
Performance and Power Analysis of ATI GPU: A Statistical Approach

Ying Zhang1, Yue Hu1, Bin Li2, Lu Peng1
1Department of Electrical and Computer Engineering

2Department of Experimental Statistics
Louisiana State University
Baton Rouge, LA, 70803

{yzhan29, yhu14, bli, lpeng}@lsu.edu

Abstract— We present a comprehensive study on the perfor-
mance and power consumption of a recent ATI GPU. By em-
ploying a rigorous statistical model to analyze execution beha-
viors of representative general-purpose GPU (GPGPU) appli-
cations, we conduct insightful investigations on the target GPU
architecture. Our results demonstrate that the GPU execution
throughput and the power dissipation are dependent on differ-
ent architectural variables. Furthermore, we design a set of
micro-benchmarks to study the power consumption features of
different function units on the GPU. Based on those results, we
derive instructive principles that can guide the design of pow-
er-efficient high performance computing systems.

Keywords- GPU; VLIW; OPENCL; model; performance;
power

I. INTRODUCTION
Due to the emergence of Terascale and Petascale compu-

ting, people begin to concentrate on developing powerful and
efficient systems to accelerate the solving of these problems.
Among the current platforms, supercomputers consisting of
numerous modern graphics processing units (GPUs) are ob-
taining substantial attention. In recent years, with the devel-
opment of massive parallel programming language including
CUDA [5] and OpenCL [6], high performance GPUs are
widely used to settle large scale computation problems from
different domains. By appropriately parallelizing the execu-
tion, GPU-based implementations are able to reduce the
processing time by up to thousands of times compared to the
sequential counterparts.

However, unlike traditional CPUs which have been stu-
died by researchers for long time, the fast evolving GPUs are
still considered as mysterious innovations by general us-
ers/developers. For example, where potential bottlenecks for
a GPU execution may exist and what kinds of data structures
might harm the performance are not quite clear. For pro-
grammers from areas including biology, physics, and
finance, it is of great importance for them to quickly identify
bottlenecks of their programs and boost the application per-
formance accordingly. This requires a systematic investiga-
tion on typical GPU architectures, from which several easily
adopted guidelines for performance tuning can be extracted.
Although researchers have made initial attempts to address
these unknowns [12][21][22], most of the problems still re-
main open.

On the other hand, as the performance of GPUs keeps ris-
ing, the increasing power consumption caused by the high
clock frequency and massive processing elements integrated

on the device is becoming an important concern. For in-
stance, the peak power of an Nvidia GTX 280 can achieve
236 watts [3] while a typical multi-core CPU usually con-
sumes less than 150 watts power [4]. Since the high power
consumption easily translates to an increase of the device
temperature, the expensive cost on the system cooling tends
to compensate all the benefits gained from the performance
improvement. As a consequence, it is highly necessary to
reduce the GPU power consumption during the operations.

In the past decade, high power consumptions have been
considered as a major constraint in CPU design and several
strategies are accordingly proposed to trim the power budget.
Nevertheless, compared to studies on the CPU power con-
sumption, researches on GPU power are still at an early
stage. To date, most of previous works on this issue [13][16]
focus on predicting power consumption from observable
characteristics of the target device, because current commer-
cial GPUs do not provide convenient approaches such as
hardware sensors for dynamic power monitoring. However,
rather than purely making accurate predictions, extracting
architectural discoveries which can benefit the design of low-
power systems is a more promising topic. This makes an in-
depth study on GPU power consumptions and the underlying
architectural behaviors quite demanding.

Traditional studies on CPUs demonstrate that the perfor-
mance and power consumption are largely dependent on the
execution behaviors. We believe that this also applies to the
GPU platforms. In this work, in order to precisely capture the
relationship between the execution characteristics and the
responses (i.e., performance and power), we employ a rigor-
ous statistical model to facilitate our analysis. We aim at
conducting a comprehensive investigation on the GPU per-
formance and its power consumption, and more importantly,
deriving instructive guidance that can be used by both the
software designers and hardware architects to construct more
power-efficient high performance systems.

While Nvidia GPUs with the CUDA framework are
heavily studied in prior work, ATI GPUs which also serve as
important components in many high performance computing
systems have received relatively little attention. In addition,
although sharing several common design concepts, ATI
GPUs and Nvidia GPUs differ from each other on some im-
portant architectural characters. We believe that studying
ATI GPUs will provide us new insights. Therefore, we con-
duct our studies on a recent ATI GPU by running a set of
OpenCL programs. In general, the main contributions of this
work are the following:

2011 Sixth IEEE International Conference on Networking, Architecture, and Storage

978-0-7695-4509-7/11 $26.00 © 2011 IEEE

DOI 10.1109/NAS.2011.51

149

• Performance analysis and important variables
characterization. We build a statistical model to
bridge the gap between execution behaviors and the
corresponding GPU performance. By doing this, we
are able to quickly identify the most influential fac-
tors to the execution throughputs of the target GPU.

• Power modeling and investigations. We also build
a model to correlate the GPU power consumption
and the architectural behaviors. Based on the model-
ing results, we design a set of micro-benchmarks to
uncover the distinct power consumption features of
different function units within a VLIW processor on
the target GPU.

• Extraction of instructive principles. According to
the statistical analysis, we summarize instructive
guidelines that are beneficial to both of software de-
velopers and hardware engineers to improve the ap-
plication performance while reducing the power
consumption of modern GPUs.

