
Microprocessors and Microsystems 39 (2015) 271–285
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
Cross-architecture prediction based scheduling for energy efficient
execution on single-ISA heterogeneous chip-multiprocessors
http://dx.doi.org/10.1016/j.micpro.2015.04.008
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ying.esz.zhang@gmail.com (Y. Zhang), lide.duan@utsa.edu

(L. Duan), bli@lsu.edu (B. Li), lpeng@lsu.edu (L. Peng), sadagopan.Srinivasan@amd.
com (S. Sadagopan).
Ying Zhang a,⇑, Lide Duan b, Bin Li c, Lu Peng a, Srinivasan Sadagopan b

a Division of Electrical & Computer Engineering, School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, LA 70803, United States
b Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, United States
c Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA 70803, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 8 May 2015

Keywords:
Parallel processors
Heterogeneous systems
Energy efficiency
Modeling techniques
In recent years, single-ISA heterogeneous chip multiprocessors (CMP) consisting of big high-performance
cores and small power-saving cores on the same die have been proposed for the exploration of high
energy-efficiency. On such heterogeneous platforms, an appropriate runtime scheduling policy lies at
the heart of program executions to benefit from the processor heterogeneity. To date, most prior works
addressing this problem concentrate on the performance enhancement; however, they lack detailed jus-
tification of the runtime energy consumption and do not result in the most energy-efficient execution all
the time. In this work, we pay attention to reducing the energy consumption for workloads running on
heterogeneous CMPs and propose a scheduling algorithm based on dynamic execution behaviors to
exploit better energy-efficiency. Our strategy is capable of significantly reducing the energy consumption
while delivering comparable performance to a recently proposed heterogeneous scheduler (MLP-ratio),
thus improving the energy-efficiency impressively.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The near-cubic rise of power consumption with the increasing
of core frequency has driven the processor development into the
chip multi-processor (CMP) era in the past decade. By effectively
exploring the thread-level parallelism, contemporary CMP com-
puter systems stand as an attractive platform to manage the com-
plex multi-threaded and multi-program execution scenarios.
However, the ever increasing power crisis makes the
energy-efficiency a first-order concern in addition to raw perfor-
mance in a wide spectrum of computing platforms ranging from
data centers that aim to reduce the utility cost to smartphones
where a long battery life is among the most important goals, thus
necessitating further exploitation of the energy-efficiency in future
computing environments. Considering the diversity of program
characteristics, conventional CMPs which consist of multiple iden-
tical cores might not be the perfect candidate for the exploitation.
In this situation, computer architects propose the ‘‘heterogeneous
CMP’’, where processor cores with disparate architectures are
integrated on the same silicon, as an alternative design paradigm
of traditional CMPs. It is widely acknowledged that heterogeneous
chip multi-processors can effectively improve the energy-
efficiency compared to homogeneous CMPs [8,17].

A heterogeneous CMP can be implemented in various manners,
while the single Instruction-Set Architecture (ISA) organization is a
representative design paradigm. A single-ISA heterogeneous CMP
is usually composed of big cores equipped with complex
out-of-order issue logic and sufficient computing resources and
small cores on which the executions are driven by simple
in-order pipelines. Put it another way, big cores provide high per-
formance by consuming more power while the small cores reduce
power dissipation at the expense of slower execution. To more
effectively utilize the core heterogeneity and leverage their respec-
tive advantages, an appropriate job scheduler that is responsible
for dynamic program-to-core assignment is in high demand.
Ideally, the scheduler should be able to ‘‘foresee’’ the execution
results (e.g., the system throughput or overall energy-efficiency)
of all possible task distributions prior to a scheduling point, in
order to select the most promising job assignments for the next
execution period. Nevertheless, the diversities of program execu-
tion behaviors and architectural disparities among integrated cores
make estimating the execution behavior of a program running on a
core with different architecture a challenging problem. To work
around this issue and effectively identify the optimal

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2015.04.008&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2015.04.008
mailto:ying.esz.zhang@gmail.com
mailto:lide.duan@utsa.edu
mailto:bli@lsu.edu
mailto:lpeng@lsu.edu
mailto:sadagopan.Srinivasan@amd.com
mailto:sadagopan.Srinivasan@amd.com
http://dx.doi.org/10.1016/j.micpro.2015.04.008
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

272 Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285
program-to-core assignment, in this work we employ a rigorous
statistical technique to generate a set of ‘‘signatures’’ with respect
to common performance metrics, and use them to guide the
scheduling decision at runtime.

On the other hand, in prior works targeting heterogeneity-aware
scheduling, the program relative performance between big and
small cores is widely adopted as the heuristic to guide the schedul-
ing [5,8,17]. Specifically, programs that gain impressive perfor-
mance boost on faster cores are selected to run on big cores; on
the contrary, programs demonstrating mild performance improve-
ment on big cores are chosen to execute on small cores. When
applications with such distinctive features are concurrently run-
ning on a heterogeneous CMP system, a good scheduler will be cap-
able of making the right decision and significantly improve the
overall performance. Correspondingly, workloads falling into this
category are considered as scheduling-sensitive [8].

While those proposed scheduling strategies are capable of
improving performance, they do not necessarily lead to the most
energy-efficient execution all the time, especially when the pro-
grams to be scheduled are scheduling-insensitive due to similar
relative performance. We use the co-execution of programs bzip2
and vpr on a dual-core heterogeneous CMP as an example to justify
this argument. As listed in Table 1, these two programs demon-
strate fairly similar performance ratio between big and small cores.
Therefore, by employing an existing heterogeneity-aware sched-
uler based on relative performance, it is likely that (1) they are ran-
domly mapped to different cores since the scheduler recognizes
this workload as scheduling-insensitive, or (2) bzip2 is assigned
to the big core as it demonstrates slightly higher performance gain
than its co-runner. In Fig. 1 we illustrate the energy consumption
and energy-delay product (ED) for two possible scheduling, namely
bzip2_B + vpr_S and vpr_B + bzip2_S, where the former one indi-
cates that bzip2 is running on the big core and vpr is on the small
core. Similarly, the latter notation corresponds to the opposite
scheduling decision. As can be observed, the second scheduling
(i.e., vpr_B + bzip2_S) turns to be more energy-efficient than its
alternative due to the significant power reduction on the big core.
Two implications can be noticed from this example. First, schedul-
ing aiming to minimize the energy consumption and ED does not
always reach consensus with the performance-oriented scheduling
in a heterogeneous system. Second, for scheduling-insensitive
workloads where programs have fairly close speedup on the big
core, there is still plenty of headroom for the energy efficiency
optimization.

� Drawing upon these observations, we consider that an appro-
priate scheduling policy targeting on energy minimization is
of great significance in emerging heterogeneous systems.
Table 1
Power and performance ratio for bzip2 and vpr.

Program Big core power (W) Small core power (W) Performance ratio

bzip2 24.64 9.18 2.51
vpr 18.97 10.32 2.48

0.6

0.7

0.8

0.9

1

1.1

Energy ED

N
or

m
al

iz
ed

 V
al

ue

bzip2_B+vpr_S

vpr_B+bzip2_S

Fig. 1. Energy and ED for bzip2 + vpr with different mappings.
Therefore in this work, we propose a rule-set guided scheduling
strategy to minimize the energy consumption for workloads
running on heterogeneous CMPs. Meanwhile, our scheduler is
able to deliver comparable performance to the optimal existing
heterogeneous scheduler, thus achieving higher energy effi-
ciency than previous schemes. We employ an advanced statisti-
cal tool to facilitate the development of our algorithm. The tool
is able to generate a set of ‘‘IF-ELSE’’ conditions with regard to
common performance metrics on involved cores. Each condi-
tion is expressed as an inequality such as ‘‘Xi 6 (or P) N’’, where
Xi is an easily measured performance metric and N is a certain
value. The scheduler then dynamically makes decisions for pro-
gram assignment by comparing the runtime execution behav-
iors with the selected rules at each scheduling interval. When
the conditions on both cores are satisfied, the scheduler predicts
that a job swap will be more energy-saving than the current
mapping, thus switching the programs on the big and small
cores accordingly. Otherwise the current scheduling is main-
tained for the next period. In general, compared to prior
schemes, our rule-set based scheduling strategy has the follow-
ing advantages.
� It is capable of identifying the most energy-efficient execution

patterns on heterogeneous CMPs. Instead of exclusively concen-
trating on performance gain, it pays attention to the energy sav-
ing and effectively increases the overall energy efficiency by
scheduling intervals that might be inappropriately handled or
ignored in throughput-targeted scheduling.
� It is a rigorous approach as the selective rules are generated by

an advanced statistical tool. This means that the scheduling is
guided by factors that are essentially influential to the energy
efficiency rather than arbitrary variables.
� It is easy to be implemented in practice since no extra hardware

is required. The performance counters available in most com-
mercial processors can be utilized to monitor the execution
behaviors for scheduling.

