requires the data
at an earlier stage. This load-to-use delay exacerbates in re-
cent high-performance microprocessors in which multicycle,
first-level caches become the norm [12], [14], [21], [23], [24].
As the cache size, clock frequency, and complexity of microar-
chitecture continue to increase in next-generation processors, it
is estimated that the cache accesses may consume two to five
cycles [2]. This increasing load latency from caches will fur-
ther lengthen the load-to-use delay and will have profound per-
formance impacts in spite of advanced out-of-order execution
techniques [2], [3], [18]. Simulations using SPEC2000 integer
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benchmarks running on the out-of-order SimpleScalar model
[4] have shown that each cycle reduction of theaccess delay
improves the IPC by 5%–10% [18].

In Fig. 1, a conceptual out-of-order execution pipeline is par-
titioned into two phases. First, an instruction is fetched, de-
coded, renamed, and issued through thefront endof pipeline
stages. Afterwards, the register operands are read and the in-
struction is executed (including memory access) and committed
through theback endof pipeline stages. In order to be stall free,
a source instruction must produce the data before its dependent
executions. In other words, a critical producer, when it is fetched
and issued at the same cycle as its dependent instructions, needs
to generate the result in the front end of the pipeline to avoid any
stall of its dependents. Such a dependent stall-free memory load
instruction is called azero-cycleload.

There have been several attempts to achieve a zero-cycle load
by predicting and speculating the load value [5], [11], [15], [16],
[22], [25], [26] or the load address [2], [6], [9], [10] in the
front-end of the processor pipeline. Both load value and load
address predictions generally suffer a low prediction accuracy.
For address predictions, a lengthy cache access is still required
that may delay the load dependents even if the predicted load
address is correct.

In this paper, we exploit a new avenue to speculatively obtain
the load value in front-end stages of the pipeline. First, we ob-
serve that store-load and load-load correlations are established
in software and often displayed in the program syntax in the
form of a base register ID plus a displacement value. There-
fore, it is reasonable to use part of the store-load encoding bits
(base register ID displacement) directly to capture such cor-
relations. Second, applications exhibit spatial locality among
memory references. Such locality can also be observed in the
program syntax when nearby loads or stores differ only by a
small displacement value. Therefore, it is beneficial to establish
store-load dependences on a large block granularity to capture
the spatial data reference locality.

The syntax correlation holds when the content of the base
register remains unchanged. This property exists in various
program constructs such as accessing global and local vari-
ables, saving/restoring registers during procedure/function
calls, referencing different records using the same pointer
in linked data structures, accessing array elements in loop
iterations with/without loop unrolling, etc. We also observe that
the base address may stay the same even when the base register
is updated between two memory references. This is due to a
lack of sufficient registers, an uncertainty of future execution
paths, or a traversal through different procedures that requires
a base register to be saved and restored before the next usage.
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Fig. 1. Processor pipeline and dependent stall-free point.

Based on these observations, we propose asymbolic cache
(SC). An SC is a small separate data cache that is accessed at
early front-end stages using certain encoding bits directly from
memory instructions. The speculative data retrieved from the
SC can trigger the execution of dependent instructions to avoid
any delays. Performance evaluations using SimpleScalar tools
and SPEC95/SPEC2000 integer programs show that the average
prediction accuracy reaches over 70% using small SCs. This ac-
curacy is generally higher than other data speculation methods,
especially when hardware resources are limited for constructing
extra caches and tables. The remaining paper is organized as
follows. A few related work on hiding cache latency will be
given in the next section. The motivations and important obser-
vations for the proposed method will be described in Section III.
This is followed by discussions of design and related issues for
establishing the SC in Section IV. In Section V, performance
evaluations of three-data speculation methods are given. Sev-
eral design parameters for the SC are also evaluated. Finally,
Section VI concludes the paper.

II. RELATED WORK

The most aggressive load value speculation is to predict the
value at the onset of pipeline execution. A load-value history
table is established and accessed using the program counter (PC)
of the load. This scheme allows loads bypassing caches com-
pletely to achieve a zero-cycle load. A value prediction can be
successful if the value is repeated from the previous execution of
the load [15], [16], [26], or the load value is followed certain re-
currence patterns [22]. However, the lack of a close correlation
between the instruction address and the value of the load makes
it difficult to achieve a high prediction accuracy [5], [11], [15],
[16], [22], [26].