The remainder of this paper is organized as follows. Sec-
tion II generally introduces the target GPU architecture and
the OpenCL programming language. Section III elaborates
the methodology of our study. In section IV, we analyze that
how program behaviors impact the GPU performance and
power consumptions in detail. After that, we present our
investigation on the power consumption patterns of the
VLIW processors of the GPU. The guidelines for perfor-
mance improvement and power savings are also introduced
in that section. We list the related work in section V and fi-
nally draw the conclusion in section VI.

II. BACKGROUND

A. Target GPU Architecture
The target GPU used in this work is an ATI Radeon HD

5870 codenamed Cypress [7]. As an important product ad-
dressing high performance computing, this GPU is delicately

designed to accelerate solving large scale computation prob-
lems from different areas.

Figure 1 illustrates a simplified architecture of the Rade-
on HD 5870. In general, it is composed of 20 Single-
Instruction-Multiple-Data (SIMD) computation engines and
the underlying memory hierarchy. The array of SIMD en-
gines works as the heart of the entire chip because most of
the computations are conducted in this component. Each
SIMD engine is able to work independently, whereas the
global data share provides a mechanism for the communica-
tion between individual engines. The GPU also contains an
Ultra-Threaded Dispatch Processor, which is responsible for
managing a large number of in-flight threads and assigning
them to available computing units. The memory subsystem
of the device includes an L2 cache and the global memory.

An SIMD engine is a powerful processor. As can be seen
from the upper portion of Figure 2, each SIMD core contains
16 thread processors (TP) and 32KB local data share. The
local data share is designed for the synchronization and data
communication between the tasks assigned to the same
SIMD core. More accurately, in the OpenCL context, only
the work-items within a work-group can be synchronized.
Accesses to the local data share are much faster than to the
global memory. In principle, an SIMD is similar to a stream
multiprocessor (SM) on an Nvidia GPU while the local data
share is equivalent to the share memory on an SM. Besides,
each SIMD includes a texture unit with 8KB L1 cache.

Unlike the typical design of Nvidia products, ATI GPUs
adopt the VLIW structure. We demonstrate this in the lower
part of Figure 2 by visualizing the internal architecture of a
thread processor. Each TP is a VLIW processor. It includes
five processing elements, four of which are ALUs while the
remaining one is a special function unit. In each cycle, data-
independent operations assigned to these processing ele-
ments constitute a VLIW bundle and are simultaneously
executed. Note that the released documents [7] from ATI
refer the four ALUs as x, y, z, w and the special function unit
as t. In later sections of this paper, we use the term ALUs
and x/y/z/w interchangeably. Similarly, the term special func-
tion unit and t unit refer to the same component.

B. OpenCL Programming Language
The Open Computing Language (OpenCL) is a pro-

gramming framework developed for parallel application [6].
It emphasizes the feature of portability. In specific, an

Figure 1. Architectural overview of an ATI Radeon HD5870 GPU

Figure 2. The architecture of an SIMD engine and

a VLIW thread processor

150

OpenCL program can be compiled and run on any device
that is compliant with the OpenCL specification. Similar to
the CUDA language developed by Nvidia, OpenCL is also
widely used in the general-purpose GPU computing realm.

A function executed on an OpenCL device is termed a
kernel. The basic component of a running kernel is called a
work-item which is comparable to a thread from the CUDA
terminology. Several work-items form a work-group and a
kernel usually launches an amount of work-groups, in order
to achieve the optimal performance. Multiple work-groups
can reside on the same SIMD engine and share the resources.
Specific to the GPU used in this study, each SIMD supports
up to eight work-groups [8]. However, this number may be
reduced due to the resource constraint. For instance, in the
event that each work-item requires a large amount of regis-
ters, the actual number of work-groups allocated to an SIMD
may be far fewer than the limit.

When a kernel is executed on an ATI GPU, each work-
group is further divided into multiple wavefronts. The size of
a wavefront is varying across different series of ATI GPUs.
In a Radeon HD 5870, each wavefront is composed of 64

work-items [8]. During a kernel execution, the latencies due
to events including global memory accesses can be hidden
from switching among the resident wavefronts on the same
SIMD.

III. METHODOLOGY

A. Experimental Setup
We conduct all of our studies on a system equipped with

an ATI Radeon HD5870 GPU. The computer is running a
Windows 7 operating system with Microsoft Visual Studio
2010 installed. The ATI Stream Profiler 2.1 [1] is integrated
into the Visual Studio and is able to profile OpenCL kernels
executed on the GPU. Table I lists the names and general
descriptions of the counters collected by the profiler. We run
the OpenCL benchmarks provided by the ATI Stream SDK
[2] for our analysis. All the used applications are shown in
Table II.

Kernel configurations such as the work-group size can
significantly impact the program execution performance, as
well as the power dissipation [14]. Taking this into consider-
ation, we run each kernel with different configurations and
collect the results from the profiler respectively. On average,
each kernel is tested with about three configurations, leading
to a total of 78 different measurements. The number of con-
figurations tested for each kernel is also listed in Table II.
Note that we do not set the configurations for each kernel in
a uniform way since the kernels have distinct inherent fea-
tures and resource requirements. All the kernels used in this
study launch more than 100 work-groups, in order to make
the tasks evenly distributed among the SIMD engines.