2. Related work

Within past years, several researchers have authored outstand-
ing studies in the heterogeneous architecture field. Kumar et al.
[17] propose one of the earliest single-ISA heterogeneous multi-
processor and discuss its potential for power reduction. The
sampling-based scheduling algorithm that can be applied to a real-
istic multi-processor for energy-efficient execution is also pro-
posed. In [18], the performance for multithreaded workload
executing on a single-ISA heterogeneous processor is analyzed in
detail. By adopting a similar sampling-based assignment policy,
the system can capture the intra-thread diversity and schedule
the jobs for the maximal throughput. Becchi and Crowley evaluate
a set of static and dynamic scheduling policies designed for hetero-
geneous platform in [5]. The authors show that dynamic job
scheduling largely outperforms the static assignment by delivering
higher throughput. Hao et al. [11] describe a scheduling policy
using hardware counters and evaluate it on a real multiprocessor
system running Linux. They argue that the last level cache access
latency is a good metric to guide the scheduling on heterogeneous
platform. In [16], Koufaty et al. introduce the bios scheduling
which is similar to the policies based on memory intensity.
Balakrishnan et al. quanti-tatively analyze the impact of perfor-
mance asymmetry between cores on the application scalability
and predictability [4]. Saez et al. present a series of works that tar-
get the performance enhancement on asymmetric CMP platforms
[25–27]. They propose an algorithm named HASS [27] to guide
the job assignment on single-ISA heterogeneous systems for the
maximum performance. They also develop the CAMP scheduler
to explore both efficiency and TLP [25,26]. Radojkovic et al. [24]

Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285 273
consider a scenario with massive multithreaded processors where
an exhaustively search for the optimal task assignment is unfeasi-
ble due to the substantial possibilities. Therefore, they introduce a
statistical approach to seek the best work distribution. Li et al.
[22,23] implement a scheduler composed of fast-core-first assign-
ment and migration on a performance-asymmetric CMP architec-
ture. Lakshminarayna, on the other hand, propose an age based
approach that maps the thread with longer remaining execution
time to a faster core [19]. More recently, Craeynest et al. present
a heterogeneous scheduler via performance impact estimation
(PIE) [8]. Their evaluation results demonstrate that the PIE
scheduling policy outperforms prior schemes based on program
memory intensity. The authors also show that memory-level paral-
lelism [9] ratios of programs provide good estimation for relative
performance and can be employed to guide the runtime schedul-
ing. A similar strategy through the prediction of CPI across core
types is proposed by Srinivasan et al. [33].

Studies addressing energy minimization on heterogeneous plat-
form can also be found in literature. Saad et al. [29] and Goraczko
et al. [13] respectively propose the software partitioning approach
to reduce the energy consumption on heterogeneous embedded
systems. In [7], Chen and John present a scheduler based on
weighted Euclidean distances to improve the energy efficiency on
heterogeneous CMPs. Sharifi et al. [30] takes temperature into
account and introduce a joint solution for thermal and energy
management. Grant and Afsahi [14] introduce a scheduling mech-
anism to save energy on asymmetric multiprocessors for scientific
applications. In their proposed algorithm, one core is reserved for
running the operating system at adjustable frequencies while other
processors are executing the user threads at full speed. In [12],
Heath et al. design a heterogeneous server cluster which demon-
strates remarkable energy efficiency improvement over traditional
homogeneous clusters. Singh et al. [31] propose a prediction based
approach for power estimation and scheduling on traditional
homogeneous CMPs, in order to improve the energy efficiency.
3. Heterogeneous architecture

The heterogeneous platform considered in this study is a
single-ISA CMP containing a number of big and small cores. Fig. 2
illustrates its architectural overview. As can be seen, each core is
equipped with private L1 caches, connecting to the shared L2 cache
via an interconnection. The main memory stands as the lowest
level in the memory hierarchy and communicates with the shared
cache through a memory controller. Note that although our study
is conducted on CMPs with shared last-level caches (LLC), the
rule-set guided scheduling approach can also be adapted to sys-
tems without shared LLC and effectively increase the energy
efficiency.
Big Core
Small
Core

Big Core
Small
Core

L1 cache L1 cache L1 cache L1 cache

…. ….

Interconnection

L2 cache

Memory Controller

DRAM

Fig. 2. Architectural overview of the considered heterogeneous CMP.
4. Statistical tools

As described in Section 1, the proposed scheduling scheme is
built on the measurements of common performance metrics. This
introduces two challenging problems to our study. First, we should
identify the important factors which impose relatively large impact
on the overall energy consumption. Second, we need to quantita-
tively formulate the scheduling condition with regard to the selec-
tive performance metrics. Taking these into consideration, we
employ an advanced statistical tool to facilitate the rule
extractions.
4.1. Patient Rule Induction Method (PRIM)

PRIM is an advanced statistical model [10] whose objective is to
find a region in the input space (com-posed of configuration
parameters in this work) that gives relatively low values for the
output response, e.g. the FIT value. The selected region (or ‘‘box’’)
is described in an interpretable form involving a set of ‘‘rules’’
depicted as B ¼ \p

j¼1ðxj 2 sjÞ, where xj represents the jth input vari-
able and sj is a subset of all possible values of the jth variable. In
other words, the identified region B is the intersection of p subsets,
each of which is from one of the p input variables.

Fig. 3 illustrates the construction of the ‘‘optimal’’ region, which
is composed of two phases: (1) patient successive top-down peel-
ing process; (2) bottom-up recursive pasting process. The
top-down peeling starts from the entire space (box B) that covers
all the data. In each iteration, a small subbox b within the current
box B is removed; we calculate the output mean for the elements
remaining in B–b = {x 2 B & x R b}, performing this operation in
each dimension (i.e., try removing a different subbox from each
input variable); finally we choose the one which yields the smallest
output mean value for the next box B–b. This procedure is applied
iteratively until the proportion of the data points remaining in the
current box (termed the support) is below a preset threshold b.
Note that for a categorical variable, an eligible subbox b contains
only one element of the possible values of the variable in the cur-
rent box B.

The pasting algorithm works inversely from the peeling results
and the final box can be improved by readjusting its boundaries.
The reason for including this step is that we only look one step
ahead in each peeling iteration, thus the box boundary is deter-
mined without knowledge of later iterations. This implies that
we may peel too much from the input space and eliminate many
design options unintentionally. In specific, the pasting phase works
as follows. Starting with the peeling solution, the current box B is
iteratively enlarged by pasting onto it a small subbox that mini-
mizes the output mean in the new larger box. We iteratively apply
this process and successively enlarge the current box, until the
addition of the next subbox causes the output mean to increase.

According to the above description, it is straightforward to
derive that the first peel stage introduces at most n�

Pp
j¼1Cj com-

parisons, where n denotes the number of observations, p is the
number of input variables, and Cj indicates the amount of values
that the jth variable can take. Each peeling iteration conducts a
gradually decreasing number of operations since there are fewer
samples left after a peeling iteration. PRIM performs approximately
�log(n)/log(1 � a) peeling steps where a denotes the percentage of
points removed at each iteration.

PRIM outstrips many widely adopted strategies including
greedy methods by providing much more stable solutions
(hyper-boxes). For instance, a binary tree partitions the data
quickly because of its binary splits, while with PRIM only a small
portion of data is removed at each iteration. As a consequence, in
case where the training data is slightly changed, a tree structure

Fig. 3. PRIM training procedure, including peeling and pasting.

274 Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285
may change drastically but the PRIM solution is less affected. On
the other hand, PRIM is also capable of identifying the optimal
region even if it is inconsecutive. In this situation, PRIM will gener-
ate a sequence of hyper-boxes instead of only one. Namely, the
PRIM algorithm can be repeated on the remaining dataset after
getting the first hyper-box. By doing so, the disconnected subspace
can also be covered. In this work, we found that the leading box
often covers most of the points with the small response values,
thus we only identify the first hyper-box.
4.2. Classification and Regression Tree (CART)

Although the described statistical technique PRIM is able to
build a rigorous correlation between multiple input variables and
a response, the accuracy of the model depends on features of the
applications in the training set. Let us assume that the execution
behaviors of a few intervals significantly deviate from those of
other training instances while their response values are identical.
In this scenario, a single universal PRIM model may not be capable
of capturing all those runtime variations. This is because that the
PRIM algorithm is prone to build a model that fits the majority sit-
uations in the training instances. As a result, the established model
might ignore those samples appearing less frequently. Considering
the diversity of program characteristics, this limitation might sig-
nificantly decrease the prediction accuracy when the model is
applied to different program phases or applications that demon-
strate completely distinct execution behaviors to training samples.

In order to figure out this problem, we propose to partition the
entire data set into several categories, each of which contains
instances demonstrating similar characteristics. If we train a
PRIM model for each data subset and generate a group of rule sets
correspondingly, the obtained rules are supposed to be more
robust and be effective to handle different execution scenarios.
To achieve this goal, we employ another statistical tool named
Classification and Regression Tree (CART) [6] for the data segmen-
tation. CART has been in use for about 25 years and remains a pop-
ular data analysis tool. It provides an alternative to linear and
additive models for regression problems. The CART models are fit-
ted by a recursive partitioning whereby a dataset is successively
split into increasingly homogenous subsets until the information
gained by additional splits is not outweighed by the additional
complexity due to the tree’s growth. Trees are adept at capturing
non-additive behavior, e.g. interactions among input variables
are routinely and automatically handled. Further, regression tree
analysis can easily handle a mix of numeric and categorical input
variables.
5. Rule-set guided scheduling

While most modern operating systems support con-current
execution of multiple programs running on different cores, it is
not necessary to keep all processor cores active during the entire
execution. That is, a portion of cores might be idle (or in
power-saving mode) while others are running in order to reduce
the total energy consumption. This implies two scheduling circum-
stances that need to be carefully considered on a heterogeneous
CMP platform; namely, (1) choosing appropriate cores to execute
the programs while making other cores idle and (2) identifying a
suitable task-to-core mapping when all cores need to be utilized.
In this section, we will present how the rule-set guided scheduling
strategy would be applied in these two scenarios in detail.
Moreover, the scheduling policy should be sufficiently scalable as
heterogeneous CMPs might be configured in different manners.
Therefore, we also discuss the effectiveness of the proposed strat-
egy on heterogeneous platforms with different configurations.

