
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018 75

qSwitch: Dynamical Off-Chip Bandwidth
Allocation Between Local and Remote Accesses

Shaoming Chen, Lu Peng, Samuel Irving, Zhou Zhao, Weihua Zhang,
and Ashok Srivastava, Life Senior Member, IEEE

Abstract—Multisocket computer systems are popular in
workstations and servers. However, they suffer from the relatively
low bandwidth of intersocket communication especially for mas-
sive parallel workloads that generate many intersocket requests
for synchronizations and remote memory accesses. Intersocket
traffic puts pressure on the underlying network connecting all
processors with a limited bandwidth confined by pin resources.
Given this constraint, we propose to dynamically increase the
intersocket bandwidth by sacrificing off-chip memory band-
width when systems have heavy intersocket communication but
few off-chip memory accesses. Our design increases the physi-
cal bandwidth for intersocket communication via switching the
function of pins from off-chip memory accesses to intersocket
communication and can achieve an average performance speedup
of 1.28 in geocentric mean for selected parallel multithreaded
benchmarks.

Index Terms—Intersocket traffic, multicore system.

I. INTRODUCTION

MULTISOCKET systems are widely used to boost the
throughput of massive parallel workloads that generate

intensive local traffic, between processors and off-chip mem-
ory devices such as DRAM, and remote traffic for intersocket
communication (we denote local accesses as communications
between a processor and memory; remote accesses as inter-
socket communications. Off-chip bandwidth is used for both
types of accesses). The limited local bandwidth of main mem-
ory bounds the performance of parallel workloads, since it can
cause the serialization of parallel memory requests and offset
the benefit of memory level parallelism, especially consider-
ing the ever-increasing memory footprint of workloads and the
number of cores per die. Many architects address this problem
by boosting the system throughput via advanced algorithms for

Manuscript received August 22, 2016; revised January 4, 2017 and
March 14, 2017; accepted April 20, 2017. Date of publication May 17, 2017;
date of current version December 20, 2017. This work was supported by
the U.S. National Science Foundation under Grant CCF-1017961, Grant
CCF-1422408, and Grant CNS-1527318. This paper was recommended by
Associate Editor X. Li. (Corresponding authors: Lu Peng; Weihua Zhang.)

S. Chen, L. Peng, S. Irving, Z. Zhao, and A. Srivastava are with the Division
of Electrical and Computer Engineering, School of Electrical Engineering and
Computer Science, Louisiana State University, Baton Rouge, LA 70803 USA
(e-mail: schen26@lsu.edu; lpeng@lsu.edu; sirvin1@lsu.edu; eesriv@lsu.edu).

W. Zhang is with the Software School, Fudan University, Shanghai 201203,
China (e-mail: zhangweihua@fudan.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2705154

off-chip memory requests [11], increasing the physical mem-
ory bandwidth at the cost of lowering core frequency [6], or
reducing traffic via using a stacked DRAM, which has higher
bandwidth than off-chip memory devices and a larger size than
an SRAM-based cache [9]. These solutions relieve the mem-
ory bandwidth bottleneck, causing intersocket bandwidth to
emerge as a new performance bottleneck for workloads with
intensive intersocket communication.

Remote bandwidth bounds the performance of workloads
that frequently fetch data from the cache of other processors
or remotely from main memory. Inadequate remote bandwidth
serializes memory requests and limits the benefits of memory
level parallelism. The bottleneck of intersocket communica-
tions, like QuickPath Interconnect (QPI) [2], is hidden when
remote main memory access is constrained by off-chip band-
width, but is now revealed by the volume of requests directly to
the DRAM cache that do not use off chip bandwidth. The QPI
bandwidth becomes a greater concern than off chip bandwidth
when data is more likely to be fetched from stacked DRAM,
which has superior bandwidth compared to the remote band-
width. This bottleneck is shown in Fig. 1 that breaks down
the latencies of un-core requests in several-selected bench-
marks on simulated platform. The un-core requests hit on
local DRAM cache, local main memory, remote cache, remote
DRAM cache, or remote main memory.

The qSwitch, which dynamically allocates off-chip band-
width between local and remote accesses, is proposed to
relieve the bottleneck constraining remote accesses. The total
number of pins is a scarce resource [25] that power deliv-
ery networks and I/O compete for. Additionally, increasing
the total number of signal pins is prohibitive since rout-
ing traces beneath processors is becoming very difficult.
The qSwitch dynamically shifts a portion of local off-chip
bandwidth, used for accessing main memory, into remote
intersocket communication bandwidth when detecting a low
number of local access activities without increasing the
total number of signal pins. qSwitch improves the per-
formance of workloads suffering from limited intersocket
bandwidth, based on a vertical design from the circuit to
architecture level. We list the following contributions of
this paper.

1) We identify the latency of intersocket communication as
the major bottleneck for massive parallel workloads that
intensively share data across sockets.

2) We propose qSwitch for improving the performance of
workloads on a multisocket system in which switching

0278-0070 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:schen26@lsu.edu
mailto:lpeng@lsu.edu
mailto:sirvin1@lsu.edu
mailto:eesriv@lsu.edu
mailto:zhangweihua@fudan.edu.cn
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


76 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

Fig. 1. Latency breakdown of un-core requests in the simulated system with two sockets.

agents turn on/off memory channels, QPI buses, and off-
chip bus connections.

3) We evaluate the performance of qSwitch with the
selected multithread workloads. We also investigate the
runtime overhead and signal integrity for qSwitch.

II. RELATED WORK

Many works are proposed such as increasing the throughput
of main memory and the bandwidth of intersocket commu-
nication, since the long latencies of off-chip accesses has
been identified as one of the bottlenecks for massive parallel
workloads.

Researchers try to boost the throughput of main memory by
modifying memory devices, the memory channels, and pro-
cessors. For DRAM devices, row buffer misses reduce the
utilization of the bandwidth since the program will incur a con-
siderable overhead for turning on/off a row. The row buffer is
proposed to break the inside of a bank into multiple subar-
rays, and thereby, reduce the row buffer miss rate, and have
a lower overhead for switching the subarray instead of a whole
row [12]. An asymmetric DRAM bank organization is pro-
posed to improve the system performance via using larger rows
for system throughput and smaller rows for lower overheads
for turning on/off a row [21].