TABLE I. PROFILER COUNTERS EXPLANATION

Counter Description
LDSSize The size of local data share used by a work-group

GPR The number of general purpose registers used by a
work-item

ScratchRegs The number of scratch registers used by a work-
item

FCStacks The size of flow control stack
Wavefronts The number of launched wavefronts

ALUInsts The number of ALU instructions executed per
work-item

FetchInsts The number of fetch instructions from the global
memory executed per work-item

WriteInsts The number of write instructions to the global
memory executed per work-item

LDSFetchInsts The number of fetch instructions from the local
data share executed per work-item

LDSWriteInsts The number of write instructions to the local data
share executed per work-item

ALUBusy The percentage of kernel time executing ALU
instructions

ALUFetchRatio The ratio of ALU to Fetch instructions
ALUPacking The packing efficiency of the five-way VLIW

FetchSize The size of the data fetched from the global memo-
ry

CacheHit The data cache hit ratio

FetchUnitBusy The percentage of kernel time the fetch unit is
active

FetchUnitStalled The percentage of kernel time the fetch unit is
stalled

WriteUnitStalled The percentage of kernel time the write unit is
stalled

CompletePath The size of data written to the global memory
through the CompletePath

FastPath The size of data written to the global memory
through the FastPath

PathUtilization
The percentage of data written through FastPath or

CompletePath compared to the total size trans-
ferred by the bus

ALUStalled The percentage of kernel time the ALU is stalled

LDSBankConfict The percentage of kernel time the local data share
is stalled by bank conflicts

TABLE II. BENCHMARKS USED IN THE STUDY

#Cfgs Application Name Kernel Name
3 AESEncryptDecrypt AESDecrypt
3 BitonicSort bitonicSort
3 BlackScholes blackScholes
5 DCT DCT
3 DwtHaar1D dwtHaar1D
3

EigenValue
calNumEigenValueInterval

3 recalculateEigenIntervals
5 FastWalshTransform fastWalshTransform
3 FFT kfft
1 FloydWarshall floydWarshallPass
6 Histogram histogram256
3 HistogramAtomics histogramKernel
4 Mandelbrot mandelbrot_vector
3 MatrixMultiplication mmmKernel_local
3 MatrixTranspose matrixTranspose
3 MonteCarloAsian calPriceVega
5 PrefixSum prefixSum
3 QuasiRandomSequence QuasiRandomSequence
3 RadixSort permute
2 Reduction reduce
4 ScanLargeArrays blockAddition
3 SimpleConvolution simpleConvolution
2

SimpleImage
image3dCopy

2 image2dCopy

151

The power consumption of a GPU under load can be de-
coupled into the idle power Pi_gpu and the runtime power
Pr_gpu. To estimate the GPU idle power, we first use a
YOKOGAWA WT210 Digital Power Meter to measure the
overall system power consumption Pidle_sys when the GPU is
added on. We then record the power Pidle_sys_ng by removing
the GPU from the system. No application is running during
these two measurements; therefore, the difference between
them (i.e., Pidle_sys – Pidle_sys_ng) denotes the GPU idle power.
When the GPU is executing an OpenCL kernel, we measure
the system power Prun_sys and accordingly calculate the GPU
runtime power as Prun_sys – Pidle_sys. By summing up Pi_gpu and
Pr_gpu, we obtain the power consumption of the target GPU
under stress. Note that Pi_gpu is a constant while Pr_gpu is va-
rying across different measurements. For the sake of high
accuracy, we measure the power consumption of each kernel
multiple times and use their average for later analysis.

B. Statistical Model
Advanced statistical tools are widely used to analyze the

relationship between a specific response and several influen-
tial variables in computer architecture area. Especially when
the number of input variables is huge, the employment of
statistical models provides an approach to quickly and accu-
rately capture the pivot of the problem. Therefore, in order to
correlate the execution characteristics and the performance
(and the power dissipation) of the GPU, we engage a rigor-
ous statistics tool, i.e., Random Forest [10], to facilitate our
study.

Random Forest is an ensemble model consisting of sev-
eral regression trees [11], each of which is constructed as
follows: (1) take a bootstrap sample from the original train-
ing instance space; and (2) build a regression tree based on
the sampled data. At each split, the candidate set of variables
is a random subset of all the variables. The response is esti-
mated to be the average of predictions from all the trees in-
volved in the forest.

Random Forest provides two useful interpretation tools to
our study. The first one is the relative variable importance
characterization. The influence of a variable is calculated by
the number of times it is selected for splitting, weighted by
the squared improvement to the model after splitting, and
then average over all trees. The relative variable importance
is then scaled to make the sum add up to 100, with a larger
value indicating a stronger influence on the output variable.
The second tool is the partial dependence plot, which helps
us to visualize the variation of the response with a subset of
variables changing after accounting for the average effects of
all other input variables.

The accuracy of the built model is evaluated by leave-
one-out cross-validation (LOOCV) [17]. This strategy re-
peatedly selects a single observation from the original sam-
ple as the validation sample while using the remaining ob-
servations as the training data. Furthermore, we use the R-
Square metric to mathematically assess the goodness of fit of
our model. This metric, often called the coefficient of deter-
mination, is a widely used measure in the statistical learning
area to represent the proportion of variations accounted by a
trained model. Simply speaking, it reflects the percentage of

the outcomes that are likely to be predicted by the model. In
general, a large R-Square value is an indicator of the high
accuracy of a trained model.