5.1. Scheduling in presence of idle cores

It is fairly common that a portion of integrated cores on a CMP
are idled at runtime for the sake of power saving. For instance,
assume a single-thread program is to be executed on a heteroge-
neous chip multi-processor similar to the Big.Little platform from
ARM which consists of a powerful big core and a slow small core
[1]. In this situation, it makes no sense to enable both cores since
one core is sufficient to run the program at any instant during
the execution. Considering the representativeness of this scenario
in practice, we demonstrate the single-program scheduling on a
dual-core system to exemplify the implementation of the rule-set
guided strategy in presence of idle cores.

For a scheduling interval, we must identify whether to run the
program on the big core or the small core. Clearly, an oracle sched-
uler will examine these two cases during runtime (at each schedul-
ing point) and choose the most suitable core for execution to
achieve the optimal energy efficiency. However, dynamically
determining the optimal schedule for a program at runtime is a
challenging problem. To overcome this conundrum, we employ

Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285 275
Patient Rule Induction Method (PRIM) to generate some selective
rules on a number of performance measurements. In a scheduling
interval, if the measured performance counters conform to these
rules, the scheduler will map the program to the appropriate core
accordingly.

More specifically, the PRIM model training is composed of the
following steps. First, we select a number of typical programs for
extracting the rules. For each of them, we respectively affinitize
it to the big core and the small core for execution and collect a
set of easily measured performance metrics along with the energy
consumption for every interval, whose length is set to a reasonable
value for the study. By doing so, we can obtain the following infor-
mation from the two types of cores:

Information from big core :< X1
b ;X

2
b ;X

3
b ; ;Xm

b ; Eb >

Information from small core :< X1
s ;X

2
s ;X

3
s ; ;Xn

s ; Es >

In the tuple listed above, the X variables denote the measured
performance counters such as the number of cache misses and
the number of branch mispredictions. The subscript of each
variable indicates the corresponding platform (i.e., b = big core,
s = small core). The variable E represents the energy consumption
of this interval. In this example, we measure m performance
counters on the big core and n counters on the small core.
Second, we compare the energy consumption for each interval
under these two assignments and set a Boolean flag based on
the comparison result. The flag is then used as the output of a
training instance. Finally, we feed the training samples measured
from all selected programs to establish PRIM models and extract
the rules.

It should be noted that separate models should be established
for big and small cores. This is because the program is running
on either the big core or the small core at any interval, requiring
two groups of conditions to respectively guide the big-to-small
and small-to-big migration. Let us first focus on the big-core model
that is used to manage the big-to-small migration. We assume that
Es is smaller than Eb for a specific interval. With this assumption,
the training sample corresponding to this interval is
<X1

b ,X2
b ,X3

b , . . . ,Xm
b , flag> where the flag is set to 1, indicating that

the program should be assigned to the small core for energy saving.
In contrast, if Es is greater than Eb, a flag of 0 will be set. This means
that running the program on the big core is more preferable (i.e., it
is unnecessary to transfer the job to the small core). We train a
model for the small core to govern the small-to-big migration in
a similar fashion. In specific, training instances in a form of
<X1

s ,X2
s ,X3

s , . . . ,Xn
s , flag> are fed into the PRIM tool. Note that there

are two approaches to measure the runtime energy consumption
in practice:

(1) If the processor provides hardware counter to report the
power usage, we just need compare the energy consumption
between the aforementioned two cases. Then we set the flag
based on the comparison result. Some recently released pro-
cessors such as Intel Sandy Bridge architectures and later
products support dynamic power measurement by using a
model-specific register (MSR) [3].

(2) In case that there is no dynamic energy reporting function
on the chip, we can have an accurate estimation on runtime
energy via multiplying the average power and the execution
time. The dynamic power of the chip can be estimated from
performance counters through another predictive model
[15]. Specifically, the chip power can be added up by each
component’s power derived from their accessing rates, a
scaling factor, and the maximal component power, plus idle
power. The access rate of a component can be read and
calculated from performance counters; the maximal power
of each component and the scaling factors are generated
and tuned by running a set of stress benchmarks.

Recall that PRIM rules identify the input space subregion that
has the highest response values. Therefore, the generated rules
quantify the situations that a program migration from the big core
to the small core (or the other way around) is needed to achieve
better energy efficiency.

The selective PRIM rules are then engaged by the operating sys-
tem to guide the scheduling of the program between two cores.
Assume the program is randomly mapped to a core (either the
big one or the small one) at initial. At a scheduling point, the per-
formance measurements are compared with the extracted PRIM
rules corresponding to the current used core. If conditions are sat-
isfied, the model predicts that transferring the job to the other core
will lead to better energy efficiency; otherwise the present
scheduling is preserved. The scheduler then makes the assignment
based on the prediction result and continues the execution to the
next scheduling point. Note that the rule-set guided scheduling is
sufficiently flexible to manage the program execution for optimiz-
ing different metrics. For instance, by changing the objective dur-
ing the model construction, this approach can be easily applied
to guide the scheduling in a system where performance maximiza-
tion is the prime concern. Nevertheless, our concentration in this
paper is energy minimization.
5.2. Scheduling without idle cores

When the number of concurrent programs is increasing, all
integrated cores on a CMP might be utilized to maximally exploit
the processor computation capability. In this situation, the
scheduling problem is essentially to identify the task-to-core map-
ping which results in the minimal energy consumption. Without
loss of generality, we consider a scenario where two programs (A
and B) run on a dual-core CMP consisting of one big core and
one small core. For a scheduling interval, we need to compare
the total energy consumption of the following two cases: (1)
A on the big core and B on the small core; and (2) B on the big core
and A on the small core. Between these two scheduling, we should
choose the one with the lower energy consumption. Similarly, we
adopt the PRIM tool to generate a set of rules to guide the
scheduling.

The training procedure is fairly close to that described in the
previous subsection. The most significant difference lies in that a
unified model regarding to the performance metrics from both
the big and small cores is built, meaning that conditions on big
and small cores are checked simultaneously at a scheduling point.
This is because that both the big and small cores are utilized to run
programs, thus the execution behaviors from both sides should be
monitored in order to evaluate whether a job swap leads to less
energy consumption. The specific training process is as follows.
First, we randomly select a certain number of program pairs. For
each program pair (A and B), we assume that A runs on the big core
and B runs on the small core. For each interval, we can obtain the
following information by executing A and B on the big and small
cores, respectively:

Program A :< X1
b ;X

2
b ;X

3
b ; ;Xm

b >

Program B :< X1
s ;X

2
s ;X

3
s ; ;Xn

s >

Similarly, the variables X denote the measured performance
counters. Second, we compare the energy consumption of this
schedule with its counterpart (re-running B on the big core and
A on the small core), setting a Boolean variable (flag) to one if

276 Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285
swapping these two programs will generate lower energy.
Consequently, we can form a PRIM training sample by combining
the above information:

< X1
b ;X

2
b ;X

3
b ; ;Xm

b ;X
1
s ;X

2
s ;X

3
s ; ;Xn

s ; flag >

For each training instance, the inputs are the m + n performance
counters from both cores while the output is a flag indicating if
these two programs need to be switched in the next interval. We
then feed all instances into PRIM to generate the conditions.

Fig. 4 illustrates how the rule set interacts with the OS and
makes decision for program assignment at runtime. The two pro-
grams are first executed on two cores (one big and one small) for
an interval, respectively. At a scheduling point, the performance
measurements of the current interval are compared with the
extracted PRIM rules. If conditions on both cores are satisfied,
the model predicts that swapping the two programs will lead to
better energy efficiency; otherwise the present scheduling is pre-
served. The scheduler then makes the assignment based on the
prediction result and continues the execution to the next schedul-
ing point.

As described in Section 4, the effectiveness of the rule guided
scheduling is largely determined by the features of the programs
in the training set. In case where the programs for validation
demonstrate significantly different execution behaviors from the
training programs, the derived rules may not be effective in iden-
tifying the swapping cases. In this situation, the model accuracy
can be further improved by preprocessing the training data.
Instead of training a single PRIM model, we can build a number
of different PRIM models according to the similarity of different
training samples. Specifically, we use the CART mechanism to par-
tition the input space into a few subregions. The points belonging
to each individual subregion are similar in terms of energy effi-
ciency. After that, we build a separate PRIM model for each of these
subregions. Consequently, we will have a group of rule sets. When
making predictions during runtime, we first identify which subre-
gion the current input sample locates in, then use the correspond-
ing rule set to determine if a program switch is needed. In practice,
the number of subregions does not need to be large. Our experi-
ments show that partitioning the input space into 4 subregions
(and also training 4 PRIM models accordingly) can result in predic-
tion accuracy within only 5% difference from the oracle scheduler.
This approach is termed Hierarchical PRIM (or H-PRIM).
Scheduler

 Job A is executed
for an interval

 Job B is executed
for an interval

Compare with
PRIM rules

Execu�on behavior

of app A

Execu�on behavior

of app A
Exe

cu
�on behavio

r

of a
pp B

Exe
cu

�on behavio
r

of a
pp B

Fig. 4. PRIM rules guided schedulin
5.3. Algorithm scalability

Our approach is sufficiently scalable to be adopted by a system
with more than 2 cores. In this subsection, we consider two general-
ized heterogeneous platforms and show that how the rule-set based
schedulers lead to energy-efficient execution on these architectures.