Several works improve the performance of main memory
at the rank level. A conventional rank is broke down into
mini-ranks that have a shorter data width, and can be oper-
ated individually for higher memory system throughput [26].
Increasing the bus frequency is proposed to improve the
performance of memory channels via buffering data and
commands in the DIMMs [1]. Splitting the data bus into
several small buses is also proposed to boost the through-
put of memory channels since each small data bus can work
independently [23]. Dynamically increasing the bandwidth of
the main memory is proposed but it has considerable parasitic
capacity from power switches [6]. Our design only switches
signal pins and does not have this issue.

From the processor side, methods are proposed to improve
the performance via scheduling off-chip requests and using
DRAM cache. A memory scheduler is proposed to boost sys-
tem performance based on reinforcement learning that can
understand program behaviors [8]. Another memory scheduler
is designed to boost multithreaded performance by providing
fair off-chip accesses for each thread [16], [17]. DRAM cache
is proposed to reduce the number of off-chip accesses since
it has superior bandwidth than main memory and larger size

than SRAM-based cache [19]. Lowering the off-chip traffic
and reducing the tag lookup latency further improve the per-
formance of DRAM cache [9]. The works reduce the off-chip
traffic between processors and main memory but do not affect
the intersocket traffic.

Silicon photonics have been studied for a long time as
a promising technology to replace the electrical off-chip
buses and provide superior bandwidth with very low energy
consumption [3]. It can boost the bandwidth of main mem-
ory while requires rearchitecting DRAM memory systems,
and increase the bandwidth of interconnect [13]. A photon-
ics interconnect has been developed [22] but is not widely
used due to manufacturing costs and reliability issues [20].
The electrical chip-to-chip cost is 0.25$/Gbit, while the cur-
rent parallel optic transceiver manufacturers state that perhaps
$4/Gbit is achievable today. The reliability of silicon photon-
ics interconnects is unclear since the integration of photonic
emitters and receivers into the IC may cause some reliability
issues. Our design is a cost-effective and reliable solution for
intersocket traffic since it is based on conventional electrical
interconnects.

III. DESIGN OVERVIEW

We introduce two modes for a multisocket system: 1) the
single-link mode in which the system has default bandwidth of
off-chip memory and bandwidth of intersocket communication
and 2) the multilink mode in which the system has multiplied
bandwidth of intersocket communication at the cost of lower
off-chip memory bandwidth. The two modes are shown in
Fig. 2 as an example in which the system has two processors
connected via a QPI bus with 20 lanes and the each proces-
sor has four memory channels. This example represents the
typical case used in the following discussion easily extended
for different system configurations. In this instance, the mul-
tilink mode multiplies the bandwidth of QPI by a factor of
3 and loses two memory channels since the number of pins
for a memory channels is more than the number of pins for
a QPI bus. This calculation is based on the fact that a memory
channel requires 125 pins from a processor to access mem-
ory devices [1], while a QPI bus only demands 84 pins from
processors [2].

This design needs a hardware unit to orchestrate mode
switching by quickly detecting phases of intensive intersocket
communication, as intensive phases may be sudden and short.
The design introduces a switching agent for each socket to
coordinate the increasing of intersocket communication and



CHEN et al.: qSWITCH: DYNAMICAL OFF-CHIP BANDWIDTH ALLOCATION BETWEEN LOCAL AND REMOTE ACCESSES 77

Fig. 2. Simulated system running in single-link and multilink modes.

the decreasing of off-chip memory bandwidth. This agent
switches the function of switchable pins between accessing
off-chip memory to communicating between sockets via sig-
nal switches sitting on the die and the motherboard. DRAM
controllers are also manipulated so that they adapt to the less
off-chip bandwidth and the QPI to utilize the extra band-
width of intersocket communication. The switching agents
from all processors have to reach an agreement that the
system can increase its throughput via a switch, not just
a subset of processors. With a bottom-up approach, we dis-
cuss the mechanism of switching off-chip bus connection
as well as auxiliary circuits in Section III-A; the modifica-
tions of the DRAM controller and the QPI physical layer
are addressed in Sections III-B and III-C; and the switch-
ing agents and the switching conditions are described in
Sections III-D and III-E.

A. Off-Chip Connection

The modified off-chip connection is shown in Fig. 3 along
with an auxiliary circuit called the “signal switch.” We only
show the related off-chip bus connection for a processor with
a pair of QPI data lanes, since the simulated system is homoge-
nous and the off-chip memory buses per socket are identical
to each other.

In multilink mode, auxiliary circuits convert memory buses
into additional QPI buses; processors can still read and write
data from memory devices using the remaining memory buses.
Disconnected memory devices connect to other memory buses
as an extra rank in multilink mode, while they maintain
dedicated buses in single-link mode. This design maintains
the accessibility of data stored in memory devices though it
requires extra circuits on the motherboard.

A signal switch is used to configure a pin for accessing off-
chip memory devices or for intersocket communication, or
to attach two memory channels to one another for increased
data accessibility. The signal switch is a classic switch con-
sisting of an n-type metal-oxide semiconductor (nMOS) and
a p-type metal-oxide semiconductor (pMOS) each having

a relatively low parasitic capacitance and propagation delay.
This switch is ideal for high-speed signals that are sensitive
to parasitic capacitance and signal delay.

With signal switches, we can increase the bandwidth of
intersocket communication via switching the system from
the single-link mode to the multilink mode. In single-link
mode, pairs of signal switches (1) on the die connect pins to
the memory controllers, and to a dedicated memory channel
via pairs of signal switches (2) on the motherboard. The sig-
nal switches (3) detach the memory channel from another one
and the system has four memory channels. The processor can
write/read data from memory devices via the memory chan-
nels by turning on the signal switches in the corresponding
direction. In multilink mode, the signal switches (1) and (2)
connect the pins to the QPI buses instead of the memory chan-
nels, while the signal switches (3) attach the memory channel
to another one and the system has two memory channels. The
processor can access the memory devices via the two memory
channels by turning on the signal switches (3) in the corre-
sponding direction. The location of switches (2) and (3) on
the motherboards are also vital to the signal integrity. The
switches (2) should be placed close to the processors to reduce
the signal reflection between the switches (1) and (2), while
the switches (3) should be placed close to the DRAM devices
for the same reason.