C. Overview of the Methdology and Data Process
Our studies are generally composed of three steps. First,

for each of the kernels chosen for the study, we collect its
performance profile and power consumption. Second, we
feed the obtained data into Random Forest to build a model
connecting the response (i.e., performance and power con-
sumption, respectively) and the execution behaviors. This
includes characterizing the relative importance for all va-
riables and plotting the partial dependence. Note that the raw
data reported by the profiler need preprocess before being
used for the statistical analysis. In specific, the counters pro-
viding measurements in cumulative fashion, such as
ALUInsts and FetchInsts, are divided by the kernel time to
approximate the corresponding intensity within a unit time.
Metrics including ALUBusy reflect the GPU behaviors on
average during an execution and thus can be directly in-
cluded for the model training. For the performance analysis,
we use millions of instructions per second (MIPS) as the
metric, where the total number of executed instructions is
obtained by summing up the amount of each type of instruc-
tion listed in Table I. Another issue is that counters that hard-
ly change across different profiles are eliminated from the
training inputs, in order to make the model more robust. Fi-
nally, we derive insightful principles from the modeling re-
sults, in order to steer the program optimization and potential
hardware upswing.

IV. RESULT ANALYSIS

A. Performance Analysis
As we mentioned earlier, the performance of typical ATI

GPUs has not been well investigated by prior studies. How-
ever, for a programmer running parallel programs on an ATI
GPU, it is of great importance to realize that where the po-
tential performance bottleneck may exist. This justifies that a
detailed study on the GPU performance and the underlying
architectural behaviors is highly demanding. In this section,
we perform an in-depth analysis on this problem by employ-
ing the Random Forest technique described in section III.B.

The established model for the GPU performance analysis
achieves an R-square value of 79.7% with a median absolute
error of 13.1%, indicating a relatively high accuracy. This
makes the deductions based upon this model fairly convinci-
ble. Recall that the employed statistical tool provides two
interpretation tools for the analysis. The first one is the rela-
tive factor importance characterization. We illustrate the
variable importance to the GPU performance in Figure 3. As
can be observed, ALUBusy, which denotes the percentage of
GPU execution time spent on ALU instructions, is identified
as the dominant factor to the GPU performance. This does
not go beyond our expectation. For general-purpose compu-
tations on a GPU, the tasks are majorly executed on the in-
teger/floating point units within the SIMD engines. Higher
utilizations on those computing elements mean that more
instructions are executed during a time period, referring to

152

higher execution throughput. The second most important
variable is the average ratio of the ALU instructions to the
global memory fetch instructions. Fetch operations from the
global memory have a long latency in order of hundreds of
cycles. Although such latencies can usually be hidden by
switching among the available wavefronts on an SIMD en-
gine, a kernel demonstrating an extremely small ALUFet-
chRatio may not be benefited from such parallelism. In the
worst case, no wavefronts are ready to be resumed when the
running one is stalled by a long-latency memory access since
all of candidates are waiting for the requested data for com-
putations. In this scenario, the executions are forced to suffer
from the memory latencies and the performance is inevitably
degraded. ALUPacking stands as the third most significant
variable. Differing from ALUBusy and ALUFetchRatio, this
factor is a specific metric used to evaluate the VLIW execu-
tions. In practice, it is not likely that all of the n slots of an n-
way VLIW processor can be fully utilized in each cycle. This
is because that only the data-independent instructions can be
grouped together and be executed in a vector-like fashion,
whereas the compiler may fail to always find sufficient in-
structions to form a compact bundle. On average, if m out of
all n slots have been filled with valid instructions in an n-
way VLIW processor, the packing ratio is m/n. From the
perspective of performance improvement, we always attempt
to increase the packing efficiency of a VLIW execution, in
order to deliver higher throughput. The followed three in-
fluential factors are FetchSize, GPR, and FastPath, respec-
tively. The variable FetchSize denotes the size of data
fetched from the global memory during a time period. In
general, this metric should be avoided reaching high values
when optimizing the performance. Kernels which intensively
access the global memory tend to decrease the ALU utiliza-
tion and accordingly degrade the performance, especially in
cases when few wavefronts reside on an SIMD engine. The
reason of this is similar to our analysis made on ALUFet-
chRatio. Actually, if considering these two variables in con-
junction, we can infer a general theorem that the more com-
putations on every fetched byte are operated, the higher per-
formance it can be expected. The amount of general-purpose
registers allocated to a work-item also contributes to the
overall performance. Accesses to the registers take less time

than accessing any other components in the memory subsys-
tem does. As a result, if all intermediate values of a computa-
tion are stored in general-purpose registers instead of being
shuffled to the global memory, a kernel should be able to
finish its task more quickly. The counter following GPR is
FastPath. The FastPath is an optimized channel for data
communications in the ATI hardware. This path delivers a
much faster transfer speed than its counterpart which is
called the CompletePath. Therefore, increasing the utilization
of the FastPath is effective to improve the performance.
More discusses about these two paths will be given shortly.
The counters ranking afterwards are not playing important
roles to impact the GPU performance, so we omit the analy-
sis to those variables.