We first assume a CMP with an equivalent number of big and
small cores while the core count of each processor type is n. In this
scenario, the optimal energy efficiency can be achieved by perform-
ing n iterations of parallel pair comparison. The scheduling process
is illustrated in Fig. 5. As shown in the figure, in the first iteration, a
big core with the index i (i e [0, n � 1]) is compared with the small
core whose index is (n + i%n). All n pairs of comparisons are per-
formed in parallel. In the second iteration, the big core i will form
a group with the small core (n + (1 + i)%n) and make comparison
correspondingly. Similarly, the comparison will be conducted
between the big core i and the small core (n + (n � 1 + i)%n) in the
nth iteration. Note that the mod operations are involved to emulate
the rotational comparisons. We prove that this method will lead to
the optimal scheduling as follows.

Since we have n big cores and n small cores, as well as 2n jobs
running on them, the optimal schedule is a situation that n jobs
suitable running on the big cores for low energy consumption
(we label the jobs as ‘‘1’’s) will be assigned to n big cores and the
left n jobs, denoted as ‘‘0’’s, will be allocated on n small cores.
We claim that all ‘‘1’’ programs will be assigned to big cores and
all ‘‘0’’ jobs will be allocated on small cores after n iterations, even
though we are unaware of the program classification at the begin-
ning, i.e., whether a program belongs to ‘‘1’’ category or ‘‘0’’ cate-
gory. During each of the n iterations, we have n parallel
comparisons between big and small cores. For each comparison,
we seek better energy efficiency for two programs running on a
big-small core pair. Therefore, we have four possible situations
before the comparison:

(1) a ‘‘1’’ job running on a big core compared with a ‘‘0’’ job run-
ning on a small core;

(2) a ‘‘0’’ job running on a big core compared with a ‘‘1’’ job run-
ning on a small core;

(3) a ‘‘1’’ job running on a big core compared with another ‘‘1’’
job running on a small core;

(4) a ‘‘0’’ job running on a big core compared with another ‘‘0’’
job running on a small core.
Swapping jobs on two cores
 will result in be�er energy

consump�on? i.e. is flag on?

YesYes

Swap the jobs on
two cores

Keep current
scheduling

NoNo

g for dual-program execution.

Fig. 5. Pair-wise comparison illustration for 2n-program scheduling on an nB + nS
platform.

Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285 277
For the first two cases, it will generate an ideal situation that a
‘‘1’’ job will be assigned on a big core. For the third case, a ‘‘1’’ job
will also be allocated on a big core, no matter which ‘‘1’’ job is
selected. Similarly, a ‘‘0’’ job will be set on a big core for the fourth
case. However, there must be a ‘‘1’’ job running on a small core at
this point, considering that the number of ‘‘1’’ jobs is equal to the
total number of big cores. This implies an opportunity for this
‘‘1’’ job running on a small core to be compared with a ‘‘0’’ job exe-
cuted on a big core in a future iteration, since we have n iterations
of parallel comparisons. Thus, any case (4) comparison will fall into
case (2) comparison eventually. Based on this analysis, we con-
clude that all ‘‘1’’ jobs will finally go to big cores, meaning that
the optimal schedule is achieved after n iterations.

Our algorithm can be further generalized to guide the schedul-
ing on a heterogeneous CMP with non-equivalent number of big
and small cores. Let us assume there are m big cores and n small
cores. Therefore, there should be a total of m jobs with label ‘‘1’’
and n jobs with label ‘‘0’’. Without loss of generality, we assume
that m is greater than n. In this situation, the PRIM-based approach
is capable of reaching the desired scheduling status by performing
dm/ne rounds of parallel comparisons described in above as shown
in Fig. 5. In case that m is less than n, the algorithm is similar but
requires dn/me rounds of parallel comparisons.

Fig. 6 illustrates the scheduling procedure on such a heteroge-
neous CMP. As can be noted, the parallel comparisons are
0 1 n-1

0

…..

1 n-1

….. m-1

…..

0 1 n-1 …..….. n 2n

0 n…..

…..

…
..

round 1

round 2

0 m-n+1 …..

0 n-1

….. m-1

…..

last round …..

Fig. 6. Scheduling procedure on a heterogeneous CMP with m big cores and n small cores
(j = 0,1, . . . ,n � 1).
conducted within a window whose size is equal to n (i.e., the smal-
ler one between m and n). By doing so, we are able to perform n
iterations of parallel comparisons between n big and n small cores.
Note that the total number of ‘‘0’’ jobs is n and total number ‘‘1’’
jobs is m. According to the analysis described earlier (where m is
equal to n), after each round of parallel pair comparisons between
n big cores and n small cores, all of the n big cores will have ‘‘1’’
jobs running on them. Therefore, after rounds of parallel compar-
isons, all big cores will have ‘‘1’’ jobs. Meanwhile, all ‘‘0’’ jobs are
scheduled running on the small cores.

It is important to notice that this approach introduces fairly
light overhead to the program execution. First, the model training
is conducted offline and therefore has no impact on the dynamic
execution. Second and more importantly, the pair-wise compar-
isons which are performed at each scheduling interval can be com-
pleted in reasonable time due to the parallel operation in each
round. Specifically, although the total number of comparisons to
reach the desired scheduling is approximately O(mn), all compar-
isons can actually be finished in O(m) time, where m is the larger
core count (i.e., m P n on a CMP with m big cores and n small cores,
or the other way around). Note that traditional
heterogeneity-aware scheduling policies based on relative perfor-
mance estimation involve a sorting process in order to identify
the programs suitable to run on big cores (or small cores).
Assume a quicksort algorithm is employed for the operation. This
introduces O(nlogn) comparisons where n is the total number of
programs. Therefore, our rule-set based scheduling policy raises
no additional overhead compared to state-of-the-art strategies.

Also, the algorithms discussed in this work are built on an
assumption that two types of cores are integrated on the die.
This is reasonable considering that most commercial heteroge-
neous chip multi-processors including ARM Big.Little [1] and
Nvidia Tegra 3 [2] are composed of two families of cores for good
tradeoff between the design complexity and energy-efficiency.

6. Methodology

6.1. Simulation environment

We use a modified SESC simulator [28] to conduct the experi-
ments in this work. The simulator is configured to contain a number
of big and small cores, whose architectural parameters are listed in
iter1: Pb0/Ps0, Pb1/Ps1, Pb2/Ps2…. Pb(n-1)/Ps(n-1)

iter2: Pb0/Ps1, Pb1/Ps2, Pb2/Ps3…. Pb(n-1)/Ps0...

-1

-1

….. m-1 iter1: Pbn/Ps0, Pb(n+1)/Ps1, Pb(n+2)/Ps2…. Pb(2n-1)/Ps(n-1)

iter2: Pbn/Ps1, Pb(n+1)/Ps2, Pb(n+2)/Ps3…. Pb(2n-1)/Ps0...

iter1: Pb(m-n+1)/Ps0, Pb(m-n+2)/Ps1…. Pb(m-1)/Ps(n-1)

iter2: Pb(m-n+1)/Ps1, Pb(m-n+2)/Ps2…. Pb(m-1)-1/Ps0...

(m > n). Big cores are denoted as Pbi (i = 0,1, . . . ,m � 1); Small cores are denoted as Psj

Table 2
Architectural parameters of system components.

Component Parameter Value

Big core Pipeline type Out-of-order
Processor width 4
ALU/FPU 4/2
ROB/RF 120/160
L1I cache size 32 KB
L1D cache size 32 KB
L1 associativity 4
BTB entries 2048

Small core Pipeline type In-order
Processor width 2
ALU/FPU 2/1
L1I cache size 16 KB
L1D cache size 16 KB
L1 associativity 2
BTB entries 1024

Other parameters L2 cache size 4 MB
L2 associativity 8
Cache block size 32B
Branch Predictor Hybrid
Frequency 3G

278 Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285
Table 2. McPAT v0.8 [21] is used for dynamic and leakage power
estimation. We select 26 programs from SPEC 2000 and SPEC
2006 with the ref input size for the study. In the multi-program
simulation, we form 220 workloads composed of individual pro-
grams. Note that we do not use other programs from the suites
for two reasons: (1) our current cross compiler is only capable of
compiling programs implemented with C/C++. Many remaining
programs are written in Fortran, thus it is difficult to co-compile
them with C/C++ applications; (2) we pay much attention to
scheduling-insensitive programs, which are usually not carefully
examined in performance-oriented scheduling studies, to demon-
strate and exploit the opportunity of energy optimization.

Each program is simulated 1 billion instructions after
fast-forwarding the initial 2 billion. For the single-program study,
we use 19 programs for training and use the left 7 programs for
validation. For the multi-program study, we choose 180 out of
the 220 program combinations for PRIM model training and use
the remaining ones to evaluate the effectiveness. Recall that the
training procedure is conducted offline. This takes about 3 s on a
Dell Precision T7500 workstation equipped with an Intel E5530
CPU. In addition, for the scheduling in absence of idle cores, we
always launch as many programs as cores. We stop the simulation
when the slowest application in the workload completes 1 billion
instructions. The faster applications are not repeating. By doing
so, we guarantee that the same amount of work is always per-
formed when different scheduling policies are engaged, i.e., each
application in the workload executes 1 billion instructions after
the initial 2 billion. This makes the comparison of total energy con-
sumption from run to run rational. Note that once faster programs
complete, the scheduling problem deprecates to the situation with
idle cores.