B. Memory Controllers

We modify the memory controllers to dynamically change
the number of memory channels when the system switches
between the single-link and multilink modes shown in Fig. 4.
We turn on two memory controllers when the system switches
from multilink mode to single-link mode and turn them off
when switching back. The other two memory controllers han-
dle all memory requests in single-link mode. Given a fixed
address in mapping policy, this incurs a negligible area over-
head to dispatch memory requests to the corresponding mem-
ory channels, and few extra pins to select the memory channel
in single-link mode. The main challenge is that all memory



78 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

Fig. 3. Off-chip bus connection in single-link and multilink modes.

Fig. 4. Memory controller running in single-link and multilink modes.

requests have to be committed in memory controllers to switch
the system between modes instead of migrating requests cross
memory controllers. This overhead is discussed in the runtime
overhead section.

The length of write and read request queues is halved when
the system switches into multibus mode. This can potentially
reduce the off-chip bandwidth for main memory. The slow-
down is minimal due to low main memory access traffic in
multibus mode. Additionally, we do consider the slowdown in
our simulation.

Consolidating many memory channels could lead a channel
to have too many ranks that exceed the standard, which may
hurt the scalability of the design. The high speed of memory
buses limits the maximal number of ranks in a memory chan-
nel. This constraint can be relaxed by lowering the frequency
of the memory bus in multibus mode. This overhead could
be negligible because traffic between the processors and main
memory is low in multibus mode.

C. QPI Stack

QPI is a point-to-point processor interconnect with five
layers including the physical layer, link layer, routing layer,
transport layer, and protocol layer [2]. Each layer works inde-
pendently from the other layers and we only discuss the
physical and link layers that relate to our modification. We
add the extra physical layers (PHY) that are fully connected
with virtual networks in link layers to support more than

Fig. 5. Physical layers of QPI running in single-link and multilink modes.

one QPI bus shown in Fig. 5. The PHYs are powered off
in the single-link mode, while they in the multilink mode
can receive packages from other processors or send pack-
ages waiting in the buffers of virtual networks. The PHYs
are buffer-less and thereby can be quickly turned on/off since
the link layers control the traffic via credit/debit flow con-
trol. We employ switching agents to guarantee that there is
no dropping package during the transitions between the mul-
tilink mode and the single-link mode. The switching agents
enforce the PHYs can only send packages after the PHYs in
the receiver side can accept the packages, when the system
switches to the multilink mode. The switching agents also
enforce the senders of the PHYs are turned off before the cor-
responding receivers of PHY are disabled, when the system
switch to the single-link mode.



CHEN et al.: qSWITCH: DYNAMICAL OFF-CHIP BANDWIDTH ALLOCATION BETWEEN LOCAL AND REMOTE ACCESSES 79

D. Switch Agents

To switch between the single-link mode and the multilink
mode, we employ a switching agent inside each processor
to coordinate the transitions in the two processors. One of
the switching agents is preselected as the launcher, while all
other switching agents are called as assistants. The launcher
makes a switching decision and initializes the transition, then
all assistants help processors complete the transition smoothly.
All switching agents analyze the traffic of local off-chip
memory access and that of intersocket communication via col-
lecting hardware counters from the local memory controllers
and the QPI controller, which consists of a sender and a
receiver.

Based on this information, the switching agents take the fol-
lowing steps for a transition once they detect a phase in which
the performance can be improved by switching the system to
multilink mode.

1) The launcher detects the current phase and sends switch-
ing inquiries to other switching agents called assistants
via the QPI buses. An assistant denies the switch-
ing inquiry by sending a disapproving response to
the launcher if it does not detect this phase locally.
Otherwise, the assistant accepts the inquiry by sending
back an acknowledging response.

2) If the launcher receives a disapproving response, it
immediately aborts this transition. Otherwise after it
receives all acknowledging response, it turns off the two
memory controllers, switches the off-chip connections,
and turns on all the extra QPI receivers, while it initial-
izes a transition by sending switching requests to all the
assistants that also do the same thing locally once they
receive the request.

3) After the switching completes, each switching agent
sends responses to its neighboring switching agents.

4) After receiving a response from a neighbor, the switch-
ing agent turns on the QPI sender connecting to the
neighbor. After all the extra QPI buses are connected,
the transition concludes.

For switching the system to single-link mode, the switching
agents take similar steps for the transition.

1) The launcher detects the phase and sends switching
inquiries to other switching assistants via the QPI buses.
The launcher will abort the transition if any switch-
ing assistants send back a disapproving response to the
launcher.

2) After receiving acknowledging responses from all assis-
tants, the launcher disables the extra QPI senders of
all neighbors, while it sends switching requests to all
assistants that take the same action. Each switching
agent sends responses to its neighbors after the action
is completed.

3) Once having received the response, a switching agent
disables the corresponding QPI receivers. After it has
received the responses from all neighbors, it switches
the off-chip bus connection and then turns on the two
memory controllers.

4) After every switching agent has taken this action, the
transition completes.

Any switching agent can be selected as the launcher during
system initialization. We ignore the overhead for leader elec-
tion, since the election is only held once when all processors
are powered on. Note that it is possible to switch a subset of
processors into multilink mode while keeping others in single-
link mode. A hybrid approach is not considered in this paper
for to two reasons: most threads in workloads show simi-
lar phases and thereby most processors are likely to benefit
from the same mode thus the benefit of a partial transition is
minimal compared to that of a full transition.

Ideally, we can change the mode for each processor and
its local memories individually. However, the additional ben-
efit of switching processors individually is marginal since all
processors stay in the identical mode. Most multithreaded
workloads exhibit homogenous pattern of memory accesses,
which means that the performance of all threads are bounded
by local off-chip bandwidth or QPI bandwidth.

If multiprograms with same type of workloads such as mem-
ory intensive workloads or intersocket intensive workloads
run together, they will tend to stay in the same mode. When
they are different kind of workloads, switching to either mode
improves the performance of some workloads but hurts the
performance of other workloads due to less memory to pro-
cessor bandwidth. So the key question becomes whether the
performance improvement is worth at a cost of the slowdown
of other workloads. The values of the performance improve-
ment and the slowdown can be measured via switching the
system into the opposite mode for a short interval. So whether
the systems should switch to another mode depends on how
to compare the two values based on the predefined fairness
policy.