Another way to circumvent pipeline hazards caused by the
cache latency is to predict the load address at the onset of
pipeline execution so that a cache access can start speculatively
without going through the normal decode, rename, and address
generation stages [2], [6], [9], [10]. Existing address prediction
methods exploit regular patterns such as stride-based address
patterns, and irregular but repeated patterns such as addresses
for traversing link-based data structure. However, the difficulty
remains of predicting a significant portion (over 30% [2]) of
load addresses that do not fall into these two categories. In a
recent proposal, dynamic dependence links were established
between the instruction which updates a register to the instruc-
tion where the register is used as the base register [8]. Once
the updated value is available, the dependent load address can
be calculated early and more accurately. However, the lengthy
cache access is required still, even with a correct address.

Memory renaming techniques establish dynamic dependence
correlations between stores and loads [25]. A separate storage
element called avalue file (VF)is used to save the correlated
data. When a memory-load instruction is fetched, an indirect ac-
cess to the value file based on the PC of the load can retrieve the
data without going through a lengthy cache access. Studies show
that there are many more loads that consume the value from the
same producer than those loads which repeat the same value or
address from the previous instance of the same load. Therefore,
there is a better chance to obtain the correct load value by using
memory renaming through the VF rather than based on the load
value/address locality. This approach, however, requires addi-
tional hardware to establish the correct dependence links among
stores and loads. The load value cannot be accurately predicted
before such a correlation has established dynamically. A similar
idea has been exploited to dynamically establish store-load [19]
and load-load [20]associations. A small synonym filewhich
keeps the correlated data can be indirected accessed by the PC
of the load.

Recently, another early load address resolution technique for
deep-pipelined machines has been proposed [3]. The authors ob-
served that the addresses for certain types of memory loads, such
as stack access, constant, or stride-based memory access, have
regular increment/decrement patterns. By tracking the registers
used for this type of load, register updates can be computed at
the decode stage. As a consequence, the dependent load can start
the address generation and cache access earlier after the load is
decoded. Although nonspeculative, this approach is limited to
memory loads with certain address patterns. Also, the lengthy
cache access is still required.

There have been other attempts to achieve fast cache accesses.
The real cache index bit prediction based on the base register
content enables parallel address translation and cache access
[13]. Due to small offset values, the zero-cycle load technique
[1] uses a simple carry-free adder for fast approximation of the
load address. To avoid speculative address calculations, a spe-
cial compiler-directed register is added in [7] to save the content
of the base register for the next load so that the load address can
be calculated in the decode stage. The SAM cache [17] uses the
base address and the offset separately to access the cache di-
rectly. Although all these techniques achieve fast cache access,
their impact in hiding the long cache latency on deep-pipelined
microarchitectures is rather limited.

The proposed SC has several advantages over existing cache
latency hiding methods. First, the SC can handle any type of
loads, address patterns, or special usages of base registers.
Second, unlike address predictions or register tracking, loads
through the SC can bypass the address generation and cache
access completely to achieve a zero-cycle load. This is similar
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Fig. 2. Example I: source and assembly codes of function copy-disjunct from Parser.

to the value prediction method. However, instead of being based
upon the history of the load values, the SC captures store/load
syntax correlations with higher accuracy. Third, unlike the
memory renaming technique, where the store/load correlation
is established dynamically by the hardware, the store/load
correlation is directly obtained from the instruction encoding
bits to simplify the hardware requirement. In addition, the SC
can capture spatial locality among memory references.

III. SYNTAX CORRELATION OFMEMORY REFERENCES

The foundation of the SC is based on store-load and load-load
correlations from the program syntax in the form of a base reg-
ister ID and a displacement value. This simple memory refer-
ence syntax also exhibits spatial locality. In this section, we will
provide two programming examples and describe qualitatively
the existence of such syntax correlations and reference locality
in real programs. In Fig. 2, the source and the assembly codes
of a simple functioncopy_disjunct from Parserof SPEC2000
are given. This function is invoked many times to build a new
copy of a disjunct list. The second example bsW is extracted
from Bzipof SPEC2000 (Fig. 3). This function is also invoked
multiple times to perform bit-stream I/Os.

The store/load syntax correlation and reference locality can
be observed in several program constructs.