The second tool offered by Random Forest is the partial
dependence plots, providing us visualized interpretations to
observe the relation between individual variables and the
GPU performance. We show the plots for the six most im-
portant factors in Figure 4. The vertical axis of each plot is
scaled for better comparison. As can be observed, the top
three influential variables are all positively related to the
GPU performance. Additionally, compared to the counters
ranked behind, the variations of these three variables tend to
result in much fiercer change on the overall performance.
This indicates that they are the most influential factors. The
counters GPR and FastPath also show positive relationship
to the performance while FetchSize demonstrating a negative
one. Generally speaking, the trends of these curves testify
our analysis described above.

Essentially, it is straightforward to understand the signi-
ficance of counters including ALUBusy, ALUFetchRatio, and
FetchSize, because the inference derived from these variables
are close to what have been revealed from traditional CPU
studies. Nevertheless, the FastPath is a special hardware on
ATI GPUs and thus deserves further analysis. As shown in
Figure 5, this path and its counterpart (i.e., the Complete-
Path) are two special data communication channels located
between the write combine cache and the memory channel.
While offering much higher transfer speed, the FastPath,
however, has a constraint that it only supports basic opera-
tions such as non-atomic writes with 32-bit types [8], whe-
reas the CompletePath supports more operations including

Figure 3. Relative variable importance for GPU performance

Figure 4. Partial dependence plots for the six most important variables to

GPU performance

153

atomic writes and stores with sub-32-bit types. Therefore, if
communications via the CompletePath are replaced by using
the FastPath everywhere possible, the overall performance
can be remarkably improved. We implement two simple
kernels to confirm this idea and visualize the key points in
Figure 6. In the first kernel, each work-item loads the neces-
sary datum from the global memory and conduct computa-
tion based on the fetched data. The data type of the computa-
tion result is set to short (16-bit long), which is identical to
the type of the output array. In this scenario, the computing
result of each work-item will be stored into the global memo-
ry via the CompletePath, because the write operation is con-
ducted on a 16-bit variable. As shown in Figure 6, such an
execution usually corresponds to a MEM_RAT_STORE in-
struction in the ATI ISA. On contrary, if we slightly modify
the kernel by concatenating two short results into an int one
(32-bit long) and change the data type of the output array in
accordance, the storage will be more efficiently performed
through the FastPath (i.e., using
MEM_RAT_CACHELESS_STORE). Therefore, the second
kernel greatly outperforms the first one. In specific, we ob-
serve that the kernel execution time can be decreased by up
to 23% after the improvement. Note that with this modifica-
tion, a necessary post-process on the output data may be in-
troduced if the ensuing computations need inputs of short

type. This overhead may compensate the benefit of a faster
kernel execution. However, since the GPU computation
takes most portion of entire application and dominates the
execution time for many GPGPU problems, such modifica-
tion is still worthwhile. Putting all of these together, we
summarize the techniques for performance optimization
from three aspects:

• For software developers, they should amend the al-
gorithms or application work-flows to efficiently
utilize the data fetched from the global memory.
That is to say, every byte loaded from the global
memory should be maximally reused for computa-
tion.

• Programmers should also define the variables with
the most suitable data type in order to favor the
FastPath transfer.

• Hardware architects can upgrade the platforms by
increasing the sizes of the constrained resources
such as the general-purpose registers and by en-
hancing the special hardware including the FastPath
for advanced operations support.

B. Power Analysis
Apart from the performance, the rising power consump-

tion of a modern GPU is another concern that deserves in-
vestigation in detail. We elaborate the relationship between
the GPU power dissipations and the architectural behaviors
in this section.

The built model for the GPU power is quite accurate.
Mathematically speaking, the R-square of the model is
88.9% and the median absolute error is 4.34%, indicating
that almost 90% of the outcomes can be predicted by this
model with high accuracy. This gives us confidence of the
following analyses.

In order to gain an overall insight into the relation be-
tween the kernel execution behaviors and the corresponding
power dissipations, we first identify the importance of differ-
ent factors. This is illustrated in Figure 7. As can be seen,
ALUPacking is the most decisive variables, indicating that it
inclines to impose more significant impact on the GPU pow-
er consumption than any other factors do. This makes sense
if we take into account the VLIW architecture of ATI GPUs.

16 TP
LDS

L1$

Cross Bar

L2$

Memory Channel

Write
Cache

CompletePath
Atomics

…….

…….

Figure 5. The memory system including the FastPath and CompletePath

Figure 6. An example of kernel improvement for better using the FastPath

154

A larger packing ratio implies that more processing units in a
vector processor are utilized for computation; and more
power will be consumed as a consequence. For the bench-
marks used in this study, some of them such as histogram are
executed with fairly high packing efficiency (i.e., ALUPack-
ing greater than 80%), making them more power-hungry
compared to others. The number of ALU and global memory
fetch instructions (ALUInsts and FetchInsts) are respectively
positioned at the second and the third place in the ranking.
This is also reasonable. Recall our data process method de-
scribed in section III. The ALUInsts and FetchInsts actually
represent the average intensity of ALU computations and
global memory accesses. Obviously, the larger these two
variables are, the higher power consumption will be, because
high execution intensity indicates that the corresponding unit
is active most of the time during an execution. The FetchU-
nitBusy and ALUBusy are identified as the fourth and fifth
important factors. These two variables denote the utilizations
of fetch units and ALUs, so they have similar implications as
those of ALUInsts and FetchInsts. Variables ranked after
ALUBusy slightly contribute to the total power consumption,
so we do not discuss them in detail.

