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Abstract As HPC systems approach Exascale, their circuit features will shrink while
their overall size will grow, both at a fixed power limit. These trends imply that soft
faults in electronic circuits will become an increasingly significant problem for pro-
grams that run on these systems, causing them to occasionally crash or worse, silently
return incorrect results. This is motivating extensive work on program resilience to
such faults, ranging from genericmechanisms such as replication or checkpoint/restart
to algorithm-specific error detection and resilience mechanisms. Effective use of such
mechanisms requires a detailed understanding of (1) which vulnerable parts of the
program are most worth protecting and (2) the performance and resilience impact of
fault resilience mechanisms on the program. This paper presents FaultTelescope, a
tool that combines these two and generates actionable insights by presenting program
vulnerabilities and impact of fault resilience mechanisms in an intuitive way.

Keywords Soft faults · High-performance computing · Numerical errors ·
Fault resilience

1 Introduction

The increasing size and complexity of HPC systems are making them increasingly
vulnerable to soft faults, which are transient corruptions of the states of electronic
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circuits caused by physical phenomena such as strikes by neutrons, alpha particles
[3,24] or thermal electrical noise [19]. They can affect processor latches and registers,
which could cause the program to crash or silently return incorrect results [22]. As
the feature sizes of electronic circuits shrink, technology scaling will exacerbate soft
errors [23] due to the fact that each circuit element will hold less charge and can
thus be disrupted more easily. In particular, processors in 2020 are expected to have
feature sizes (DRAM ½ Pitch) of approximately 14 nm [16], which is approximately
28 silicon atoms (5 Å per atom) across. These phenomena make it imperative to
develop mechanisms to make HPC systems resilient to soft faults.

The resilience problemmust be addressed at all levels. On the physical level, efforts
in materials science and circuit design techniques are made to improve resilience, but
the cost of building processors sufficiently reliable for a large HPC system is still pro-
hibitive. On the digital logic level, mechanisms such as error correcting codes (ECC)
have been very effective at making memories and caches resilient to soft faults [21].
However, as total system memories are expected to grow by 100× to 350× to reach
Exascale [9], their increased fault vulnerability will require more elaborate and expen-
sive ECC to be deployed. Further, ECC is more expensive for protecting core-internal
states such as latches and is significantly less effective for checking the correctness of
computations. On the processor architecture level, designs that incorporate instruction
replication [27] offer fine-grained error detection and rollback but require more power
as well as novel hardware features that are unlikely to be included in the commodity
processors used in HPC systems for cost reduction reasons.

The limitations of hardware-level resilience solutions have motivated significant
work on the design of software-level mechanisms that can enable programs to execute
productively on unreliable hardware. The most general approach is replication of
computations across core or nodes [12,17], which is very easy to use but can incur
a high overhead due to repeated computation, result comparison, and management
of non-determinism across replicas. There has also been extensive work on hand-
coded, more efficient algorithm-specific techniques [15,29] that verify the algorithmic
invariants hold. Because these mechanisms usually only address error detection, to
achieve full resilience theymust be supported by other techniques, such as checkpoint-
restart [25] and pointer replication [6].

To design and deploy software-level resilience schemes, developers need tools to
quantify the effect of faults on their programs and support for choosing themost appro-
priate resilience mechanism for each type of fault. This paper presents FaultTelescope,
a comprehensive approach to supporting both needs in the form of (1) statistically
well-grounded fault injection studies and (2) exploration of how the configuration of
a resilience mechanism affects the performance and resilience of individual kernels
as well as the entire program.

The importanceof analyzing andquantifying the impact of errors onprogrambehav-
ior is demonstrated in various studies. As Du et al. have shown [10,11], resilience is
becoming a quality measurement of linear solver packages. A detailed study of output
accuracy is found in several fault injection frameworks. For example, Debardeleben
et al. [8] document how the numeric error caused by an injected fault evolves over time.
Probabilistic modeling has been used by Chung et al. [7] to help compute the expected
recovery time, which cannot be measured easily for very large scale programs. Sloan
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et al. [30] have discussed the use of algorithmic checks over sparse linear algebra ker-
nels and focusedmainly on reducing false positive and false negative in error detection.