Register Save and Restore in Procedures and Functions: As
shown in Fig. 2, store/load dependences can be established per-
fectly with a matching pair of the base register and dis-
placement for saving and restoring register contents when the
functioncopy_disjunctis invoked. Although the invocations of
xalloc andcopy_connectorsmay change the value of the ,
the original value in thecopy_disjunctis restored after returning
from the function calls.

Access Records in Linked Data Structures: In the same ex-
ample, the pointers (, ) are used to copy and construct a
new node in the target linked structure. Different records (also
pointers in this case) in each node of the old and the new linked
structures are accessed using pointers, . In the assembly
code, the two pointers are loaded in registers, and are
used as the base registers to access these records with small
variations of the displacement value. The syntax correlations
and reference locality among these accesses are clearly demon-
strated in the assembly code.

Access Array Variables: Similar store/load correlations are
also observed in accessing array data structures in several
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Fig. 3. Example II: function bsW from Bzip. (a) Source code. (b) Assembly code. (c) Partial assembly code from caller SendMTFValues.

studied workload. For example, intensive array accesses are
observed in several functions inGcc of SPEC2000. Nearby
references to different elements of the same array with the same
base address provide syntax correlated stores and loads.

Access Global Variables: As shown in Fig. 3, three global
variables,bsBuff, bsLive, andbytesOutare accessed when the
functionbsWis invoked. Due to the limited registers, these vari-
ables are loaded/stored multiple times based on the same global
pointer . The access of global variables exhibits both the
syntax correlation and the spatial locality.

Access Local Variables: In thebsW, the callee-saved registers
and are freed up for local usages to avoid saving param-

eters of n and v from registers and to the local stack and
retrieving them later for computations. However, in functions
that involve more complex computations and/or more tempo-
rary local variables, it is inevitable to increase the local stack ac-
cesses using the stack pointer and/or the frame pointer
that also display strong syntax correlations and spatial locality.

Save/Restore Base Registers: There are evidences that the
syntax correlation is still hold even if the base register has been
updated between two memory accesses. This is due mainly to
the fact that a base register may be freed up for other usages and
the original base address is restored before the next memory ref-
erence. In Fig. 3, we also show a partial assembly code from a
callerSendMTFValuesof thebsW. In this caller, is used as
a base register before calling thebsW. After returning from the
bsW, continues to be used as a base register. Although

has been updated in thebsW, the original base address is re-
stored to keep the syntax correlation alive.

IV. ESTABLISHING A SYMBOLIC CACHE

An SC is a small data cache which is addressed by the en-
coding content of load/store instructions. The SC can be ac-
cessed once loads/stores are fetched out of the instruction cache.
As a result, pipeline stages involving register file access, ad-
dress generation/translation, and cache access can be bypassed.
The impact of pipeline performance using an SC is very sim-
ilar to that of using the VF in memory renaming techniques
[25], where the speculative load data is fetched out of the VF
indirectly through a store/load correlation table. In this paper,
we focus on the accuracy of load data speculation using the
SC. We omit discussions of integrating the SC into a pipeline
microarchitecture.

It is essential to properly extract the symbolic address from
the encoding bits of load/store instructions to capture the syntax
correlations. A typical memory instruction consists of an op-
code, a register source/destination, and a memory source/desti-
nation. Intuitively, we can use the memory source/destination to
form a 32-bit symbolic address as illustrated in Fig. 4. The least
significant 16 bits are extracted from the displacement value,
and the base register ID (5 bits) are inserted next to the displace-
ment. Although simple, this approach suffers aliasing problems
because multiple memory addresses can be mapped to the same
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Fig. 4. Extracting symbolic address from memory instructions.

Fig. 5. (a) Adding procedure color to symbolic address. (b) Index randomization in accessing the SC.

symbolic address. In addition, this simple symbolic address for-
mation creates other access and alignment problems.

• Aliasing of Symbolic Address: With the simple address
mapping in Fig. 4, a 32-bit memory address is represented
by a 21-bit symbolic address. Therefore, multiple memory
addresses can be expressed by the same symbolic address.
An obvious example can be found in stack accesses for
local variables and for saving and restoring registers
during procedure/function calls. Although accessing a
different stack frame in each procedure invocation, the
same stack pointer and frame pointer with a
small range of displacement values are commonly used.
The contents in the SC for local variables and saved
registers are likely overwritten in the callee procedures
and cannot be reused after returning from the procedures.