When the system has more than two processors, the system
can pick up any two processors and increase the intersocket
bandwidth for them, and then pick up another pair of pro-
cessors after a certain duration. Utilizing the switches in this
way is a simple and feasible solution to apply our design to
a system with more than two processors.

E. Switching Condition

We use 0.1 ms as the minimum interval for a mode switch.
The launcher will collect the number of un-core requests hit-
ting locally and the number of un-core request hitting remotely.
At the end of an interval, the launcher will initialize a switch
from single-link mode to multilink mode if it observes that
remote traffic is heavier than local traffic; or a switch from
multi to single-link mode if it observes that local traffic is
more intensive than remote traffic. The local traffic is gauged
by consumed bandwidth and remote traffic is measured by
outgoing bandwidth. The condition for switching the system
into multilink mode is

(NQinbound + NQoutbound) ∗ SQ > (NMread + NMwrite) ∗ SM

where NQinbound and NQoutbound denote the numbers of QPI
inbound and outbound packets, respectively, while SQ denotes
the average packet size. NMread and NMwrite denote the num-
bers of reads and writes for local memory, respectively, and
SM denotes the average size of memory requests.



80 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

When the condition is not satisfied, the system should
switch back to the single-link mode.

To evaluate the performance of this dynamic switching, we
introduce the baseline as a system that has no additional cir-
cuit and a configuration of the single-link mode. The baseline
has an identical performance as the system that always stay
in single-link mode. We also have static switching in which
the system is permanently “switched” to multilink mode;
and dynamic switching in which the system can dynamically
switch between single-link and multilink mode.

F. Area Overhead & Propagation Delay

The area overheads of the design comes from the signal
switches on the die, the modifications of QPI and the switch-
ing agent. The area of signal switches, consisting of a pair of
large nMOS and pMOS, is negligible since the area of a sig-
nal switches is less than the area of 4000 transistors based on
45 nm technology. The extra QPI physical layers are buffer-
less and incur trivial area overhead. The switch agent for each
processor also incurs a negligible area overhead since it uses
a straightforward rule and only a few steps to coordinate the
switches cross-processors, which are easy to implement in
hardware.

The propagation delay caused by signal switches depends on
the resistance and capacity of the load. We measure the prop-
agation delays of the five cases shown in Fig. 6 by comparing
the propagation delays with signal switches to the delays with-
out them based on 45 nm technology using mentor graphic
tools [15]. The longest propagation delays of the QPI bus and
memory bus are 0.13 and 0.12 ns, respectively. The delay can
be further reduced using better technology.

G. Runtime Overhead

We break down the runtime overhead of the transitions
between the two modes into two parts: 1) the runtime over-
head of turning on/off memory buses and 2) the runtime
overhead of turning on/off QPI buses. The former mainly
comes from restabilizing the signals on the memory buses
and turning on/off the memory controllers. During the transi-
tions, the memory devices are inaccessible and the processors
do not send requests. We estimate this overhead mainly
based on the runtime overhead of scaling DRAM frequency
that is 512 memory cycles and 28 ns [7]. The overhead
is estimated to be 0.67 µs given the 800 MHz memory
frequency.

Additionally, we commit all the memory requests in the
queue before turning off/on a memory channel. Given the
read and write request queues in a memory channel have
32 total entries and each request takes 40 ns, the runtime
overhead of turning on/off a memory channel can be esti-
mated to be at most 1.28 µs which is still affordable. The
total overhead of turning off/on memory buses is bounded
by 1.95 µs.

The overhead of turning on/off QPI buses comes from resta-
bilizing the signals on the QPI buses and turning on/off the
QPI PHYs. Note that processors are not halted but cannot use
the extra bandwidth of QPI buses during the transitions when

Fig. 6. SPICE models for QPI buses and memory buses in single-link and
multilink modes.

the systems are switching to multilink mode. We conserva-
tively estimate that switching QPI buses takes the same amount
of time as switching memory buses. So the total runtime
overhead is estimated to be 3.23 µs.

H. Signal Integrity

We setup up SPICE models in the two modes shown in
Fig. 6, and test the signal integrity with Mentor Graphic
tools [15] to prove that our design maintains signal integrity
for the data path signals on memory buses and the data lane
signals on the QPI bus. Memory bus signals are bidirectional
with an 800 MHz frequency while the data lane on the QPI
bus runs at a 2.4 GHz frequency.

For multilink mode, we show the eye diagram for the signal
of a data lane on a QPI bus in Fig. 7(a). The eye diagram shows
an open eye though it has some noise due to signal reflections.
We also show the eye diagrams for a signal on the memory
bus in Fig. 7(b) and (c). These diagrams also show open eyes
though the signal in Fig. 7(b) suffers from signal reflections
and the signal in Fig. 7(c) suffers from large capacity loads
from memory devices. Additionally, we show the eye dia-
grams for single-link mode in Fig. 7(d) and (e) when data are
read from memory devices or written into memory devices,
each having clearer eyes compared to Fig. 7(b) and (c) due to
fewer signal switches on the paths. These figures indicate that
acceptable signal quality is retained in both scenarios.



CHEN et al.: qSWITCH: DYNAMICAL OFF-CHIP BANDWIDTH ALLOCATION BETWEEN LOCAL AND REMOTE ACCESSES 81

Fig. 7. Eye diagram of (a) QPI bus in multilink mode, (b) memory bus when
reading data from devices in multilink mode, (c) memory bus when writing
data to devices in multilink mode, (d) memory bus when reading data from
devices in single-link mode, and (e) memory bus when writing data to devices
in single-link mode.

IV. EXPERIMENTAL SETUP

We set up our stimulated system with Sniper 6.1 [5] using
the system configuration shown in Table I. The system has
two processors with the configuration based on the Intel Xeon
X5550. Each processor has four memory channels and one
QPI bus while in single-link mode, and then has two memory
channels and three QPI buses while in multilink mode. The
energy consumption is estimated using the McPAT tool [14].
We also modified the simulator to include runtime overheads.