The aforementioned resilience studies are enabled by fault injection, a technique for
introducing faults to running programs. The program states of the running programs
are modified to reflect software-level manifestation of low-level faults. In addition to
software-level fault injectors, there exist tools that simulate various types of faults in
hardware components, ranging from transistor-level faults to fail-stop crashes of entire
compute nodes [1,14,20].

FaultTelescope supports resilience studies by integrating with the KULFI fault
injector [2], whichmodels faults as single bit flips in the outputs of a randomly selected
instruction of a program compiled into the LLVM instruction set. LLVM is a compiler
infrastructure that uses a static single assignment (SSA)-based compilation strategy
that is capable of supporting arbitrary programming languages [18]. FaultTelescope
presents the results of resilience studies to developers by providing visualizations of
how program states and output are affected by injected errors. The errors are expressed
via developer-specified error metrics. Furthermore, FaultTelescope computes confi-
dence intervals of the presented data to enable developers to make well-grounded
conclusions, while balancing the benefits from improved confidence intervals of the
analysis and the cost of running more fault injection experiments.

Finally, a key issue developers face is that different types of faults manifest them-
selves differently to software. For each possible fault type developers need to select
the most appropriate resilience mechanism for detecting and tolerating the fault, as
well as the best configuration of the mechanism. The choice of mechanism and its
configuration has a noticeable effect on the performance and resilience of the pro-
gram. Furthermore, a wrong choice may render the programmore vulnerable to errors
than it originally is [5]. FaultTelescope helps program developers choose the best way
to manage all the fault types their programs may be vulnerable to by helping them
experimentally measure the effectiveness of various resilience mechanisms and the
implication of their configurations. To reduce the cost of searching a large parameter
space, FaultTelescope directs developers to first focus on key kernels and then on the
entire program.

On a high level, FaultTelescope provides a comprehensive suite of capabilities that
help program developers bridge the gap between low-level faults and software-level
resilience solutions. FaultTelescope consists of:

• Efficient architectural level fault injection with KULFI
• Statistically sound computations of confidence intervals of fault characteristics
• Hierarchical analysis that operates on kernels through entire programs

The FaultTelescope approach is evaluated in the context of three programs that
represent different application domains: the LASSO [4] solver for the linear solvers
domain, the DRC [28] HiFi audio filter for the signal processing domain, and the Hat-
trick [26] gravity simulator for the differential equation solvers domain. This paper
demonstrates the utility of this comprehensive resilience toolchain for helping devel-
opers explore the vulnerability properties of their programs.

The rest of the paper is organized as follows. Section 2 gives an overview of
the experimentation methodology and error model used in FaultTelescope. Section 3
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presents the structure of the target programs. Section 4 describes the fault resilience
mechanismsused. Section5presents howFaultTelescopefinds fault characteristics and
performance/resilience tradeoffs. Section 6 presents the algorithm used for selecting
the number of fault injection experiments needed for statistically-grounded analysis.
We conclude this paper in Sect. 7.

2 Design overview

The workflow of FaultTelescope is described in Fig. 1. It performs a fault injec-
tion campaign on a target program by executing the entire program and/or individual
routines in the program multiple times. During each run, a single bit flip is injected
in a randomly-selected Dynamic Fault Site (a dynamic LLVM instruction, which is
an instance of a static LLVM instruction in the program’s binary image). Information
including source code location that corresponds to the fault site and the final outcome
of the program will also be recorded. The final outcome of one run falls into one of
these categories:

• Correct result: The program runs to completion and outputs the correct result, as
if no error occurred at all.

• Abnormal termination: Program performs abnormal action such as dereferencing
invalid pointers, encountering numerical explosion, or entering an infinite loop,
which then triggers user-defined or system-defined exception handlers, resulting
in the program being terminated.

• Incorrect result: Program runs to completion, but produces results that exceed the
user-defined error bound and is considered incorrect. In our paper we quantify the
magnitude of errors using the root-mean-squared deviation (RMSD) between the
incorrect result and the correct result.