• Uneven SC Index Distribution: It is well known that dis-
placement values in memory references are unevenly dis-
tributed with a high percentage of “0” and a few other con-
stants. Using a portion of the high-order displacement bits
as the index to the SC may potentially generate heavy con-
flict misses.

• Word/Byte Alignment: The most difficult problem lies in
the difference of the line boundary between a symbolic
and a cache lines. This alignment problem is due to the
fact that offset bits of a cache line are not always the same
between the symbolic and the real addresses. It is essential
to properly align the data layout in the symbolic cache
according to the symbolic address to capture the spatial
locality of memory references.

A. Procedure Coloring and Index Randomization

In order to alleviate the stack access aliasing problem in dif-
ferent procedures, various procedure coloring techniques can be
constructed. A straight-forward technique is to maintain a global
counter calledP-color. The P-color is incremented whenever a
procedure call is encountered. It is decremented after returning
from a procedure. The P-color can be incremented contiguously
in nested or recursive procedures before being decremented.
Stack accesses between a caller and its callees can be differ-
entiated by the P-color to avoid conflicts in the SC.

The P-color can be concatenated with the symbolic address
for stack accesses. The width of the P-color counter is flexible.
Fig. 5(a) illustrates the symbolic address after adding a 6-bit
P-color. It is important to know that the P-color is only applied
to stack accesses which use and as the base register.
Other memory accesses do not add the P-color to allow sharing
of global variables among different procedures or functions.

An uneven distribution of the index bits extracted directly
from the displacement value has a potential to create heavy con-
flict misses in the SC. This problem comes from the fact that
high-order displacement bits are often all zeros and can be dealt
with by a simple randomization technique. Instead of extracting
index bits from the symbolic address directly, randomized index
bits can be formed byexclusive-ORingthe original index bits
from the displacement with the bits from the base register ID
and the P-color as illustrated in Fig. 5(b). In this example, it is
assumed that the SC has 64 sets with 64-B line size. The six
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Fig. 6. Data alignment in symbolic cache.

index bits are obtained byexclusive-ORingnormal index bits in
position 6 to 11 with the base register ID and partial P-color bits
starting at position 16–21.

B. Word/Byte Alignment

One remaining issue is the data alignment between the SC and
the data cache. The symbolic address within a cache line, i.e.
the last few offset bits, may not be the same as the offset bits in
the real address. In order to exploit spatial reference locality,
the cache line fetched from needs to be rearranged in the
SC such that the data layout can be aligned with the symbolic
address. The basic alignment algorithm works as follows. When
a memory request misses the SC, the target cache line is fetched
from the memory hierarchy and loaded into the SC. The target
byte/word is placed in the SC according to offset bits of the
symbolic address. For example, assume there are eight access
units in a cache line as shown in Fig. 6. The symbolic offset of
the target unit is 010 while the offset of the real address is 101.
In this case, the target data 101 is loaded into unit 010 in the SC.
The remaining units are loaded according to the location of the
target unit. There are thus two important aspects to consider for
a proper data alignment.

1) Granularity of Data Alignment: Depending on memory
access granularity, it is conceivable that the data align-
ment can be performed at byte, half-word, word, or
double-word level. The byte-level alignment can ac-
commodate accesses by other granularity with the
expense of maintaining more valid bits for the alignment
information.

2) Handling Underflow/Overflow Data: Since the line
boundaries of the SC and the caches may be different,
only a partial line can be filled on each SC miss. In
addition, there is excessive data from the targetcache
line that cannot fit into the requested line location in the
SC. The simplest and most natural solution is to only fill
a partial SC line and drop the unfitted data. Other options
include fetching two adjacent lines for each requested
SC line, and/or to search and place the overflowdata
into the correct second SC line.

Performance evaluation on these design options will be given
in the next section. It is important to keep the SC design simple
since the primary goal of establishing the SC is to provide a
zero-cycle load.