The scheduling interval is set to 2.5 ms in this study. As shown
in prior works [8], this granularity is small enough to capture the
variations in program execution behaviors and assist the scheduler
to make energy-efficient assignments more precisely. We do
account the migration overhead due to architectural state retriev-
ing and set it to 150 ls [20]. The additional energy dissipation due
to the migration is also appropriately modeled. For instance, the
energy consumed by cache re-warming can be calculated from
the corresponding cache access times. The time overhead of the
scheduler is ignorable because making a scheduling decision only
requires reading the performance counters from the big and small
cores and comparing them with the corresponding rules. We com-
pare performance, energy consumption, and ED product resulted
from different schedulers to assess the effectiveness. Note that
since each workload executes the same amount of instructions
under different scheduling policies, comparing the total energy
consumption is equivalent to comparing the energy-per-
instruction (EPI). We thus use EPI as the metric for interpretation
in later sections.

6.2. Scheduling algorithms for comparison

In this subsection, we introduce the scheduling strategies that
are implemented for comparison.
� Static scheduling: This is the baseline scheduler implemented

for the comparison. The programs are pinned to processor cores
and execute till completion. For the single-program investiga-
tion, this means two specific approaches: static-big where the
program is mapped to the big core; and static-small where
the program goes to the small core. For the multi-program eval-
uation, we run all possible task-to-core mappings and choose
the most energy-saving one as the baseline for comparison.
� Round-robin (R-R): With this policy, the programs running on

the big and small cores are swapped every 5 intervals. The
scheduler does not take into account the program difference
and runtime execution behaviors, but blindly swapping the jobs
at a preset frequency. We set the swap period to 5 intervals
because such a setting leads to the optimal energy-efficiency
for round-robin scheme. Specifically, we ran a sensitivity study
by sweeping the swapping frequency from 1 interval to 10
intervals and the results show that setting the frequency to 5
delivers the best energy-efficiency for most workloads used in
this study. Therefore, we fix the swapping frequency to 5, which
essentially implies that we are comparing the ‘‘optimal’’
round-robin scheme against other schedulers.
� Sample-Optimize-Symbios (SOS): The SOS scheduler is origi-

nally proposed for the simultaneous multi-threading execution
[32]. Many heterogeneous scheduling algorithms presented in
prior works also fall into this category [5,17]. With this schedul-
ing policy, the execution proceeds in a pattern consisting of
three steps. First, at a scheduling point, the programs are exe-
cuted on each type of core for an interval. This is called the
‘‘sampling phase’’ since the energy consumption of each assign-
ment is available after this process. Second, the most
energy-efficient scheduling is identified, thus this step is ter-
med the ‘‘optimization phase’’. Finally, the execution will expe-
rience the ‘‘symbios phase’’ during which all programs are
running N intervals with the optimal mapping. In this study,
N is set to 10. Note that this strategy is also called ‘‘sampling’’
in a few prior works.
� MLP-ratio: This scheme is introduced in a recent work [6] aim-

ing to improve the system throughput on heterogeneous CMPs.
Although it does not focus on energy saving, it stands as one of
the best heterogeneity-aware schedulers to date, thus deserving
a comparison with our strategy. Note that the optimal scheduler
proposed in [6] takes both the instruction-level parallelism (ILP)
and the memory-level parallelism (MLP) into consideration.
Nevertheless, the authors demonstrate that the algorithm based
on only MLP-ratio delivers fairly close performance to their
optimal scheduler. Considering the complexity to calculate the
ILP on the fly, we implement a scheduling scheme based on only
MLP estimation for the comparison due to its simplicity. In the
MLP-ratio scheduler, the memory-level parallelism (MLP) ratios
of all programs between the big and small cores are evaluated.
Programs with higher MLP ratios are placed on the big cores
while those with lower ratios are assigned to small cores.

Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285 279
� PRIM: At a scheduling point, the performance metrics collected
from a pair of big and small cores are compared with the selec-
tive PRIM rules. If the conditions for both big and small cores
are satisfied, the jobs on two cores are swapped; otherwise
the current assignment is maintained. In case where the num-
ber of cores (programs) is greater than or equal to four, the opti-
mal scheduling is achieved through a few steps of suboptimal
assignments as described in Section 5.3.
� Hierarchical PRIM (H-PRIM): Instead of training a single PRIM

model, we use CART to partition the training data into 4 cate-
gories according to the performance measurements and train
a PRIM model for each subset. At a scheduling point, we first
identify to which subset a pair of program executions belongs.
We then compare the corresponding PRIM rules with the execu-
tion behaviors of these two programs and make scheduling
accordingly.
� Oracle: In this scheduling policy, we assume that the scheduler

knows the energy consumption of each program mapping in
apriori and performs the optimal scheduling based on that
information. Note that the ‘‘oracle’’ scheduler is implemented
from the energy perspective. That is, at the end of each schedul-
ing interval, we compare the possible program-core mappings
for the next interval and pick the one which consumes the least
energy.

7. Results

In this section, we perform a detailed evaluation of the rule-set
guided scheduling algorithm by comparing it with a set of existing
schemes.

7.1. Results of single-thread execution

7.1.1. Selective rules
We start the result demonstration by analyzing the extracted

rules. By training PRIM models, we generate two sets of rules
respectively for the big core and small core.

Rule set:
Big Core Rules:

L1D.nMiss > 37,510 && L1D.writeHit < 191,275 &&
nStall.SmallReg > 213,400
Small Core Rules:

L1D.nMiss < 45,600 && L2.nAccess > 32,200 &&
BR.misp < 27,733

As we mentioned in previous section, a matching between the
observed execution behaviors and the corresponding rule sets
implies that transferring the job to a different type of core is more
energy-saving. Specifically, if the program is currently running on a
big core and we observe that its cache access and pipeline stall
statistics satisfy the big core conditions listed above, it should be
moved to a small core for the execution in next interval. The two
inequalities related to L1 data cache (L1D.nAccess and
L1D.writeHit) indicates that the execution in the past interval issues
considerable memory requests that go to the L1D, however many
accesses are missed in this level of cache. The third condition shows
that the pipeline is frequently stalled due to the shortage of free
physical registers (nStall.SmallReg). Jointly, these three conditions
indicate that the program may not be able to effectively utilize
the computation resource on the big core and would be more suit-
able to run on a small core for better energy efficiency. Note that all
the counter values are normalized to those in one million instruc-
tions (e.g., L1D.nMiss is actually L1D.nMiss/MInst). On the other
hand, the rules corresponding to the small core imply that the pro-
gram can achieve high speedup on the big core and result in better
energy efficiency after migration. For instance, the relatively low
miss rate in the L1 data cache and infrequent branch mispredictions
means that the program is able to fully exploit the computing
resource on the big core and more efficiently utilize the energy
(i.e., executing with a lower EPI).

7.1.2. Effectiveness comparison
In this subsection, we compare the effectiveness of different

scheduling policies on reducing the energy consumption. Fig. 7
demonstrates the comparison of energy for all selected programs
running on a dual-core heterogeneous CMP when different strate-
gies are engaged. Note that the results under all schemes are nor-
malized to that corresponding to the big core execution. As can be
observed, the selected programs manifest distinctive variation on
the energy consumption. For the static schemes, applications
including equake, lbm, mcf, and milc are more appropriate to run
on the small core while benchmarks such as wupwise, dealII and
h264 are suitable candidates to be placed on the big core. This cor-
roborates the conclusions drawn by few prior works that program
features such as memory-intensity, computation-level and
memory-level parallelism impact their relatively energy consump-
tion on different types of cores [5,17,33], which further justifies the
opportunities for intelligent scheduling on heterogeneous systems.

The round-robin scheme does not involve true scheduling intel-
ligence either, since it just blindly transfers the program to a differ-
ent core at a preset frequency. As a consequence, it coincidently
results in lower energy consumption than the static scheme for
some benchmarks while performing even worse for programs
including crafty and eon. The SOS scheme is able to identify the
correct task-to-core mapping via online sampling, thus leading to
lower energy consumption than both static and R-R for many
benchmarks. However, it suffers from two intrinsic drawbacks.
First, frequent sampling introduces noticeable overhead which
may prolong the execution time and consume extra energy that
mitigates the benefit. Second, this scheduler assumes a continuum
of program characteristics in the symbios stage (i.e., the following
N intervals after sampling), which might not be true as the execu-
tion behaviors usually vary across different phases. This may cause
inefficient executions in many intervals and thus raise the energy
consumption. The PRIM rule set guided policy works the most clo-
sely to the oracle scheduler because it eliminates the unnecessary
sampling over-head and transfers the job to the energy-saving core
when necessary. In general, the round-robin, SOS, PRIM and oracle
schedulers are able to reduce the energy consumption respectively
by 3.4%, 12.8%, 20.1% and 22.7% compared to the execution on big
core.

The unnecessary context switch is an important cause of ineffi-
cient execution on heterogeneous CMPs when non-ideal sched-
ulers are employed. Those context switches introduce substantial
overhead due to architectural state retrieving and cache
re-warming to the execution; furthermore, they transfer programs
to the inappropriate cores for execution, which may adversely
increases the energy consumption. Taking this into consideration,
we collect the number of context switches during the execution
for each application when different schedulers are used. Table 3
lists the recorded statistics. The round-robin scheme causes much
more switches than all other policies since it continually moves a
job every 5 intervals (recall the experimental set up described in
Section 6.2). The SOS scheme makes a job migration decision based
on the sampling result and thus usually moves jobs at a much
lower frequency, which in turn significantly reduces the switch
times. The PRIM and the oracle scheduler generally lead to compa-
rable context switches as SOS does; however, they capture the
migration opportunities more precisely and make scheduling

0.2
0.4
0.6
0.8

1
1.2
1.4

N
or

m
al

iz
ed

 E
ne

rg
y

small

RR

SOS

PRIM

oracle

training set test set

Fig. 7. Normalized energy consumption for single-programs executing on a dual-core CMP with different schedulers.