Fig. 1 Overall workflow of FaultTelescope
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Table 1 The resilience mechanisms applied to each major routine of each program

Routine Algorithmic detector Checkpointing and
pointer replication

ADDR MM Linear encoding Thresholds:
1e−5 to 1e−8

Inputs No

SYRK

MVM

CD

FRC FFT Parseval’s theorem. Sum
conservation. Thresholds:
1e−6 to 1e−8

Inputs No

FIR

Hattrick RK Variable step-size Periodic timesteps in
period: 1, 1e4

1. None

2. All pointers, checked
at one code location

3. All pointers, checked
on each use

The information above is stored in the fault database for analysis and visualization.
The result analyzer uses the information to determine the number of experiments
needed for obtaining a statistically-grounded conclusion about the fault characteristics
of programs. The fault characteristics of a program is quantified by the probability of
each of the outcomes and the distribution of RMSD in incorrect results.

3 Target applications

We demonstrate the use of FaultTelescope on three programs, which represent three
application domains. The fault resilience mechanisms utilized by each program are
summarized in Table 1. The details of the mechanisms will be discussed in the Sect. 4.

3.1 LASSO

The LASSO [4] program is an implementation of the Alternating Direction Method
of Multipliers algorithm for solving under-constrained linear problems Ax = b for x
(A has fewer rows than columns) while minimizing the cost function 1

2 ||Ax − b| |22 +
λ · ||x | |1. It represents the linear solver application domain. It uses 64-bit precision
and spends most of its time in the following linear algebra operations from the GNU
Scientific Library (GSL) [13]: matrix–matrix multiplication (MMM), matrix–vector
multiplication (MVM), Rank-k update (RK) and Cholesky decomposition (CD).

Our experiments focus on matrices A of size {40, 80, 200, 400, 600, 800}× 500 as
input. The values in A and b are generated by sampling a normal distribution with a
mean of 0 and a σ of 0.08 and 0.005 respectively.
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3.2 DRC

Dynamic range compression (DRC) [28] is a sequential program that generates filters
for high-fidelity audio systems, compensating for the reflection of sounds in a room
using impulse response measurements of the audio equipment and the positions of
the listeners. It represents the signal processing application domain. DRC inputs are
stored in pulse code modulation (PCM) format, which is an array of 32-bit floating
point numbers representing the samples at each sample time. Computation is done
in 32-bit precision. Most of the execution time is spent in the GSL implementation
of fast Fourier transform (FFT) and a DRC-internal implementation of finite impulse
response (FIR) filter generation. The input used in this paper is a PCM audio file
of size 768KB, which is internally resampled at 30, 40, 50, 60 or 70 KHz during
computation.

3.3 Hattrick

Hattrick [26] is a sequential program that simulates the motion of celestial bodies
under the effects of gravity to help discover extra-solar planets by inferring their exis-
tence from transit timing variations. It represents the n-body simulation application
domain. Hattrick uses 64-bit precision and spends most of its execution time in the
GSL Runge–Kutta (RK) ordinary differential equation solver. The solver computes
the position of the planets and adjusts step size automatically to reach the accuracy
target defined in the user’s input. A given input is described using three parame-
ters: P is the number of planets, T is the amount of time to simulate, and A is the
user-defined accuracy target. In our experiments we considered the following four
inputs: P2T 2090A15, P2T 3090A15, P2T 4090A15 and P3T 2090A11, where A15
and A11 denote accuracy targets of 1e−15 and 1e−11, respectively.

4 Resilience mechanisms

This section presents the fault characteristics on routines used by the three target pro-
grams, and how the fault tolerance mechanisms listed in Table 1 protect the programs
from soft errors. The fault characteristics are quantified by the probability of outcomes
which are correct result, abnormal termination and incorrect result.

In Sects. 4 and 5, we consider an output to be correct only if it is identical to the
output from the run without fault injection (the golden output). For the outputs of
program runs that are not correct, we quantify the error using the root-mean-square
deviation (RMSD), the difference between two values, which could be a scalar or a

vector. It is computed using the formula RMSD(x, xgold) =
√∑n

t=1 (xt−xgold,t )2

n , where
n is the number of elements of the output vectors.