We show the partial dependence for the top six important
variables in Figure 8. The vertical axis of each plot is scaled
from 115 watts to 140 watts. As shown in the figure, the
GPU power consumption shows an ascending trend with the
increase of each of the five most important variables; how-
ever in the sixth plot, we notice that the GPU power remains
almost a constant regardless of the change on ALUFetchRa-
tio. This suggests that GPU power consumptions are not
quite aware of the ratio between the ALU computations and
the memory accesses. In fact, as long as the execution inten-
sities of these two operations stay at high values, the GPU
power tends to be fairly large.

C. A Case Study on the Power Consumption
Based on the analyses made in previous section, we are

able to extract guidelines to reduce the GPU power con-
sumption as we have done for the performance improve-
ment; however before doing that, we are going to take a fur-
ther step to investigate the power consumption patterns and

then summarize principles based on the new findings. Our
model identifies the VLIW packing ratio as the most impor-
tant variable to the power consumption of the target GPU.
More interestingly, if taking a closer look at the partial de-
pendence between GPU power and the ALUPacking (i.e., the
first plot in Figure 8), we notice a steep ascend on the curve
when the packing ratio reaches around 80%. Since a thread
processor on the ATI HD5870 GPU works as a five-way
VLIW processor, an 80% packing ratio means that there are
four valid operations in each VLIW bundle on average. Put it
another way, only four out of five units in a thread processor
are utilized. On the other hand, the five-way VLIW proces-
sor actually consists of four ALUs (i.e., x/y/z/w units) and a
special function unit (i.e., t unit). Considering all of these in
conjunction, it is natural to raise a question that whether the
power step-up encountered at 80% packing ratio is intro-
duced by the difference between the function units. Further-
more, if the answer is positive, we are also interested in ex-
ploiting the potential opportunities for GPU power reduction
from this specific aspect. In this section, we aim at uncover-
ing this mystery using a set of micro-benchmarks.

Intuitively, we consider that the four ALUs are designed
in a uniform way and thus consume the same power. How-
ever, the special function unit is an uncertain component.
The released documents from ATI [7] mention that the t unit
is designed to execute complex operations such as trigono-
metric, exponential, and logarithmic functions, as well as
regular integer and floating point operations. Therefore, this
unit is highly probable to require more power compared to
the four ALUs due to its complexity. To confirm our as-
sumption, we run a group of micro-benchmarks with differ-
ent packing ratios and compare their power consumptions.

Figure 9 demonstrates the structure of our micro-
benchmarks. The one shown on the left is the kernel source
code and the one on the right is the assembly-level code. For
simplicity, we only list the key part of the kernel, which is a
for loop. Since the execution of the for loop dominates the
kernel time, the average packing ratio of the kernel approx-
imately equals to that of the loop. Therefore, our work is
equivalent to tuning the packing ratio of the loop body. To
achieve this goal, we first define two vector type variables
(i.e., float4 d1, d2). In the ATI OpenCL context, each ele-

Figure 7. Relative variable importance for power consumption

Figure 8. Partial dependence plots for the six most important variables to

power consumption

155

ment of a vector such as s0 of d1 can be involved in a regular
scalar operation. Specific to the example code, the four ele-
ments of d1 and d2 are assigned to different computations
which are independent from each other. By doing this, the
x/y/z/w units are utilized, resulting in an 80% packing ratio.
In order to achieve a 100% packing ratio (i.e., the case
shown in Figure 9), we define another vector variable and
use it in a computation that has no data dependency with the
previous four operations. By default, the compiler will assign
this operation to the t unit to maximize the performance. This
is highlighted by the red circles in Figure 9. Note that in the
assembly code, the instructions under the same numerical
label (i.e., 5 and 6 marked in bold) are grouped into a single
bundle and are executed together. Adjusting the packing
ratio to 60%, 40% and 20% is also straightforward with this
framework. For instance, if we only keep the operations on
s0, s1, and s2 while eliminating the calculations of s3, the
resultant packing ratio is around 60%, as there are only three
data independent instructions available in each cycle.

We measure the power consumptions of these kernels
and illustrate the results in Figure 10. Note that the profiling
results of the kernels show that the ALUPacking is the only
varying parameter while all other counters remain un-
changed. Therefore, we can safely conclude that the differ-
ence across the power consumptions should be caused by the
changes of the packing ratio; or in other word, by the em-
ployment of different processing elements. In addition, the

assembly-codes show that the t unit is not involved in com-
putations when the packing ratio varies from 20% to 80%.
We thereby infer from the linear segment of the curve that
the x/y/z/w units within a thread processor consume identical
power. The slope abruptly becomes steeper when the ratio
exceeds 80%, implying that the t unit is likely to require
higher power to conduct an operation. Actually, from the
curve, it is easy to derive that, the special function unit ap-
proximately consumes twice more power than an ALU to
drive an execution.

Previous studies demonstrate that executing distinct types
of operations on a processor may result in different power
consumptions; therefore, we also compare the power when
different calculations are included in the kernel. We first
modify the kernel which has an 80% packing ratio by replac-
ing all the floating point additions in the loop with multipli-
cations. By doing this, we aim at measuring the power dissi-
pations when the ALUs (i.e., x/y/z/w) are busy on running
multiplications. Our second goal is to further investigate the
special function unit. Specifically, we record the power con-
sumptions when the t unit is conducting multiplications or
floating point to integer conversions. The results of these two
experiments are demonstrated in Figure 11. As can be ob-
served, executing multiplications on the four ALUs con-
sumes identical power as running addition instructions does;
besides, the special function unit consumes the same power
no matter it is assigned an addition, a multiplication, or a
conversion operation. Note that the small discrepancy be-
tween the power values shown in Figure 11 should be caused
by the measurement errors.