280 Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285
decisions at finer-granularity, thus appearing to be more
energy-saving compared to SOS. Also, since the PRIM scheduler
does not require sampling, it offers better performance than the
SOS scheme. Fig. 8 shows the average performance of each pro-
gram normalized to the big core’s execution. Not surprisingly,
the PRIM scheduler results in only 20% longer execution time than
the static-big policy, delivering better performance than both RR
and SOS which respectively prolong the running time by 69% and
29%.

Although the 20% performance overhead may seem relatively
high considering that the energy-efficiency improvement is
20.1%, this is reasonable because we are reporting the geometric
mean value for the program collection, which means that a few
samples with relatively high performance degradation may bias
the average result and show large average loss. For example, pro-
grams h264 and art, whose performance is fairly sensitive to the
core type, show large performance degradation compared the exe-
cution on the big core. On the other hand, for most programs such
as ammp, crafty, mcf, milc and namd, the PRIM based approach leads
to impressive energy saving with low performance degradation. As
we will show in the following section, for multi-program work-
loads, PRIM (and the enhanced version H-PRIM) guided scheduling
leads to remarkable energy saving with less than 5% performance
degradation. Therefore, we believe it is safe to claim that the
Table 3
Number of Context Switches.

Benchmark RR SOS PRIM Oracle

Training ammp 1084 201 194 189
applu 486 110 127 140
art 466 107 89 83
crafty 384 98 93 101
equake 874 162 177 182
gzip 658 149 106 96
mesa 336 58 69 71
parser 516 193 102 123
vpr 464 122 97 103
wupwise 298 44 58 72
dealII 354 102 118 105
gobmk 464 121 102 99
lbm 734 101 121 115
mcf 1268 406 387 367
milc 1208 104 97 89
namd 358 76 64 58
omnetpp 382 152 125 104
sjeng 496 101 95 98

Test eon 360 89 103 99
mgrid 959 120 98 88
swim 980 103 105 95
bzip2 1072 82 105 102
h264 304 98 75 72
libquantum 322 60 73 70
soplex 496 93 120 114
proposed PRIM rule guided scheduling is able to significantly
reduce the energy consumption with acceptable performance loss.

7.2. Results of multi-program execution

In this subsection, we demonstrate the evaluation results for
the second circumstance, where each workload contains as many
programs as cores. Again, we analyze the extracted PRIM rules at
first.

7.2.1. Selective rules
By training a PRIM model, we can generate the following rule

sets to guide the scheduling for two programs running on a pair
of big and small cores:

Rule set:
Big Core Rules:

L1D.nMiss < 13,430 && nStall.SmallIQ > 256,949 &&
nFetch > 4,879,317
Small Core Rules:

BP.nMiss > 9674 && iLoad.count > 198,169 &&
iALU.count < 400,026 && L1D.nMiss < 17,701

At a scheduling point, the scheduler compares the performance
metrics collected from a pair of big and small cores. If the measure-
ments on both sides are satisfied with these rules, the scheduler
predicts that swapping the two programs will decrease the total
energy consumption.

Since our prediction is made at each scheduling interval, mini-
mizing the energy consumption essentially translates to lowering
down the total power of that period. Also, the big cores always con-
sume much larger power than the small ones, thus dominating the
total power consumption all the time. We present these two state-
ments to assist the interpretation of the PRIM rules. Note that we
will analyze the correlation between execution behaviors and
power consumption including both dynamic power and leakage
power. Let us focus on the big core rules at first. As can be seen,
the big core rules suggest that a program with a low L1 cache miss
rate (L1D.nMiss), a high instruction fetch rate (nFetch), and substan-
tial internal stalls (e.g., stalls due to small instruction issue queue,
or nStall.smallIQ) should be exchanged to the small core for execu-
tion. It is straightforward to understand the metrics related to L1
cache and instruction fetch. A Low L1 cache miss rate and high
fetch speed indicates that the current program on the big core is
executed at relatively high speed without suffering from frequent
cache misses. However, from the power perspective, this implies
large dynamic power on many function units due to high activities.
As for the second condition, a large nStall.smallIQ value implies per-
sistent high utilization on the issue queue. This also increases
dynamic power consumption on this component because of

0
0.5

1
1.5

2
2.5

3
3.5

4

N
or

m
al

iz
ed

 E
xe

cu
�o

n
Ti

m
e

small

RR

SOS

PRIM

oracle

test settraining set

Fig. 8. Normalized execution time for single-programs executing on a dual-core CMP with different schedulers.

Fig. 9. Data segmentation result from CART.

Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285 281
frequent operations such as checking the operands status. On the
other hand, components including IQ and integer ALU tend to
become the hotspot on die. As a consequence, the leakage power
on these units is rapidly increasing since it is positively related
to the temperature. In one word, the big core rules outline the fea-
tures of intervals which tend to consume both high dynamic and
leakage power. For the purpose of energy saving, these intervals
should be migrated to the small core for execution.

We now shift our concentration to the small core rules. Recall
that the total power consumption is dominated by the big core.
Therefore, the rules for the small core essentially characterize the
execution phases that are not likely to result in extreme high
power on a big core. Specifically, the first and the third conditions
respectively set constraints for the occurrences of branch mispre-
dictions (BP.nMiss) and number of integer ALU instructions
(iALU.count). A branch misprediction will lead to a pipeline flush
and lower down the execution speed. Fewer number of ALU
instructions can alleviate the utilization on ALUs, reducing the
dynamic power and cooling down the component accordingly.
These two conditions jointly reduce the power consumed by the
core running this program. On the other hand, the rule sets require
that the number of load instructions (iLoad.count) should be no
smaller than a certain value while the misses in L1 data cache
(L1D.nMiss) cannot go beyond a threshold. These two conditions
imply that this program potentially issues a large amount of mem-
ory requests, but most of them can be served by the L1 cache.
Nevertheless, the stress on L1 cache will not significantly increase
the total power consumption since the L1 cache consumes rela-
tively small power com-pared to other components. In general,
the intervals filtered by the small core rule set tend to result in
moderate power if executed on the big core, thus reducing the total
power consumption.

7.2.2. Hierarchical PRIM
As described in Section 4.2, CART is able to partition the entire

data set into several subsets, each of which contains similar sam-
ples. Therefore, if we train an individual PRIM model for each sub-
set, the effectiveness of our strategy is expected to be increased
due to the similarity of instances within the same subset. Taking
this into account, we use CART to perform a data segmentation
operation in prior to the PRIM model training. Fig. 9 demonstrates
the segmentation result for all training instances. As can be seen,
the entire data set are partitioned into 4 categories, as represented
by the 4 leaf nodes on the generated tree. Each branch represents a
condition on the performance metrics on a big or small core and is
expressed in a form of ‘‘Xi P (or 6) M’’, where Xi denotes a perfor-
mance metric and M denotes a value to segment the data set.
Specifically in the tree shown in Fig. 9, X126 indicates the number
of branch mispredictions on the big core (BP.nMiss) and X232 cor-
responds to the iALU.count metric which records the number of
integer ALU instructions on the small core. X244 tracks the number
of fetched instruction on the small core (nFetch). The value at each
leaf node is the average of CART response for that partition.

We train a PRIM model for each data segment and list their
respective rule sets in Table 4. Note that for the fourth subset
(i.e., the rightmost leaf node in Fig. 9), more than 95% of the
included samples maintain a flag ‘‘1’’, meaning that the majority
of this partition are candidates for job swap. Consequently, we
do not train an extra PRIM model for this subset and directly use
its branch conditions to guide the scheduling. During the execu-
tion, this tree is accessed at each scheduling point in order to clas-
sify a program pair into an appropriate subset. The access starts
from the root node of the tree. If the condition is satisfied after
the variable comparison (X126, or BP.nMiss), the access will pro-
ceed to the left child; otherwise it goes to the right child. This pro-
cess is performed again on the child node and the program pair will
be classified to a specific subset thereafter. The corresponding
PRIM rules are then compared with the execution behaviors and
make job assignments accordingly. In particular, if a program pair
falls into the rightmost subset, the scheduler will immediately
swap the two jobs for execution in the next interval.

7.2.3. Effectiveness comparison
In this subsection, we compare the effectiveness of different

scheduling policies on reducing the energy consumption and
improving energy efficiency. To demonstrate the scalability of
our proposed algorithm, we run four-program workloads on two
types of heterogeneous architectures: a platform with an identical
number of big and small cores (2B + 2S) and a system with
non-equivalent numbers of big and small cores (3B + 1S).

Fig. 10(a) illustrates the energy reduction for these workloads
on the first platform (2B + 2S) when distinct schedulers are
engaged. Note that all results are compared with those correspond-
ing to the static scheduling case. The workloads are sorted in
ascending order according to the degree of energy saving. As can
be observed, our PRIM and H-PRIM strategies always outperform
other scheduling algorithms with respect to energy consumption.

Table 4
PRIM rules for each data subset.