Program developers may take round-off errors and limited machine precision into
account and set program-specific correctness thresholds. An output is considered cor-
rect if the error is under the program-specific threshold. Unlike real-life programs,
the routines in this section are deterministic and much simpler and we choose to only
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Fig. 2 Fault characteristics of Cholesky decomposition given input size 500 × 500

consider an output to be correct only if it is identical to the golden output to better
illustrate how the fault resilience mechanisms affect their fault characteristics.

4.1 Error recovery

A light-weight in-memory checkpointing recovery method is deployed to all routines
in order to enable recovery from abnormal terminations such as segmentation faults.
This is done by installing a signal handler with the sigsetjmp system call and
backing up inputs at the entry points of the routines.

4.2 Algorithmic error detection

4.2.1 Cholesky decomposition (CD)

The Cholesky decomposition is a decomposition of the form A = LLT, where L is
lower-triangular with a positive diagonal. This operation must maintain the identity
Ax = L(LTx) [15], which is checked by the fault resilient CD algorithm in O(n2)
operations. It is significantly faster than the deterministic CD algorithm which takes
O(n3) operations. GSL implements an iterative algorithm that runs faster than O(n3)
but our experiments show that our checker is still significantly faster.

GSL’s Cholesky decomposition (CD) routine contains a built-in error checker that
terminates the program when the input matrix is not positive-definitive. As a result,
injected errors frequently cause the input to be non-positive-definitive, resulting in
most runs of the original CD being terminated. On the other hand, the runs that com-
plete usually contain very small errors.

The use of these resilience mechanisms has a significant effect on the probability
of abnormal terminations, as is shown in Fig. 2.

In CD, the positive-definitiveness of matrix A is checked when A is updated at
each iteration. The outcome probabilities of the non-fault-tolerant (NoFT) CD suggest
that most errors would cause abnormal termination and the chance of producing an
incorrect output without triggering the error check is very low. In other words, a
run would either terminate abnormally or finish with no error. The probabilities of
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Fig. 3 Detailed characteristics of fault resilient FFT with checker threshold 1e−07

Fig. 4 Fault characteristics of FFT given input size 4 m

outcomes of the fault-tolerant CD suggest thatwith the added rollback capability,many
runs are able to finish with a correct output. The choice of result checker threshold
(1e−06, 1e−07 and 1e−08) does not affect the proportion of correct outputs in the
outcome. We use 1e−06 in the programs in Sect. 5.

4.2.2 Fast Fourier transform (FFT)

FFT computes the transform Xk = ∑N−1
n=0 xne−i2πkn/N for a radix k. The result is

checked using Parseval’s theorem:
∑N−1

n=0 |x[n]|2 = 1
N

∑N−1
k=0 |X [k]|2, where x is the

original function and X is its transform. Intuitively it means that the energy of the
original function is preserved by the transform.

This check takes O(n) operations, which is smaller than O(nlog(n)) or O(n2)
for the FFT algorithm, depending on the FFT radix (For example, for a radix n =
2 · 3 · 19,999 transform, the O(n2) scaling would dominate).

Figure 4 summarizes the fault characteristics of different versions of FFT: the
possibility of incorrect outputs is significantly reduced by the error checkers. In fact,
most of the errors are very large and they can be detected with a lenient threshold such
as 1e−05. Figure 3 is a temporal error graph, which shows the magnitude of errors
(Y axis) caused by faults injected at different dynamic fault sites (dynamic LLVM
instructions) (X axis). The errors are measured with the root-mean-square deviation
(RMSD).
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Fig. 5 Fault characteristics of FIR of input parameter 512K

Comparing the temporal RMSD graphs one could see that the checker removes
larger errors, but smaller errors persisted. A stricter error checker slightly improves
the probability of correct outputs.

We choose 1e−07 as the checker threshold and take a closer look at the impact of
the smaller errors on a whole program in Sect. 5.

4.2.3 Finite impulse response filter generation (FIR)

This algorithm generates a sample of the function sinc(x) = sin(x)
x and modulates it

with a Blackman window. The result is checked using the invariant
∫ ∞
−∞ sinc(x)dx =

1, throughout our experiments. Computing the sum requires O(n) additions and is
faster compared to the O(n) trigonometric function evaluations of the original FIR
generation algorithm.