V. PERFORMANCEEVALUATION

Performance evaluations of three load value speculation
methods are given including the last value and stride-based
value prediction (VP), the memory renaming (MR), and the
proposed symbolic cache (SC). Our primary focus is to com-
pare the prediction accuracy among these three mechanisms.
All simulations are carried out on theSim-Savemodel of Sim-
pleScalar. Twelve integer programs,Go, Li, M88k, Perlfrom
SPEC95 andBzip, Gcc, Gzip, Mcf, Parser, Twolf, Vortex, Vpr
from SPEC2000 are used. Version 2.7.2.3 ssbig-na-sstrix-gcc
compiler with options: (-funroll-loops -O2) is used to generate
the binary code. For each workload, we skip the first 900
million instructions, use the next 100 million instructions to
warm up the caches and tables, then collect simulation statistics
from the next 500 million instructions.

A. Data Alignment

We first investigate and evaluate different alignment granu-
larity. Table I shows matches of the least-significant two bits
between the symbolic and the real addresses with different
memory access granularity in the simulated programs. On the
average, 87.4%, 3.2%, and 9.4% of memory references are
accessing word, half-word, and byte respectively. Mismatches
of the two bits for the three access granularities are about 0%,
0.5%, and 4.5%. The word access is always aligned at the word
boundary for both the real and the symbolic addresses. On the
other hand, the word alignment creates 5% of mismatches for
half-word and byte accesses. Since the word alignment reduces
extra valid bits significantly, we will simulate both byte and
word alignments and show their impact on the SC accuracy.

With regards to the line fill on SC misses, preliminary studies
show that the option of filling the entire SC line by fetching
potentially more than one cache lines provides very limited
benefit. Moreover, to place the entire targetline into the SC
on each miss does not benefit the accuracy much either. There-
fore, only the simple partial SC line fill by dropping any unfitted
data is considered in subsequent evaluations.

B. Sensitivity of P-Color and Index Randomization

Table II shows the accuracy of load-value speculation using
a 4 KB SC with the word-alignment and 0, 2, 4, P-color bits.
In general, we observe an average improvement from 68.8% to
70.4% by adding a 2-bit P-color. A few benchmark programs
show no improvement at all with the simple P-color mechanism.
After examining dynamic function calls in these programs, we
found that there are very few nested calls and the program ex-
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TABLE I
MATCHING OF THETWO LEAST-SIGNIFICANT ADDRESSBITS BETWEENREAL AND SYMBOLIC ADDRESSES FORACCESSINGWORD, HALF-WORD, AND BYTE

TABLE II
LOAD ACCURACY USING THE SC WITH/WITHOUT THE P-COLOR

TABLE III
LOAD ACCURACY USING THE SC WITH INDEX RANDOMIZATION

ecution tends not to frequently traverse back and forth among
multiple procedure levels. For instance, in Gzip, about 98% of
the calls are labeled at level 6. We also observe that there is
no benefit in increasing the number of bits in the P-color. With
more P-colors, more levels of procedure invocation can be dif-
ferentiated. However, analysis of application programs reveals
that perfectly-nested or deeply-recursive procedures that benefit
with more P-colors rarely exist. The actual execution path nor-
mally traverses among a few levels of procedures. Also, due to
a small SC, the data from ancient ancestors is difficult to hold
anyway.

The benefit of index randomization is more evident in
Table III, in which the accuracies of three 4 KB SC config-
urations are displayed. By randomizing the index, a 4-way
set-associative SC can achieve the accuracy approaching to
that of a fully-associative SC. On the other hand, without this
process, it degrades the accuracy of the 4-way design from
70.4% to 64.9%.

These results suggest that the effective working set between
base register updates is very small. Once the content of a base
register changes, the old data in SC based on the same base reg-
ister becomes stale. Because the original index bits are likely
to be all zeros (Fig. 5), stores and loads using the same base
register may locate in very few sets even with index randomiza-
tions. Given the fact that the randomized 4-way SC achieves an
accuracy comparable to that of a fully-associative SC, the four
lines in each set are enough to hold the working set for each

base register ID. Although higher set associativities increase the
capacity in each set to hold more lines for each base register,
frequent updates of base registers wipe out the corresponding
correlated data in the SC.

C. Comparison of Three-Data Speculation Methods

The accuracies of three load value speculation mechanisms
are evaluated. Both byte and word alignments for placing a line
in the SC are considered. Also, index randomizations and a 2-bit
P-color are applied to improve the load accuracy. For a fair com-
parison, we simulate the three methods using comparable hard-
ware with respect to the extra storage requirement to build ad-
ditional tables and caches.