Based on these observations, it is straightforward to con-
sider that decreasing the usage of the special function unit
may help to reduce the energy consumption because the t
unit is more power-consuming than other ALUs. To study
this issue, we design a reduction benchmark to compare the
executions when the packing ratio is set to 80% and 100%,
respectively. The kernel structure is similar to the micro-
benchmark shown in Figure 9, as it is convenient to control
the packing ratio in this circumstance. Recall that for the
kernel with 80% packing ratio, the t unit will not be utilized
for computation. The results are shown in Figure 12. As ex-
pected, encapsulating four computations into a bundle can

Figure 9. An example code for the VLIW packing ratio tuning. The one

on the left is the kernel source code, while the one on the right is the
assembly-level code. The red circles indicate that the five-way VLIW are

fully utilized, corresponding to a 100% packing ratio

Figure 10. Power consumption variation with ALUPacking changing

90

100

110

120

130

140

20 40 60 80 100

Po
w

er
 (W

)

Packing Ratio (%)

Figure 11. Comparison of power consumptions while executing different

instructions

70

75

80

85

90

95

100

105

110

115

120

125

130

135

A
LU

 p
ac

ki
ng

 r
at

io
 (%

)

G
PU

 P
ow

er
 (W

)

156

decrease the power consumption, but suffering from a per-
formance degradation. However, the energy consumptions in
these two cases are almost identical. Considering that the
special function unit still consumes static power even if no
operations are assigned to it, we can expect more power and
energy savings with real four-way VLIW processors.

According to our analysis, the principles for GPU power
and energy reduction can be summarized as follows:

• Software developers can adjust the execution order
of the expressions within an application kernel, in
order to decrease the packing ratio and reduce the
power consumption. Especially, for kernels which
largely use the special function unit to conduct
ALU operations, excluding the t unit from computa-
tion may result in remarkable power savings. How-
ever, this adjustment should be carefully conducted
because inappropriate modification may lead to un-
acceptable performance degradation.

• Hardware engineers should optimize the VLIW
processors to lower down the power consumption
of the special function unit. Our experiments dem-
onstrate that the t unit consumes more power even
if it is executing a simple floating point addition.
This cost-inefficient design deserves further optimi-
zation for better efficiency.

V. RELATED WORK
In recent years, several researchers have authored out-

standing studies on the GPU performance modeling. Hong et
al. [12] introduce an analytical model with memory-level and
thread-level parallelism awareness to investigate the GPU
performance. Their model can be used to derive the perfor-
mance of a CUDA kernel by carefully analyzing the execu-
tion overlap of memory warps and computation warps.
Baghsorkhi et al. [9] propose to use the work flow graph to
estimate the execution time of a GPU kernel. In [21], Wong
et al. present using a set of micro-benchmarks to explore the
internal architecture of a widely used Nvidia GPU. More
recently, Zhang and Owens [22] use a similar micro-
benchmark based approach to quantitatively analyze the
GPU performance. Our work majorly differs from these stu-
dies in that we employ a statistical tool to accurately identify

the most influential variables to the GPU performance, in-
stead of deriving all conclusions based on micro-benchmark
executions or analytical models.

On the other hand, literature on the GPU power analysis
can also be found in prior studies. Hong and Kim [13] pro-
pose an integrated GPU power and performance analysis
model which can be applied without performance measure-
ments. By combining an analytical timing model and an em-
pirical power model, they accurately predict the power con-
sumptions of GPU workloads based on only the instruction
mix information. Using performance counters to predict the
GPU power is another feasible approach. Ma et al. [15]
present a scheme to analyze the power consumption of a
GPU when the device is running typical OpenGL programs.
In [16], Nagasaka et al. introduce a statistical model to pre-
cisely estimate the power consumption of GPGPU kernels
running on an Nvidia GTX 285.

Efforts are also made to explicitly improve the energy ef-
ficiency of GPU applications. Huang et al. [14] evaluate the
performance, energy consumption and energy efficiency of
commercial GPUs running scientific computing benchmarks.
They demonstrate that the energy consumption of a hybrid
CPU+GPU environment is significantly less than that of
traditional CPU implementations. In [19], Rofouei et al.
present a similar conclusion that a GPU is more energy effi-
cient compared to a CPU when the performance improve-
ment is above a certain bound. Ren et al. [18] consider even
more complicated scenarios in their study. The authors im-
plement different versions of matrix multiplication kernels,
running them on different platforms (i.e., CPU, CPU+GPU,
CPU+GPUs) and comparing the respective performance and
energy consumptions. Their experiment results show that
when the CPU is given an appropriate share of workload, the
best energy efficiency can be delivered.

Studies on typical ATI GPUs are even fewer. Taylor and
Li [20] develop a micro-benchmark suite for ATI GPUs. By
running the micro-benchmarks on different series of ATI
products, they discover the major performance bottlenecks
on those devices. However, power consumption is not taken
into account in their work.