The checker threshold 1e−06 is too tight and causes many false alarms, resulting in
many runs terminated, as can be seen in Fig. 5. We choose 1e−05 as the error checker
threshold for FIR for it increases the probability of correct outputs.

4.2.4 Matrix–matrix multiplication (MM)

The matrix–matrix multiplication (MM) computes C = AB. The result is checked
using a matrix vector multiplication (MV) on the identity (AB)x = A(Bx), where
x is an error-checking vector (we use a vector of all 1 s). The checker takes O(n2)
operations and is asymptotically faster than MMM which takes O(n3) operations.

Figure 6 shows the fault characteristics of different versions of the MMM routine.
We see from the figure that error checker thresholds 1e−07 and 1e−08 correct more
wrong results than 1e−06 does. In the experiments we use 1e−06, 1e−07 and 1e−08
as the error checker thresholds for MM and see how it affects the whole program.

4.2.5 Symmetric Rank-K update

Symmetric Rank-K update (SYRK) computes αAAT + βB, where A and B are
matrices (Fig. 7).
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Fig. 6 Fault characteristics of matrix–matrix multiplication with input size 500 × 500

Fig. 7 Fault characteristics of symmetric Rank-K update with input size 500 × 500

The result is checked via the identity (AAT)x = A(ATx), where x is an error-
checking vector. We use a vector of all 1 s. The checker takes O(n2) operations.
Compared to SYRK which takes O(n3) operations, the check is much faster. The
error checker and recovery in the fault-tolerant SYRK fix many runs with incorrect
results, as is shown in Fig. 7. However, some of the incorrect runs are not corrected.
This is mainly due to the checker works in a recursive fashion and involves many
addition operations and round-off errors would accumulate during the process. As a
result, the checker always decides these runs are incorrect and keeps repeating until
the attempt limit is exceeded.

We use 1e−06, 1e−07 and 1e−08 as the error checker thresholds for RK in the
experiments in Sect. 5.

4.2.6 Matrix–vector multiplication

The matrix–vector multiplication (MVM) computes Ax , where A is a matrix and
x is a vector.

It is checked via the identity (xTA)x = xT(Ax). The complexity of computing
xTA takes O(n2) addition operations. In contrast, the original MVM takes O(n2)
multiplication operations. Since MVM is applied in Lasso many times to the same
matrix with different vectors, the vector xTA can be reused, amortizing the cost.

We use 1e−06, 1e−07 and 1e−08 as the error detector thresholds for MV in
the experiments. Figure 8 summarizes the fault characteristics of matrix–vector
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Fig. 8 Fault characteristics of matrix–vector multiplication with input size 500 × 500

Fig. 9 Overhead of fault resilience mechanisms for linear algebra kernels, FFT and FIR

multiplication. The performance overhead of the algorithmic checks for linear algebra,
FFT and FIR routines are listed in Fig. 9. The Runge-Kutta integrator will be discussed
separately since its resilience is not achieved through algorithmic invariants.

4.2.7 Runge–Kutta integrator

The 4th order Runge–Kutta method (RK4) is a method for numerically solving an
ordinary differential equations of the form dy

dx = f (y, x). It advances the variable x
by steps of size h and computes the value y at the next point x +h using the derivative
dy
dx at x. GSL’s RK4 integrator implementation uses adaptive step-size control where
it attempts a smaller h

2 and compares the result with that from step size h. If the
difference between the two results exceeds a threshold τ , it switches to a smaller step
size to maintain accuracy. If it is smaller than τ

2 , the algorithm switches to a larger
step size to make faster progress. An error resulting from a soft fault can cause the
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Fig. 10 Fault characteristics of the RK4 integrator

Table 2 Overhead of different
versions of the RK4 integrator

Overhead

Ckpt <1 % (negligible)

1Rep/1Rep+Ckpt 21.4 %

FullRep/FullRep+Ckpt 54.3 %

two results to diverge. If the divergence is greater than τ , the step size is decreased,
the result is computed again, and the error is masked. If the divergence is smaller, the
error will persist until the program finishes.