Segment Big core rules Small core rules Performance metrics description

Subset 1 LDSTUnit.util < 0.27 &&
nStall.noCachePort < 10,785

L1I.nMiss > 3791 LDSTUnit.util: the utilization of load/store unit
nStall.noCachePort: cumulative stall cycles due to cache port
contention
L1I.nMiss: number of misses in L1I cache

Subset 2 IQ.avgFree < 3 && L1I.nHit > 817,392 avgBranchPenalty > 73 &&
iComplex.count < 3921

IQ.avgFree: the average number of free entries in IQ, indicating the
IQ utilization
L1I.nHit: number of hits in L1I cache
avgBranchPenalty: average penalty (in cycles) of branch
misprediction
iComplex.count: number of integer complex instructions, such as
division

Subset 3 nStall.noCachePort < 44,750 &&
nStall.smallREG > 851,493

L1I.avgMissLat < 513 nStall.smallREG: cumulative stall cycles due to available registers
L1I.avgMissLat: average penalty (in cycles) of a miss in L1I cache

Subset 4 N/A

282 Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285
This is because that the rule-set guided scheduler is capable of
effectively identifying the most appropriate program assignment
at runtime to minimize the energy consumption. Furthermore,
the total energy consumed by H-PRIM is fairly close to the oracle
case (i.e., the minimum), since the data segmentation increase
the accuracy of identifying the candidate intervals. Other sched-
ulers suffer from distinctive drawbacks which adversely impact
their effectiveness. The previous subsection explains the disadvan-
tage of the R-R and SOS scheduler. The MLP-ratio algorithm, on the
other hand, aims to improve the system performance. As we
demonstrated in Section 1, this scheduler can increase the total
energy consumption for some intervals, thus trailing our strategies
in saving the total energy.

Fig. 10(b) shows the performance improvement when the
workloads are respectively running with these schedulers. Note
that the workloads are sorted according to the performance gain
in this figure. Also recall that the oracle scheduler is the optimal
with respect to the energy consumption instead of performance.
As can be seen, the MLP-ratio strategy always leads to better per-
formance (i.e., positive value) compared to the baseline. This does
not go beyond our expectation because the goal of this scheduler is
to enhance the overall performance, thus the programs are
assigned in a manner to maximize the execution speed. On the
other hand, both performance improvement and degradation
(i.e., negative value) are observed in other scheduling policies.
(a)

-20%

-10%

0%

10%

20%

30%

En
er

gy
 sa

vi
ng

Sorted four-Program combina�ons

R-R SOS
MLP-ra�o PRIM
H-PRIM Oracle

-15%

-10%

-5%

0%

5%

10%

15%

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

Sorted four

R-R
MLP-r
H-PRIM

Fig. 10. Evaluation results of four-program workloads running on a 2B + 2S platform: (a)
performance and ED.
The performance loss mainly stem from two sources, namely
migration overhead and slower execution in certain intervals.
Our scheduler eliminates unnecessary job swaps during the execu-
tion compared to round-robin and SOS, thus delivering better
performance.

Fig. 10(c) demonstrates the average performance gain, energy
saving and ED reduction for all workloads. From the performance
respective, MLP-ratio stands as the optimal by accelerating the
execution by 5.7% while PRIM and H-PRIM respectively enhance
the performance by 3.9% and 4.1%. Note that the MLP-ratio sched-
uler is more effective for scheduling-sensitive workloads [8].
However, the performance gains for applications demonstrating
less sensitivity to program assignment are fairly modest.
Therefore in general, our schedulers lead to comparable perfor-
mance to MLP-ratio on average. For energy saving, the PRIM and
H-PRIM algorithms are able to reduce the energy consumption
by 11.8% and 14.8% compared to 16.3% delivered by the oracle
scheduler. Finally, for the ED metric, the PRIM and H-PRIM algo-
rithms respectively reduce its value by 15.3% and 17.9% while
the oracle scheduler can decrease the product by 19.1%. The SOS
and MLP-ratio policies lead to less impressive savings. In other
words, our best scheduler H-PRIM outperforms the MLP-ratio pol-
icy, which is one of the optimal state-of-the-art heterogeneous
schedulers by 7.8% and 5.7%, respectively on energy and ED. We
also collect the number of context switches with different
(c)
-program combian�ons

SOS
a�o PRIM

Oracle

-10%

-5%

0%

5%

10%

15%

20%

25%

Av
er

ag
e

Im
pr

ov
em

en
t

Performance Energy ED

R-R SOS MLP-ra�o

PRIM H-PRIM Oracle

(b)

energy saving, (b) performance improvement, (c) average improvement for energy,

-10%

-5%

0%

5%

10%

15%

20%

Av
er

ag
e

Im
pr

ov
em

en
t

Performance Energy ED

R-R SOS MLP-ra�o PRIM H-PRIM Oracle

Fig. 12. Average improvement for performance, energy and ED for two-program
workloads running on a 1B + 1S platform.

Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285 283
scheduling policies and observe similar trend as shown in Table 3.
We do not list the complete results due to space limitation.

Fig. 11 demonstrate the results for quad-program workloads
running on a CMP consisting of three big cores and a small core
(3B + 1S). As can be seen, the general trends of the curves are sim-
ilar to those shown in the 2B + 2S case. On average, the PRIM and
H-PRIM scheduler is capable of saving energy by 11.5% and
13.9%. For the energy-delay product, these two schemes decrease
the value by 14.9% and 17.3%. This implies that compared to
MLP-ratio, the H-PRIM policy reduces the total energy and ED by
8.1% and 5.5%, respectively.

We also evaluate the effectiveness of our strategy with other
configurations. Fig. 12 shows the average improvement when
two-program workloads are running on a CMP with a big and a
small core. Not-surprisingly, H-PRIM surpasses other policies by
improving the energy-efficiency most closely to the oracle sched-
uler. More results (e.g., 1B + 3S, etc.) are not shown due to space
limitation. Nevertheless, our evaluation results demonstrate that
the proposed rule-set guided scheduling policy is more effective
in optimizing the energy-efficiency of single-ISA heterogeneous
platforms compared to existing schedulers.
Fig. 13. Pareto analysis along with PRIM illustration for eon running on a small core.
7.3. Pareto analysis

The energy efficiency depends on the application scheduling on
the system, which is essentially determined by a variety of pro-
gram execution behaviors. In other words, making a scheduling
decision can also be solved as a multi-cause problem. Pareto anal-
ysis is a statistical technique handling multi-cause problems and
has been extensively used in many research domains. In this sub-
section, we concentrate on a single-program execution to exem-
plify the usage of Pareto analysis in the scheduling study and
compare the result with PRIM.

Fig. 13 shows the Pareto frontiers together with our PRIM
results for a SPEC 2000 benchmark eon when it is executed on a
small core. In a multi-objective optimization problem such as min-
imizing both energy and delay in our case, a Pareto optimization
changes the parameters to improve at least one metric (e.g. reduce
energy) without negatively impacting any other metric (e.g.
increasing the delay). A Pareto frontier is the one when no further
Pareto optimization can be implemented. In the figure below, all
the points including those small dots on the background represent
1000 possible designs, each of which corresponds to an execution
interval. The Pareto frontiers are those stars scattered on the
boundary at the bottom. The upward triangles, which are clustered
(a)

-20%

-10%

0%

10%

20%

30%

En
er

gy
 sa

vi
ng

Sorted four-Program combina�ons

R-R SOS
MLP-ra�o PRIM
H-PRIM Oracle

-15%

-10%

-5%

0%

5%

10%

15%

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

sorted fou

R-R
ML
H-P

Fig. 11. Evaluation results of four-program workloads running on a 3B + 1S platform: (a)
performance and ED.
on the left, are the designs by the PRIM rule which minimizes the
delay. The circles clustered at lower right corner are the designs
identified by the PRIM rule for energy minimization. The down-
ward triangles which mostly coincide with the Pareto frontiers
are the designs selected by the PRIM rule which minimizes the pro-
duct of energy and delay. As can be observed from the figure, PRIM
successfully identifies the Pareto frontiers by a set of simple rules,
which further confirms the effectiveness and accuracy of the
PRIM-based approach. Therefore, making scheduling decision
(c)
r-program combian�ons

SOS
P-ra�o PRIM
RIM Oracle

-10%

-5%

0%

5%

10%

15%

20%

25%

Av
er

ag
e

Im
pr

ov
em

en
t

Performance Energy ED

R-R SOS MLP-ra�o
PRIM H-PRIM Oracle

(b)

energy saving, (b) performance improvement, (c) average improvement for energy,

284 Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285
based on the PRIM rule set is able to deliver fairly high
energy-efficiency.
8. Conclusion

In this paper, we propose a scheduling strategy for
energy-efficient execution on single-ISA heterogeneous
chip-multiprocessors. We demonstrate that performance-oriented
scheduling may lead to executions that are not sufficiently
energy-efficient. Due to this limitation, we concentrate on energy
saving and introduce a rule-set guided scheduling to exploit the
optimal energy efficiency on heterogeneous CMPs. We employ
advanced statistical tools including PRIM and CART to facilitate
the development of our algorithm. The evaluation results show that
our proposed algorithm impressively outperform existing schedul-
ing schemes by minimizing the energy consumption, thus deliver-
ing better energy efficiency.
References

[1] ARM Corporation, Big.Little Processing. <http://www.arm.com/products/
processors/technologies/bigLITTLEprocessing.php>.

[2] Nvidia Corporation, Tegra 3 super chip processors. <http://www.nvidia.com/
object/tegra-3-processor.html>.

[3] Intel 64 and IA-32 Architectures Software Developers Manual Volume 3:
System Programming Guide, October 2011.