To the best of our knowledge, this study is the first one to
systematically analyze the performance and power consump-
tion of a typical ATI GPU at the architectural level. Our
work respectively identifies the most important variables that
impact GPU performance and power consumptions; addi-
tionally, we give suggestions that can be easily understood
by both software engineers and hardware architects to optim-
ize the system efficiency.

VI. CONCLUSION
In this paper, we present a comprehensive study on the

performance and power consumptions of a recent ATI GPU.
By employing a rigorous statistical model to analyze the
execution behaviors of representative general-purpose GPU
(GPGPU) applications, we conduct insightful investigations
on the target GPU architecture. Our results demonstrate that
the GPU execution performance and the power dissipation
are dependent on different architectural variables. Further-
more, we design a set of micro-benchmarks to study the

Figure 12. Execution comparison of the reduction benchmark when the

special function unit is used/not used

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time power energy

Re
la

ti
ve

 V
al

ue
with SFU
w/o SFU

157

power consumption features of different function units on the
GPU. Based on those results, we derive instructive principles
that can guide the design of power-efficient high perfor-
mance computing systems.

ACKNOWLEDGMENT
This work is supported in part by an NSF grant CCF-

1017961, the Louisiana Board of Regents grant NASA /
LEQSF (2005-2010)-LaSPACE and NASA grant number
NNG05GH22H, LEQSF (2006-09)-RD-A-10, NSF (2009)-
PFUND-136, LEQSF (2011)-PFUND-238 and the Louisiana
State University Research Council. Ying Zhang is holding a
Flagship Graduate Fellowship from the LSU graduate
school. We acknowledge the computing resources provided
by the Louisiana Optical Network Initiative (LONI) HPC
team. Finally, we appreciate invaluable comments from ano-
nymous reviewers which help us finalize the paper.

REFERENCES
[1] AMD Corparation. AMD Stream Profiler.

http://developer.amd.com/gpu/amdappprofiler/pages/default.aspx.
[2] AMD Corparation. AMD Stream SDK.

http://developer.amd.com/gpu/amdappsdk/pages/default.aspx.
[3] Nvidia Corparation. Geforce GTX 280.

http://www.nvidia.com/object/product_geforce_gtx_280_us.html.
[4] Intel Corparation. Intel Core i7-920 Processor.

http://ark.intel.com/product.aspx?id=37147.
[5] Nvidia Corparation. What is CUDA?

http://www.nvidia.com/object/what_is_cuda_new.html.
[6] OpenCL – The open standard for parallel programming of

heterogeneous systems. http://www.khronos.org/opencl.
[7] AMD Corparation. ATI Radeon HD5000 Series: In inside view. June

2010.
[8] AMD Corparation. ATI stream computing OpenCL programming

guide. June 2010.
[9] S. Baghosorkhi, M. Delahaye, S. Patel, W.Gropp and W. Hwu, “An

adaptive performance modeling tool for GPU architectures”, in
Proceedings of 15th ACM Symposium on Principles and Practice of
Parallel Programming (PPoPP), January 2010.

[10] L. Breiman. Random forests. In Machine Learning, 45, pp. 5-32,
2001.

[11] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification
and regression trees. Chapman and Hall/CRC, January 1984.

[12] S. Hong and H. Kim, “An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness,” in
Proceedings of 36th Annual International Symposium on Computer
Architecture (ISCA), June 2009.

[13] S. Hong and H. Kim, “An integrated gpu power and performance
model,” in Proceedings of 37th Annual International Symposium on
Computer Architecture (ISCA), June 2010.

[14] S. Huang, S. Xiao and W. Feng, “On the energy efficiency of
graphics processing units for scientific computing,” in Proceedings of
5th IEEE Workshop on High-Performance, Power-Aware Computing
(in conjunction with the 23rd International Parallel & Distributed
Processing Symposium), June 2009.

[15] X. Ma, M. Dong, L. Zhong, and Z. Deng, “Statistical power
consumption analysis and modeling for gpu-based computing”, in
Workshop on Power-Aware Computing and Systems (HotPower),
October 2009.

[16] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,
“Statistical power modeling of gpu kernels using performance
counters,” in Proceeding of 1st Green Computing Conference, August
2010.

[17] R. Picard and R. D. Cook, “Cross-validation of regression models”, in
Journal of American Statistical Association, pp. 575 – 583, 1984.

[18] D. Ren and R. Suda, “Investigation on the power efficiency of multi-
core and gpu processing element in large scale SIMD computation
with CUDA”, in Proceeding of 1st Green Computing Conference,
August 2010.

[19] M. Rofouei, T. Stathopulous, S. Ryffel, W. Kaiser, and M.
Sarrafzadeh, “Energy-aware high performance computing with
graphics processing units”, in Workshop on Power-Aware Computing
and Systems (HotPower), December 2008.

[20] R. Taylor and X. Li, “A micro-benchmark suite for AMD GPUs”, in
Proceedings of 39th International Conference on Parallel Processing
Workshops, September 2010.

[21] H. Wong, M. Papadopoulou, M, Alvandi, and A. Moshovos,
“Demistifying GPU microarchitecture through microbenchmarking”,
in Proceedings of International Symposium on Performance Analysis
of Systems and Software (ISPASS), March 2010.

[22] Y. Zhang and J. Owens, “A quantitative performance analysis model
for GPU architectures,” in Proceedings of 17th IEEE Symposium on
High Performance Computer Architecture (HPCA), February 2011.

158