We also list the selected multithread workloads shown
in Table II as well as the number of un-core requests per
instruction, and the percentage of QPI latencies per the
total un-core latencies. The workloads are selected from the
NPB benchmarks [18], the Splash2 benchmarks [24], and
the Decapo benchmarks [4]. Since the lusearch workload
involves a considerable number of system calls, we run it
in jikes research virtual machine [10] on the sniper simu-
lator. Each workloads runs with eight threads and occupies
all cores in the simulated system. We separate the work-
loads into those workloads exhibiting intensive intersocket

TABLE I
CONFIGURATION OF THE SIMULATED SYSTEM

TABLE II
SELECTED WORKLOADS

communication and those workloads showing moderate or low
intersocket communication. Most experiments are conducted
using the communication-intensive workloads that reveal the
benefits of multilink mode, while we use the nonintensive
workloads to compare the performances of static and dynamic
switching. We fast forward workloads into selected regions
that show intensive intersocket traffic, and then warm up the
cache for 1 billion instructions. We run a total of 800 mil-
lion instructions for each workload since some threads, e.g.,
the garbage collector, run comparatively few instructions in



82 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

Fig. 8. Normalized speedup of static switching and dynamic switching
normalized against the baseline.

the workload lusearch. We also run each workload five
times and show the 95% confidence intervals for performance
comparisons.

V. RESULTS

A. Performance of the Static Switching

We evaluate the performances of the baseline, in which
the system runs in single-link mode; the system using static
switching; and using dynamic switching. Fig. 8 shows the
results of static switching and dynamic switching normalized
against the results of the baseline for each workload. Static
switching and dynamic switching gain a performance improve-
ment of 28% and 29%, respectively, compared to the baseline.
We also show the reduced latencies of un-core requests in
static switching normalized against that in the baseline shown
in Fig. 9. Note the latencies only account for the laten-
cies incurred outside the cores. The workloads cg and ocean
achieve speedups of 1.54 and 1.55, respectively, which are
much more than other workloads, since they have intensive un-
core traffic and their un-core latencies are significantly reduced
by multilink mode. The other workloads gain moderate per-
formance improvements. For example, is also has intensive
un-core traffic but sees a smaller reduction of the latencies,
while lusearch has a significant reduction of the latencies but
moderate un-core traffic.

B. Performance and Energy Efficiency of the Dynamical
Switching for Intensive Intersocket Traffic workloads

Dynamic switching can gain a similar performance improve-
ment for the workloads in Fig. 8 since it can detect phases of
intensive intersocket communication. For example, dynamic
switching improves the performance of the cg workload from
1.57 to 1.64, since it finds a period of low intersocket traffic
and guides the system switches back to the multilink mode.
Dynamic switching provides approximately the same perfor-
mance improvements as static switching for workloads that
have only a few intervals of low intersocket traffic. We also
list the number of the intervals that the system is in multilink
mode or in single-link mode in Table III, as well as the number

Fig. 9. Latency of un-core requests for static switching and dynamic
switching normalized against that of the baseline.

TABLE III
INTERVALS IN THE MULTILINK MODE AND IN THE SINGLE-LINK

MODE AS WELL AS THE TIMES OF SWITCHING TO THE

MULTILINK MODE AND THE SINGLE-LINK MODE

of times that the system switches to multilink mode or single-
link mode. The extra benefits of dynamic switching for the cg
workload come from the system switching back to single-link
mode when it catches a consecutive series of 12 intervals in
which the system exhibits low intersocket communication but
moderate local traffic.

We investigate the energy consumptions of static and
dynamic switching normalized against that of the baseline for
each workload, respectively, shown in Fig. 10. Static switching
and dynamic switching reduces the average energy consump-
tion by 12% and 13% in geometric mean since it improves the
system performance with minimal energy overhead. The more
performance improvement that multilink mode has gained, the
more energy consumption is reduced. For example, the work-
loads cg and ocean save 30% and 22% more energy than the
others for dynamic switching, while they also achieve more
performance benefits compared to others.



CHEN et al.: qSWITCH: DYNAMICAL OFF-CHIP BANDWIDTH ALLOCATION BETWEEN LOCAL AND REMOTE ACCESSES 83

Fig. 10. Energy consumption while using static switching and dynamic
switching normalized against the baseline.

Fig. 11. Normalized speedup while using static switching and dynamic
switching compared with the baseline for workloads with low-to-moderate
intersocket traffic.

C. Performance and Energy Efficiency of the Dynamical
Switching for Moderate and Low Intersocket Traffic
Workloads

We also test the performance of dynamic switching com-
pared with static switching for workloads exhibiting low-to-
moderate intersocket traffic shown in Fig. 11. Static switching
loses performance for these workloads, while dynamic switch-
ing keeps the performance or even gains a modest performance
improvement. The results are normalized against the perfor-
mance of the baseline for each workload, respectively. The
dynamic switching gains are a normalized speedup of 1.18
and 1.04 for the ft and mg workloads, respectively, while static
switching only achieves a normalized speedup of 0.84 and
0.87 individually. We also present the breakdown of normal-
ized un-core latency in Fig. 12. All latencies are normalized
against the total un-core latency of the baseline for each work-
load. Dynamic switching captures several stable periods in
which performance can be improved via switching the system
back to single-link mode. Dynamic switching reduces the QPI
latency significantly for ft and mg while it increases DRAM
latency slightly compared to static switching since these two
workloads show long consecutive intensive intersocket traffic.
Dynamic switching suffers from spikes of intensive local traf-
fic that are hardly captured and thus only achieves a speedup
of 0.91 for radiosity, which is close to the performance of
static switching. Even though, the proposed dynamic switch-
ing can still achieve a geometric mean speedup of 1.02 for
the five benchmarks with low-to-moderate intersocket traffic.

This result implies that dynamic switching, combing static
switching, and switch condition, does not impair the perfor-
mance of applications with low-to-moderate intersocket traffic
workloads.

We also present the energy consumptions of static and
dynamic switching normalized against that of the baseline for
each workload, as shown in Fig. 13. Static switching increases
the average energy consumption by 4% while dynamic switch-
ing decreases it by 2% in geometric mean. The larger the
performance improvement that dynamic switching has gained,
the more the energy consumption is reduced. For example,
dynamic switching reduces the power consumption of the
workload fg by 8% and also boosts performance by more than
other workloads.