The VP scheme establishes a value history table to remember
the recent value of each load. For matching the PC of a load,
proper tags are maintained in the value history table. In ad-
dition, an increment value is needed in each entry to accom-
modate a stride-based predictor. The MR scheme uses a VF to
keep store/load correlated values for later accesses. In addition,
two extra tables are needed. The store/load cache (SLC) saves
pointers to the VF. The SLC is addressed by the PCs of loads
and stores with tags for matching the correct PC for indirect ac-
cesses to the VF. The store-address cache (SAC) also records
pointers to the VF. The SAC is accessed by load/store addresses
for establishing load/store correlations. Again, address tags are
necessary to make a correct correlation. The SC is simply a data
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TABLE IV
SIX CONFIGURATIONS FORACCURACY COMPARISONS

Fig. 7. Average accuracies of three-data speculation methods.

cache addressed by the symbolic address. There is no extra hard-
ware except for a small tag array in which each tag along with
a few valid bits is associated with a 64-B symbolic cache line.

We consider six configurations for accuracy comparisons as
shown in Table IV. The hardware requirement is represented by
the total number of entries in the respective tables and caches.
Because of the additional tag arrays, the storage requirement for
the VP and the MR are actually about 40%–50% and 10%–15%
more than that of the SC in each configuration. Note that in this
first-cut estimation, extra control logic is not considered.

Fig. 7 plots the average accuracy curves based on the twelve
integer programs for the three-data speculation methods. Gen-
erally speaking, the SC has the highest accuracy, especially with
small configurations. For example, more than 70% of the loads
can obtained correct values from a small 4 KB SC. These results
demonstrate the existence of store/load syntax correlations and
spatial locality that can be captured effectively by small SCs.
The MR scheme, on the other hand, requires eight times of the
hardware storage to reach about 67% accuracy. The MR scheme
performs poorly with small configurations primarily because of
misses to the small SLC/SAC for establishing correct store/load
correlations. In addition, the correlation must be established be-
fore a correct value can be obtained. The MR scheme shows
more improvement when the configuration size increases. With
bigger SLC/SAC, data dependence links can be built more pre-
cisely than those approximated by the symbolic address. How-
ever, the SC still maintains an edge by capturing the spatial lo-
cality. The last/stride value predictor generally has the worst ac-

curacy. The accuracy improvement is leveling off with larger
value history tables. This confirms a poor correlation between
the load value and its instruction address.

The byte alignment does not improve the accuracy much. For
a 4 KB SC, for instance, the byte alignment improves the av-
erage accuracy of the word alignment from 70.4%–71.1%. As
shown in Table I, there is very little or no difference between
byte or word alignment for a majority of the programs. The two
programs that benefit the byte alignment the most areBzipand
Gzipbecause of their high percentage of subword accesses and
mismatches of the least-significant 2 bits between real and sym-
bolic addresses.

The SC size plays a minor role in providing accurate load
values. Again, this is due to the fact that the working set between
base register updates is very small. Since the randomized SC
index is still mapped to very few sets for each base register,
increasing the SC size (i.e. the number of sets) does not improve
the capacity for loads using a specific base register.

Now considering the third configuration with a 4 KB SC, the
average prediction accuracies are 55.0%, 56.6%, 70.4%, and
71.1% for the VP, the MR, and the SC with word alignment
(SC-word) and the SC with byte alignment (SC-byte), respec-
tively, as shown in Fig. 8. Among the twelve integer programs,
M88k, Perl, andGccshow very good syntax correlations with
over 80% of prediction accuracies, whileLi, Gzip, Twolf, Vortex,
andVpr show reasonable accuracies over 70%.Go, Bzip, Mcf,
andParser, on the other hand, have poor accuracy, especially
for Go with an accuracy only about 47%. Recall that in order
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Fig. 8. Accuracy of three-data speculation methods for individual programs (based on configuration 3).

Fig. 9. Correct/incorrect load value speculations with respect to different base register groups.

to hold the syntax correlation, the base register content must re-
main unchanged between two correlative memory instructions.
We found out inGo, about 64% of the loads are executed using
a newly updated base register. On the other hand, only 22% and
24%, respectively, for the loads inGccandM88kare executed
right after their base registers have updated. More detailed anal-
ysis with respect to the base register updates will be given in the
next Section V-D.