To protect against abnormal termination, a checkpoint ismade at every fixed number
of iterations. The number has to chosenwisely: an interval that is too short (for example
1) would incur much overhead in checkpointing, while an interval that is too long (for
example, 106) means it would take much longer to recover the program states from the
last checkpoint to the current time step. From our experiments, the choice of 10,000
makes an optimal balance. This routine is tested with the second-order nonlinear Van
der Pol oscillator equation in the GSL documentation [13]. Its resilience properties
are shown in Fig. 10 and Table 2 respectively.

5 Result analysis

In this section, we present how the fault resilience mechanisms can protect the pro-
grams from single bit-flip errors and the performance overhead of the mechanisms.
We show that the choice of fault checker threshold and replication strategy can affect
the performance overhead and/or accuracy under certain circumstances.

We present the confidence interval of probabilities of all three outcomes of every
program configuration with rectangles on a 2-D plane. The binomial confidence inter-
vals of the possibilities of abnormal termination and perfect output are mapped to
the X and Y axes respectively. The probability of incorrect results is one minus the
sum of the other two and can be mapped to the distance towards the line segment
passing (1, 0) and (0, 1). Intuitively, an area on the top-left means 100% correct
outputs with no abnormal terminations and is desirable. These visualizations give a
clear overview of the fault resilience characteristics of the programs under various
configurations.
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Fig. 11 Fault characteristics and resilience overhead of Lasso

5.1 Lasso

Figure 11presents the characteristics and running timeof the original and fault-resilient
Lasso.

From the fault characteristics figure we can see the clusters that clearly reflect the
effectiveness of the fault resilience techniques:

• The rectangles around the bottom-right cluster represent runs of non-fault-tolerant
(Non-FT) Lasso ((a) in Fig. 11). For these runs, the probability of abnormal ter-
mination is high and the probability of producing correct results is low.

• The rectangles around the top-left cluster represent fault-tolerant Lasso ((b) in
Fig. 11). For those runs, the probability of abnormal terminations is low and the
probability of correct outputs is high. Further, cluster (b) is divided into sub-
clusters corresponding to input sizes (b1 = {40, 80} · 500, b2 = 200 · 500, b3 =
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Fig. 12 Detailed fault characteristics of LASSO, without (top) and with (bottom) fault resilience (error
checker threshold set to 1e−07)

{400, 600} · 500, b4 = 800 · 500). The temporal error graph of the input size {20,
500} are shown in Fig. 12 as an example of how errors in the outputs are removed.

As input scales up, the overhead of the fault-resilient Lasso gradually decreases,
just as the individual routines do. In the meantime, the probability of perfect runs
increases while the probability of abnormal termination and running time overhead
decreases, as is shown in cluster (b). This is because when the input size gets larger,
a greater fraction of time is spent in cblas_dsyrk (the Rank-K update). Therefore
the overall program resilience characteristics would be shaped by the characteristics
of this routine.

On the other hand, the error checker threshold used does not noticeably affect cor-
rectness or performance. The thresholds chosen (1e−07, 1e−08 and 1e−09) for the
algorithmic checkers are all adequate for fixing incorrect runs. The rollback mecha-
nisms are very useful for recovering from abnormal terminations.

5.2 DRC

Figure 13 shows the error characteristics and running time overhead of the original
and the fault-tolerant DRC.

From the fault characteristics figure we can see the two clusters that clearly reflect
the effectiveness of the fault resilience techniques:
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Fig. 13 Fault characteristics and resilience overhead of DRC

• Runs of the non-fault-tolerant DRC are clustered around the center-left region ((a)
in Fig. 13), indicating smaller probabilities of abnormal termination and greater
probabilities of producing perfect results.

• Runs of the fault-tolerant DRC are clustered around the top-left region ((b) in
Fig. 13). The choice of fault checker threshold does not separate the runs.