D. Enhancement From Stride Prefetcher

We investigate the performances of dynamic switching and
the baseline combined with a stride prefetcher shown in
Fig. 14. The results are normalized against the baseline without
a prefetcher and we show the performances with prefetch-
ers that have a prefetch degree of 1 and 4, which denotes
the number of prefetches issued on every memory reference.
For the workloads with intensive intersocket traffic, the per-
formances of the baseline with the prefetchers of degree 1
and 4 are 1.002 and 1.11, respectively, in the geometric mean;
the performances of static switching with the prefetcher are
1.28 and 1.55; and the performance of dynamic switching are
1.30 and 1.56, respectively. For the workloads with low-to-
moderate intersocket traffic, the performances of the baseline
with prefetchers are 1.04 and 1.13 and the performances of
dynamic switching are 1.05 and 1.14, respectively. The aggres-
sive prefetchers shift the performance bottlenecks toward the
QPI especially for the is workload. This can be verified in
Fig. 15, which shows the percentage of QPI latencies for the
baseline and the baseline with prefetchers of degree 1 and 4.
This percentage of latency for the is workload is increased sig-
nificantly when the prefetching degree is increased from 1 to 4,
since the prefetcher now exploits the high bandwidth of the
DRAM cache via increasing the memory level parallelism and
thus reduces DRAM cache latencies but suffers from a lim-
ited QPI bandwidth, which offsets the benefit of memory level
parallelism. Prefetchers boost the percentage of QPI laten-
cies for the is workload since its un-core latencies in the
DRAM cache are considerable even running on the base-
line without a prefetcher compared with other workloads.
Additionally, the aggressive prefetchers increase the latency
of local DRAM access; though the latency of QPI is also
increased, it is less important than the latency of the local
DRAM. Dynamic switching actually keeps the system in the
single-link mode.

We also evaluate the performance of dynamic switch-
ing using different configurations of the DRAM cache. This
paper heavily relies on the DRAM cache’s superior band-
width, compared to off-chip main memory devices and the
QPI, and thus, we want to verify the substantial benefit of
dynamic switching in the broad design space of the DRAM
cache.



84 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

Fig. 12. Normalized un-core latency for the workloads with low-to-moderate intersocket traffic.

Fig. 13. Energy consumption while using static switching and dynamic
switching normalized against the baseline for workloads with low-to-moderate
intersocket traffic.

E. Bandwidth of the DRAM Cache

We investigate the performance improvement of dynamic
switching with different bandwidths of DRAM caches as
shown in Fig. 16. We vary the bandwidths from 128 to
512 Gb/s and compare the performances of dynamic switch-
ing and the baseline with the same DRAM cache bandwidth.
Fig. 16 shows the performance of dynamic switching normal-
ized against the performance of the baseline accordingly. The
performance improvements are 1.27, 1.28, and 1.28 in the geo-
metric mean for the DRAM cache bandwidths of 128, 256,
and 512 Gb/s, respectively, for the workloads with intensive
intersocket traffic, while the performances are all 1.02 in the
geometric mean for the workloads with low-to-moderate inter-
socket traffic. The relatively stable improvements indicate that
the benefit of dynamic switching is consistent as long as the
bandwidth of cache DRAM is larger than that of the main
memory.

F. Size of DRAM Cache

We also evaluate the performance improvement of dynamic
switching using different DRAM cache sizes (32, 64, and
128 MB). When the size is increased, more un-core requests
hit the DRAM cache which has much more bandwidth
compared to off-chip memory devices. On the other hand,
decreasing the DRAM cache’s size will decrease its impact
on the performance. Dynamic switching achieves an average
of 20%, 21% and 28% performance improvement in geomet-
ric mean, which are normalized against the performance in

the baseline with the same DRAM cache size, respectively,
shown in Fig. 18 for the workloads with intensive intersocket
traffic. Dynamic switching’s relative performance is 1.01, 1.01,
and 1.02 for the workloads with low-to-moderate intersocket
traffic. The performance improvements for most workloads
increase slightly as the size of DRAM cache is increased,
while the performance improvement of the workload ocean
increases quickly from −6% to 56% due to more remote
requests hitting DRAM caches, which can be verified by the
reduced latencies of un-core requests for ocean in Fig. 17.
Fig. 17 also shows the latencies of un-core requests in multi-
link mode normalized against the latencies in single-link mode.
The figure shows most workloads slightly reduce the latency
of un-core requests as the DRAM cache size is increased,
while the latencies for ocean are reduced from 1.58 to 0.136.
Decreasing the size of the DRAM cache from 128 to 32 MB
causes the percentage of un-core latency caused by QPI latency
to drop for the baseline running the ocean workload, while the
percentage un-core latency caused by off-chip main memory
latency increases from 0.002% to 86%. Additionally, vary-
ing the size of the DRAM cache shows only a slight impact
on the performance and the latency of un-core requests, since
a considerable portion of un-core requests hit the local DRAM
instead of the DRAM cache.

G. Frequency of QPI Buses

We investigate the performance improvement of dynamic
switching with different QPI bus frequencies (2.4, 3.2, and
4.8 GHz). 2.4 GHz is the lowest frequency of the QPI
buses, while 4.8 GHz is first introduced on the Hashwell-
E/EP platform. Boosting the frequency of QPI buses can gain
more bandwidth but increases power consumption and poses
more difficulties for routing QPI traces on the motherboard.
Fig. 19 shows the performance improvement of dynamic
switching normalized against the performance of the base-
line with different QPI bus frequencies. Dynamic switching
with QPI frequencies 2.4, 3.2, and 4.8 GHz achieves average
speedups of 1.44, 1.28, and 1.15, respectively, in geomet-
ric mean for the workloads with intensive intersocket traffic.
It reaches the average speedups of 1.5, 1.02, and 0.99 for
the workloads with low-to-moderate intersocket traffic. Our
design can gain a moderate performance improvement with



CHEN et al.: qSWITCH: DYNAMICAL OFF-CHIP BANDWIDTH ALLOCATION BETWEEN LOCAL AND REMOTE ACCESSES 85

Fig. 14. Normalized speedup of dynamic switching compared to the baseline for various prefetching degrees.

Fig. 15. Average percentage of un-core latencies caused by QPI latency for
the baseline with various degrees of prefetching (average QPI latency/average
un-core latency).