[4] S. Balakrishnan, R. Rajwar, M. Upton, K. Lai, The impact of performance
asymmetry in emerging multicore architectures, in: ISCA, June 2005.

[5] M. Becchi, P. Crowley, Dynamic thread assignment on heterogeneous
multiprocessor architectures, in: CF, May 2006.

[6] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression
Trees, Wadsworth Press, 1984.

[7] J. Chen, L.K. John, Efficient program scheduling for heterogeneous multi-core
processors, in: DAC, June 2009.

[8] K.V. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, J. Emer, Scheduling
heterogeneous multi-cores through performance impact estimation, in: ISCA,
June 2012.

[9] S. Eyerman, L. Eeckhout, A memory-level parallelism aware fetch policy for
SMT processors, in: HPCA, February 2007.

[10] J. Friedman, N. Fisher, Bump hunting in high-dimensional data, Stat. Comput. 9
(1999).

[11] S. Hao, Q. Liu, L. Zhang, J. Wang, Process scheduling on heterogeneous multi-
core architecture with hardware support, in: NAS, June 2011.

[12] T. Heath, B. Diniz, E.V. Carrera, W. Meria Jr., R. Bianchini, Energy conservation
in heterogeneous server clusters, in: PPoPP, June 2005.

[13] M. Goraczko et al., Energy-optimal software partitioning in heterogeneous
multiprocessor embedded systems, in: DAC, June 2008.

[14] R. Grant, A. Afsahi, Power-performance efficiency of asymmetric
multiprocessors for multi-threaded scientific applications, in: The 2nd
Workshop on High-Performance, Power-Aware Computing, with IPDPS, April
2006.

[15] S. Kaxiras, M. Martonosi, Computer Architecture Techniques for Power
Efficiency, Morgan and Claypool Publishers, 2008.

[16] D. Koufaty, D. Reddy, S. Hahn, Bias scheduling in heterogeneous multi-core
architectures, in: EuroSys, April 2010.

[17] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, D.M. Tullsen, Single-ISA
heterogeneous multi-core architectures: the potential for processor power
reduction, in: MICRO, December 2003.

[18] R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, K.I. Farkas, Single-ISA
heterogeneous multi-core architectures for multithreaded workload
performance, in: ISCA, June 2004.

[19] N.B. Lakshminarayna, J. Lee, H. Kim, Age based scheduling for asymmetric
multiprocessors, in: SC, November 2009.

[20] C. Li, C. Ding, K. Shen, Quantifying the cost of context switch, in: ExpCS, June
2007.

[21] S. Li et al., McPAT: an integrated power, area, and timing modeling framework
for multicore and manycore architectures, in: MICRO’09.

[22] T. Li, D. Baumberger, D.A. Koufaty, S. Hahn, Efficient operating system
scheduling for performance-asymmetric multi-core architectures, in: SC,
November 2007.
[23] T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, S. Hahn, Operating system
support for overlapping-ISA heterogeneous multi-core architectures, in: HPCA,
January 2010.

[24] P. Radojkovic et al., Optimal task assignment in multithreaded processors: a
statistical approach, in: ASPLOS, March 2012.

[25] J.C. Saez, A. Fedorova, M. Prieto, S. Blagodurov, A comprehensive scheduler for
asymmetric multicore systems, in: EuroSys, April 2010.

[26] J.C. Saez, A. Fedorova, D. Koufaty, M. Prieto, Leveraging core specialization via
OS scheduling to improve performance on asymmetric multicore systems, in:
ACM Transactions on Computer Systems, April 2012.

[27] J.C. Saez, D. Shelepov, A. Fedorova, M. Prieto, Leveraging workload diversity
through OS scheduling to maximize performance on single-ISA heterogeneous
multicore systems, J. Parallel Distr. Comput. 71 (7) (2011).

[28] J. Renau et al., SESC Simulator.
[29] E. Saad, M. Awadalla, M. Shalan, A. Elewi, Energy-aware task partitioning on

heterogeneous multiprocessor platforms, in: The International Journal of
Computer Science Issues (IJCSI), vol. 9, 2012.

[30] S. Sharifi, A.K. Coskun, T.S. Rosing, Hybrid dynamic energy and thermal
management in heterogeneous embedded multiprocessor SoCs, in: ASPDAC,
January 2010.

[31] K. Singh, M. Bhadauria, S.A. Mckee, Prediction-based power estimation and
scheduling for CMPs, in: ICS (Extended Abstract and Poster Presentation), June
2009.

[32] A. Snavely, D.M. Tullsen, Symbiotic job scheduling for a simultaneous
multithreading processor, in: ASPLOS, November 2000.

[33] S. Srinivasan, R. Iyer, L. Zhao, R. Illikkal, HeteroScouts: hardware assist for OS
scheduling in heterogeneous CMPs, in: Poster session of the ACM SIGMETRICS,
June 2011.

Ying Zhang received his Bachelor’s and Master’s degree
in Electronics and Information Engineering from
Huazhong University of Science and Technology, China,
and the Ph.D. degree in Electrical and Computer
Engineering from Louisiana State University. He is cur-
rently working as a performance architect in Intel,
responsible for modeling and optimizing the perfor-
mance of Intel’s server processors. He has wide research
interests in the computer architecture area including
heterogeneous system design and optimization, GPU
performance characterization, and hard-error reliable
processor design.
Lide Duan is currently an Assistant Professor in the
Department of Electrical and Computer Engineering at
The University of Texas at San Antonio. Prior to joining
UTSA, he worked as a senior CPU design engineer at
AMD, working on future x86 based high performance
and low power CPU microarchitecture design and
performance modeling. He received a PhD in Computer
Engineering from Louisiana State University in 2011.
His PhD research focused on soft error reliability
analysis and prediction for processors at computer
architecture level. He also received a bachelor’s degree
in Computer Science from Shanghai Jiao Tong
University, China, in 2006.
Bin Li received his Bachelor’s degree in Biophysics from
Fudan University, China. He obtained his Master’s
degree in Biometrics (08/2002) and Ph.D. degree in
Statistics (08/2006) from The Ohio State University. He
is an Associate Professor with the Experimental
Statistics department at Louisiana State University. His
research interests include statistical learning & data
mining, statistical modeling on massive and complex
data, and Bayesian statistics. He received the Ransom
Marian Whitney Research Award in 2006 and a Student
Paper Competition Award from ASA on Bayesian
Statistical Science in 2005. He is a member of

the Institute of Mathematical Statistics (IMS) and American Statistical
Association (ASA).

http://www.arm.com/products/processors/technologies/bigLITTLEprocessing.php
http://www.arm.com/products/processors/technologies/bigLITTLEprocessing.php
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://refhub.elsevier.com/S0141-9331(15)00051-4/h0030
http://refhub.elsevier.com/S0141-9331(15)00051-4/h0030
http://refhub.elsevier.com/S0141-9331(15)00051-4/h0030
http://refhub.elsevier.com/S0141-9331(15)00051-4/h0050
http://refhub.elsevier.com/S0141-9331(15)00051-4/h0050
http://refhub.elsevier.com/S0141-9331(15)00051-4/h9000
http://refhub.elsevier.com/S0141-9331(15)00051-4/h9000
http://refhub.elsevier.com/S0141-9331(15)00051-4/h9000
http://refhub.elsevier.com/S0141-9331(15)00051-4/h0135
http://refhub.elsevier.com/S0141-9331(15)00051-4/h0135
http://refhub.elsevier.com/S0141-9331(15)00051-4/h0135

Y. Zhang et al. / Microprocessors and Microsystems 39 (2015) 271–285 285
Lu Peng is currently an Associate Professor with the
Division of Electrical and Computer Engineering at
Louisiana State University. He received the Bachelor’s
and Master’s degrees in Computer Science and
Engineering from Shanghai Jiao Tong University, China.
He obtained his Ph.D. degree in Computer Engineering
from the University of Florida in Gainesville in April
2005. His research focus on memory hierarchy system,
reliability, power efficiency and other issues in CPU
design. He also has interests in Network Processors. He
received an ORAU Ralph E. Powe Junior Faculty
Enhancement Awards in 2007 and a Best Paper Award

from IEEE International Conference on Computer Design in 2001. He is a member of
the ACM and the IEEE Computer Society.
Srinivasan Sadagopan is a Senior Member of Technical
Staff in the Client Performance Architecture and
Modeling Group at Advanced Micro Devices. His
research interests include computer architecture,
workload characterization, performance evaluation,
power management and projection. He has a PhD in
Computer Engineering from the University of Maryland
at College Park. He is a member of the ACM SIGARCH.

	Cross-architecture prediction based scheduling for energy efficient execution on single-ISA heterogeneous chip-multiprocessors
	1 Introduction
	2 Related work
	3 Heterogeneous architecture
	4 Statistical tools
	4.1 Patient Rule Induction Method (PRIM)
	4.2 Classification and Regression Tree (CART)

	5 Rule-set guided scheduling
	5.1 Scheduling in presence of idle cores
	5.2 Scheduling without idle cores
	5.3 Algorithm scalability

	6 Methodology
	6.1 Simulation environment
	6.2 Scheduling algorithms for comparison

	7 Results
	7.1 Results of single-thread execution
	7.1.1 Selective rules
	7.1.2 Effectiveness comparison

	7.2 Results of multi-program execution
	7.2.1 Selective rules
	7.2.2 Hierarchical PRIM
	7.2.3 Effectiveness comparison

	7.3 Pareto analysis

	8 Conclusion
	References