Overall the characteristics (in terms of the chance of abnormal termination, correct
and incorrect answer) of DRC and Lasso are similar. However, the choice of fault
checker threshold has a much more significant impact on performance on DRC than it
has on LASSO. The performance overhead of a fault-tolerant DRC with error checker
threshold 1e−08 is significantly greater than 1e−05. This is because the checker
threshold 1e−08 is so tight that it considers results from many non-faulty runs to be
incorrect, giving many false alarms. In fact, 1e−08 is below the precision of single-
precision floating point representation which is roughly 2−23 ≈ 1e−07. From the
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Fig. 14 Detailed fault characteristics of the original (top) and fault-tolerant (bottom) DRC (error checker
threshold set to 1e−06)

detailed temporal error graph in Fig. 14, many incorrect runs with RMSDs greater
than 1e−06 are corrected.

5.3 Hattrick

The Hattrick program is very different from DRC and Lasso, and so are its character-
istics.

Figure 15 shows the overall error characteristics of Hattrick. We can observe from
the figure that:

• The bottom-right cluster (a) are runs of the non-fault-tolerant Hattrick. They have
the highest probability of abnormal terminations and incorrect results.

• The top-right cluster (b) contains runs with only pointer replication. Its probability
of abnormal termination is slightly reduced while the chance of perfect results is
increased. From the figures it can be seen the degree of replication has only a
slight influence on the outcomes (In contrast, the presence of replication has a
great influence).

• The bottom-left (c) cluster contains runs with only checkpointing. More runs com-
plete but the proportion of perfect runs remained almost the same.

• The top-left cluster (d) contains runs with both checkpointing and replication.
They are as tolerant to abnormal termination as the cluster (c) and produce as
many perfect results as cluster (b).
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Fig. 15 Fault characteristics and resilience overhead of Hattrick. (Inputs 1–4 correspond to P2T2090A15,
P2T3090A15, P2T4090A15 and P3T2090A11 respectively)

From the four clusters we can see that checkpointing and replication improve
resilience in two different directions: checkpointing fixes abnormal terminations and
“moves” a cluster towards the left. It does not increase the probability of correct results.
Figure 16 shows that a single bit-flip error is likely to cause Hattrick to produce a very
small error in its outputs which is well below the user-specified accuracy bound of
1e−10 and 1e−15 (most runs have an RMSD of smaller than 1e−20). However, in
rare cases, it can cause greater errors (the ones with RMSDs ranging between 1e−10
and 1). Either way, the errors persist through the program lifetime.

In comparison, replication effectively increases the probability of correct results,
but the amount of increase is not affected by the degree of replication.

Performance-wise, checkpointing at the chosen interval of 10,000 timesteps is
almost free of overhead. Our study suggests that the checkpointing overhead becomes
noticeable when the checkpointing interval is small enough (less than 100 time steps).
A smaller interval does not significantly improve the probability of correct results. On
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Fig. 16 Detailed fault characteristics of Hattrick. The dynamic RMSD plots are almost visually identical
for both fault-tolerant and non-fault-tolerant versions and only one figure is shown here for the sake of
brevity

the other hand, replication incurs greater performance overhead than checkpointing.
In case of a high degree of replication, the overhead is even higher.

6 Determining number of experiments

The propagation of errors in programs is an inherently complex process, and it is
difficult to model the error characteristics in the output analytically. However we can
empirically characterize a program with experiments. To do so we need to answer the
question of what is the number of fault injection experiments needed to accurately
characterize a program. We build a statistical model in FaultTelescope to determine
whether or not a number is large enough. This section shows the model-building
process.

We start by observing the correlation between the Dynamic Fault Site ID and the
error magnitude in incorrect results. To illustrate the correlation, the temporal error
graphs in Figs. 3, 12, 14 and 16 show that faults with Dynamic Fault Site IDs close
to each other are likely to incur errors of similar magnitudes. A statistical model is
built based on this observation. The model has three observation variables: (1) the
Dynamic Fault Site ID, (2) the Static Fault Site ID (one Static Fault Site corresponds
to one LLVM instruction in the program image) and (3) index of the flipped bit as
observations. The model has two response variables: (1) program outcome and (2) the
error magnitude in an incorrect run.