Fig. 16. Normalized speedup of dynamic switching for various DRAM cache
bandwidths.

Fig. 17. Normalized latency of un-core requests using dynamic switching
for various DRAM cache sizes.

the high frequency of 4.8 GHz, but sees a significant per-
formance improvement with the low 2.4 GHz frequency for
the workloads with intensive intersocket traffic. Fig. 20 shows

Fig. 18. Normalized speedup of dynamic switching for various DRAM cache
sizes.

Fig. 19. Normalized speedup of dynamic switching for various QPI
frequencies.

the percentage of the un-core latencies in QPI in the total
un-core latencies for the baseline with the different QPI bus
frequencies. The ratio of QPI decreases as the frequency of
QPI buses increases, which shortens the time of transferring
data over the QPI buses and the waiting time of packets in the
QPI. The ratio for the cg workload drops from 79% to 43% as
the frequency of the QPI buses increase from 2.4 to 4.8 GHz,
while the performance benefit of dynamic switching decreases
from 1.96 to 1.25. The 4.8 GHz frequency of the QPI buses
increases the percentage of the latencies from the DRAM
cache with respect to the total un-core latency. For example,
the frequency increases the percentage from 17% to 48% for
the cg workload when the QPI bus frequency increases from
2.4 to 4.8 GHz. Additionally, dynamic switching gains a 15%



86 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

Fig. 20. Average percentage of un-core latency caused by QPI latency for
the baseline for various QPI bus frequencies (average QPI latency/average
un-core latency).

speedup when the QPI bus frequency is 2.4 GHz and maintains
performance when it is 3.2 and 4.8 GHz.

VI. CONCLUSION

Multisocket systems are widely used for massive paral-
lel workloads to improve throughput. The performance of
multisocket system suffers from limited off-chip bandwidth
confined by the scarce resource of processor pins. This prob-
lem can be relieved by the DRAM cache that is introduced to
reduce the long latency of off-chip access via providing a large
space to hold data and superior bandwidth to reduce queuing
delay. The DRAM cache reduces the latencies of accessing
main memory as the main contributor of the un-core latencies,
while the latencies of intersocket communication emerge as
a considerable bottleneck for workloads that frequently fetch
data from remote memory.

The qSwitch design is proposed to reduce the intersocket
latencies at the cost of local memory bandwidth, since the
DRAM cache significantly reduces the number of off-chip
local requests, and thereby, the local memory bandwidth
becomes excessive in some cases. We design qSwitch from
the off-chip bus connection to the switching agents in order
to smoothly switch the system between two modes: 1) single-
bus mode and 2) multibus mode. We investigate the signal
integrity and discuss the design overhead to verify its feasi-
bility. We also evaluation the performance benefits of qSwitch
using different configurations of the DRAM cache and QPI to
show the benefits exist in a broad design space.

This paper identifies the latency of intersocket communi-
cation as one of the performance bottlenecks in the era of
DRAM cache for massive parallel workloads. Our results
imply that the performance of the workloads can be improved
via the optimization of intersocket communication such as
wisely scheduling remote requests or reducing unnecessary
remote requests. Furthermore, the limited bandwidth of inter-
socket communication could become increasingly painful as
the number of cores on a die increases and more cores share
bandwidth. Scaling the intersocket bandwidth with the number
of cores is likely to be a challenge in the near future.

ACKNOWLEDGMENT

The authors appreciate the invaluable comments from the
anonymous reviewers. They also acknowledge the computing

resources provided by the Louisiana Optical Network Initiative
HPC team.

REFERENCES

[1] 4th Generation Core Family Desktop. Accessed on May 23, 2017.
[Online]. Available: http://www.intel.com/content/dam/www/
public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-1-
datasheet.pdf

[2] An Introduction to the Intel� QuickPath Interconnect, Intel, Santa Clara,
CA, USA, 2009.

[3] S. Beamer et al., “Re-architecting DRAM memory systems with mono-
lithically integrated silicon photonics,” in Proc. ISCA, Saint-Malo,
France, 2010, pp. 129–140.

[4] S. M. Blackburn et al., “The DaCapo benchmarks: Java benchmarking
development and analysis,” in Proc. OOPSLA, Portland, OR, USA, 2006,
pp. 169–190.

[5] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation,”
in Proc. SC, Seattle, WA, USA, 2011, Art. no. 52.

[6] S. Chen et al., “Increasing off-chip bandwidth in multi-core processors
with switchable pins,” in Proc. ISCA, Minneapolis, MN, USA, 2014,
pp. 385–396.

[7] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini,
“MemScale: Active low-power modes for main memory,” in Proc.
ASPLOS, Newport Beach, CA, USA, 2011, pp. 225–238.

[8] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in Proc. ISCA,
2008, pp. 39–50.

[9] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM caches for
servers: Hit ratio, latency, or bandwidth? Have it all with footprint
cache,” in Proc. ISCA, 2013, pp. 404–415.

[10] Jikes RVM. Accessed on May 23, 2017. [Online]. Available:
http://www.jikesrvm.org

[11] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A scal-
able and high-performance scheduling algorithm for multiple memory
controllers,” in Proc. HPCA, 2010, pp. 37–48.

[12] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for exploit-
ing subarray-level parallelism (SALP) in DRAM,” SIGARCH Comput.
Architect. News, vol. 40, no. 3, pp. 368–379, Jun. 2012.

[13] A. V. Krishnamoorthy et al., “Computer systems based on silicon
photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361,
Jul. 2009.

[14] S. Li et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. MICRO,
2009, pp. 469–480.

[15] Mentor Graphic. Accessed on May 23, 2017. [Online]. Available:
https://www.mentor.com

[16] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling
for chip multiprocessors,” in Proc. MICRO, Chicago, IL, USA, 2007,
pp. 146–160.

[17] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems,”
in Proc. ISCA, 2008, pp. 63–74.

[18] NAS Parallel Benchmarks. Accessed on May 23, 2017. [Online].
Available: https://www.nas.nasa.gov/publications/npb.html

[19] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in archi-
tecting DRAM caches: Outperforming impractical SRAM-tags with
a simple and practical design,” in Proc. MICRO, Vancouver, BC, Canada,
2012, pp. 235–246.