The SC scheme does not perform well against the other two
schemes underBzipandParser. In Bzip, a main functionfullGtU
that finds matches of character strings, has shown good value lo-
cality and good dynamic store/load correlations established by
the MR scheme. However, the SC handles this function poorly
because the base addresses of the matching strings are calcu-
lated right before loading characters from the two strings. A
similar behavior has also found inParser.

In Fig. 9, we break down correct and incorrect load value
speculations using the SC with respect to the base register IDs.
We separate base registers into five groups:, , ,

and , each represents 20.5%, 26.4%, 11.3%, 18.2%,
and 22.5% of the total loads, respectively. (Note there is about
1% of the loads using other registers.) The accuracies of the five
base register groups are 29%, 73%, 63%, 98%, and 94%. As ex-
pected, it is highly accurate to access global variables and local
stack frames. For other loads, the compiler first picksand

as temporary registers to hold base addresses for memory
accesses. The base address is often computed or loaded from
memory for an indirect access right before the load that results
in an incorrect values from the SC. Theregisters, which show
higher accuracy, are also used for passing parameters to callee
functions. We observe that many functions have memory ad-
dresses (pointers) as parameters that are passing through the
registers. In each callee function, theregisters are frequently
used as a base without any modification. We also found in Gcc
that certain memory addresses are passing through several func-
tion levels using the registers. Thus, memory loads based on

can potentially keep the correlations alive through several
function levels.
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Fig. 10. Load accuracy and distribution with respect to the distance to the last base register update.

D. Accuracy Regarding Base Register Update

The syntax correlation holds when the content of the base reg-
ister remains unchanged from the last memory reference with
the same symbolic address. Fig. 10 shows the average accuracy
of all the loads with respect to the distance to the last update of
the base register. For example, the distance is equal to 1 for a
load when the base register of the load is used for the first time
as a base register after an update to the register. Similarly, the
distance is equal to 2 if a register is used for the second time
as a base register for either load or store after the content of the
register has updated. The distances of 20 or longer are repre-
sented by a single data point. In general, the accuracy goes up
with the distance due to the locality of references. A cold miss
is encountered when the distance is equal to 1 unless the latest
update did not change the content of the base register from the
previous use of the same base register.

A few observations can be made from the figure. First, when
the distance is 3 or longer, the speculative load data from the
SC is very accurate with an average accuracy about 98%. This
indicates a very strong reference locality based on the symbolic
addresses of nearby stores and loads.

Second, instead of all cold misses, the average accuracy is
36% when the distance is equal to 1. This accuracy comes from
restoring base register content before the load. Unfortunately, a
significant portion (39%) of the loads use a base register at the
first time after its updates. With only 36% of accuracy, these
loads produce 25% inaccurate data with respect to the total
loads. Therefore, the distance-1 loads are the major factor for
the overall accuracy. For example, in the two high-accuracy
programs,Gcc and M88k, only 22% and 24% of loads are
distance-1 with an accuracy of 46% and 68%, respectively. On
the other hand,Gohas 64% of loads are distance-1 with a poor
accuracy of 18%.

Third, about 24% of the loads have distances of 20 or longer.
This long distance comes mainly from access global variables,

also from some local variable accesses. An average accuracy of
98.4% is obtained for these long-distance loads.

Compiler optimization techniques may be applied to improve
the syntax correlations of stores/loads. For example, we observe
that parameters are sometimes passed to the callee through the
caller’s stack frame. Accessing the parameters before an update
of the frame pointer may keep the correlation alive. Further dis-
cussions in this direction is out of the scope of this paper.

VI. CONCLUSION

A new load data-speculation method, based on instruction
syntax correlations of stores and loads, has been introduced in
this paper. Instead of establishing the store/load correlation dy-
namically at runtime, the proposed method establishes a small
symbolic cache to capture existing syntax correlations and
memory reference locality. The symbolic cache is addressed
by the encoding content of store/load instructions to enable
data accesses in the front end of the processor pipeline to
shorten load-to-use latency. Performance evaluation of SPEC
integer programs has demonstrated that the proposed method
can achieve an accuracy over 70% with a small 4-kB symbolic
cache. With compiler helps to reduce base register updates and
to better utilize displacement values, further improvement of
the SC accuracy may still be possible.
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