Given a combination of the observation variables, the model first categorizes a
program run into one of three classes with the 1st-level categorization model: “Abnor-
mal Termination”, “Incorrect Result” and “Correct Result”. Then, for the “Incorrect
Result” runs it predicts the RMSD of the result error using the 2nd-level regression
model. Its structure is illustrated in Fig. 17.

The accuracy of the model is evaluated using two metrics:

• 1st-level categorization model misclassification rate. Since we have 3 categories,
the chance of a correct random guess is 33.3%, which means 66.67% misclassifi-
cation rate. With the knowledge of the training set, the tree model should produce
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Fig. 17 Structure of the
FaultTelescope evaluation
models. Shaded procedures are
where the tree model is applied

Fig. 18 Trend of R-Square and misclassification rate as dataset size grows. (A random guess = misclassi-
fication rate of 66.7%)

a misclassification rate smaller than 66.67%. A lower misclassification means a
more accurate model.

• 2nd-level regression model R-Squared, or 1 − ∑N
i=1 (ŷi − yi )2/

∑N
i=1 (yi − ȳ)2,

describes how much of the variance in the data the model is able to capture (The
R-square is not applicable to the 1st-level classification). A greater R-Squared
means a more accurate model.

FaultTelescope selects the number of experiments incrementally, by performing
more and more experiments and observing the effect of the additional training data on
the accuracy of the model. For a given sample, FaultTelescope performs a two-fold
cross-validation for the model (train on half the data then predict for the other, and vice
versa) to obtain the misclassification rate and R-Squared. When FaultTelescope finds
the sample size where the accuracy of the model stops improving as it increases, it
stops the fault injection campaign since this number of samples is sufficient to build an
accuratemodel of the relationshipbetween theobservations (Dynamic, StaticFault Site
ID and Bit ID) and responses (Outcome and RMSD) considered by FaultTelescope.
After the sample size is reached, additional improvements in accuracy can only come
from adding more features into the models, not by running more experiments.

Figure 18 illustrates the procedure using experiments on the matrix vector multi-
plication routine, executed on 500 × 500 matrices. As the number of fault injection
experiments increases, we see that the misclassification rate drops while the R-square
converges steadily until they stabilize at a sample size of 49,947 experiments. As the
data shows, this sample size is sufficient for the purposes of FaultTelescope’s visual-
ization and is much smaller than the ∼1e9 experiments required to fully explore the
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experimental space. This is the sample size chosen for this routine. FaultTelescope
employs the same procedure for all other routines and programs.

7 Conclusion

We present FaultTelescope, a tool that supports developers in making programs
resilient to errors induced by soft faults. FaultTelescope collects information about
a program by carrying out fault injection campaigns. With the information, it then
visualizes the relationship between the time a fault occurs and its effect on program
results. With statistical analysis on the results, FaultTelescope helps developer draw
conclusions on the program’s fault characteristics and the effectiveness of the fault
resilience techniques with a high confidence.

We demonstrated the use of FaultTelescope for the Lasso, DRC and Hattrick pro-
grams. The results suggest that an HPC numerical program developer should take the
following into consideration when writing fault-resilient programs:

• Algorithm-specific error checkers are effective at detecting incorrect program
results, as illustrated in our experiments with MVM, SYRK and FFT. During
the process the developer should realize that the precision limit of the checker
may make it difficult to correct all results. Example of this is the checker for FFT.

• The probability of certain routines producing correct results can be significantly
improved if they are protected from abnormal terminations. Examples are the
Cholesky decomposition and the Runge–Kutta integrator. Their outputs are not
sensitive to faults compared to other linear algebra routines but aremore vulnerable
to abnormal termination.

• The RK4 integrator routine demonstrates characteristics significantly different
from those of linear algebra, FFT and FIR routines. It also requires different
resilience techniques, namely replication and checkpointing. It’s advisable to apply
checkpointing first due to its effectiveness and low overhead. Replication trades
performance for enhanced accuracy.

Actionable conclusions and tradeoffs in many other programs can be discovered
with the FaultTelescope workflow in a similar fashion. We believe FaultTelescope can
benefit the production of fault resilient numerical programs.
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