[20] W. S. Ring, “Silicon photonics: Challenges and future,” Optoelectron.
Ind. Develop. Assoc., Washington, DC, USA, OIDA Forum Tech. Rep.,
2007.

[21] Y. H. Son, O. Seongil, Y. Ro, J. W. Lee, and J. H. Ahn, “Reducing
memory access latency with asymmetric DRAM bank organizations,”
in Proc. ISCA, 2013, pp. 380–391.

[22] (2010). The 50G Silicon Photonics Link Intel, Labs
White Paper. Accessed on May 23, 2017. [Online].
Available: http://download.intel.com/pressroom/pdf/photonics/Intel_
SiliconPhotonics50gLink_WhitePaper.pdf?iid=pr_smrelease_vPro_
materials2

[23] A. N. Udipi et al., “Rethinking DRAM design and organization for
energy-constrained multi-cores,” in Proc. ISCA, Saint-Malo, France,
2010, pp. 175–186.

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-1-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-1-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/4th-gen-core-family-desktop-vol-1-datasheet.pdf
http://www.jikesrvm.org
https://www.mentor.com
https://www.nas.nasa.gov/publications/npb.html
http://download.intel.com/pressroom/pdf/photonics/Intel_SiliconPhotonics50gLink_WhitePaper.pdf?iid=pr_smrelease_vPro_materials2
http://download.intel.com/pressroom/pdf/photonics/Intel_SiliconPhotonics50gLink_WhitePaper.pdf?iid=pr_smrelease_vPro_materials2
http://download.intel.com/pressroom/pdf/photonics/Intel_SiliconPhotonics50gLink_WhitePaper.pdf?iid=pr_smrelease_vPro_materials2


CHEN et al.: qSWITCH: DYNAMICAL OFF-CHIP BANDWIDTH ALLOCATION BETWEEN LOCAL AND REMOTE ACCESSES 87

[24] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in Proc. ISCA, 1995, pp. 24–36.

[25] R. Zhang, K. Wang, B. H. Meyer, M. R. Stan, and K. Skadron,
“Architecture implications of pads as a scarce resource,” in Proc. ISCA,
Minneapolis, MN, USA, 2014, pp. 373–384.

[26] H. Zheng et al., “Mini-rank: Adaptive DRAM architecture for
improving memory power efficiency,” in Proc. MICRO, 2008,
pp. 210–221.

Shaoming Chen received the bachelor’s and
master’s degrees in electronics and information engi-
neering from the Huazhong University of Science
and Technology, Wuhan, China, in 2008 and 2011,
respectively, and the Ph.D. degree in electrical
and computer engineering from Louisiana State
University, Baton Rouge, LA, USA, in 2016.

He is a Senior Designer with AMD, Austin, TX,
USA. His current research interests include sub-
memory system design and cost optimization of
data centers.

Lu Peng received the bachelor’s and master’s
degrees in computer science and engineering from
Shanghai Jiao Tong University, Shanghai, China, and
the Ph.D. degree in computer engineering from the
University of Florida, Gainesville, FL, USA.

He is a Gerard L. “Jerry” Rispone Associate
Professor with the Division of Electrical and
Computer Engineering, Louisiana State University,
Baton Rouge, LA, USA. His current research
interests include memory hierarchy system, reliabil-
ity, power efficiency, and other issues in processor
design.

Dr. Peng was a recipient of the ORAU Ralph E. Power Junior Faculty
Enhancement Awards in 2007 and the Best Paper Award (processor archi-
tecture track) from IEEE International Conference on Computer Design in
2001.

Samuel Irving received the bachelor’s degrees
in both computer science and electrical engi-
neering from Louisiana State University (LSU),
Baton Rouge, LA, USA, in 2011, where he is
currently pursuing the Ph.D. degree in computer
engineering.

His current research interests include machine
learning, big data analytics, and heterogeneous
architecture design.

Mr. Irving was a recipient of the
Donald W. Clayton Ph.D. Assistantship at LSU.

Zhou Zhao received the B.S. degree in automa-
tion and the M.S. degree in circuit and system from
the University of Electronic Science and Technology
of China, Chengdu, China, in 2011 and 2014,
respectively. He is currently pursuing the Ph.D.
degree in electrical engineering with Louisiana State
University, Baton Rouge, LA USA.

His current research interests include low power
very large scale integration design, power manage-
ment and signal integrity in chip multiprocessor, and
logic gate design using emerging devices.

Weihua Zhang received the Ph.D. degree in com-
puter science from Fudan University, Shanghai,
China, in 2007.

He is currently an Associate Professor of Parallel
Processing Institute, Fudan University. His current
research interests include compilers, computer archi-
tecture, and parallelization and systems software.

Ashok Srivastava (LSM’15) received the M.Tech.
and Ph.D. degrees in solid-state physics and semi-
conductor electronics from the Indian Institute of
Technology Delhi, New Delhi, India, in 1970 and
1975, respectively.

He is a Wilbur D. and Camille V. Fugler, Jr.,
Professor of Electrical and Computer Engineering,
Louisiana State University (LSU), Baton Rouge,
LA USA. Before joining LSU, he was with several
academic institutions and research and development
laboratories, where his main areas of research were

very large scale integration (VLSI) design and technology and emerging
logic devices. While at LSU, he has held visiting appointments at several
institutions across the globe. He has authored a book entitled Carbon-Based
Electronics: Transistors and Interconnects at Nanoscale and a Co-Editor of
two books entitled Nano-CMOS and Post-CMOS Electronics and Devices and
Modeling, Circuits and Design (IET Press). He has authored and co-authored
over 170 research papers in journals and conferences covering devices, cir-
cuits and systems, micro/nano-systems, holds 1 U.S. patent and supervised
41 graduate students. His current research interests include low-power VLSI
circuit design and testability, nanoelectronics–nanoscale devices, circuits and
integration, nonclassical device electronics with focus on carbon nanotube,
graphene, and other 2-D material-based device electronics for emerging post-
CMOS integrated circuit design.

Dr. Srivastava was a recipient the Prestigious 1979–1980 UNESCO
Fellowship Award. He is a Life Senior Member of Electron Devices, Circuits
and Systems, and Solid-State Circuits Societies, a Senior Member of SPIE,
and a member of ASEE.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


