
J. Parallel Distrib. Comput. 92 (2016) 1–14
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Parallelizing image feature extraction algorithms on multi-core
platforms
Yunping Lu d,b, Yi Li a,b,c, Bo Song a,b,c, Weihua Zhang a,b,c,∗, Haibo Chen e, Lu Peng f

a Software School, Fudan University, Shanghai, China
b Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China
c Parallel Processing Institute, Fudan University, Shanghai, China
d School of Computer Science, Fudan University, Shanghai, China
e Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, Shanghai, China
f Division of Electrical and Computer Engineering, Louisiana State University, United States

h i g h l i g h t s

• Analysis and evaluation of various parallelism in image feature extraction algorithms.
• Observations on parallelism constraints in image feature extraction algorithms.
• An efficient adaptive pipeline scheme with good scalability.
• A power-efficient parallelism algorithm for various workloads.

a r t i c l e i n f o

Article history:
Received 11 October 2014
Received in revised form
10 August 2015
Accepted 2 March 2016
Available online 10 March 2016

Keywords:
Image feature extraction
SIFT
SURF
Adaptive pipeline
Multi-core

a b s t r a c t

Currently, multimedia data has become one of the most important data types processed and transferred
over the Internet. To extract useful information from a huge amount of such data, SIFT and SURF, as two
most popular image feature extraction algorithms, have been widely used in many applications running
on multi-core platforms. However, limited parallelism in existing designs makes it hard or impossible to
apply them in many applications with real-time requirements. Therefore, it has become one of the major
challenges to improve the processing speed of image feature extraction algorithms.

In this paper, we first analyze the parallelism constraints in the algorithms, such as imbalanced
workloads and indeterminate time distributions. Based on such analyses, we present an adaptive pipeline
parallel scheme (AD-PIPE) to adjust the thread number in different stages according to their workloads
dynamically, which achieves a balanced partition for constant input workloads. Furthermore, we also
implement a power efficient version (AE-PIPE) for AD-PIPE through scheduling threads based on variable
input workloads. Experimental results show that AD-PIPE achieves a speedup of 16.88X and 20.33X
respectively over SIFT and SURF on a 16-core machine. Moreover, AE-PIPE achieves up to 52.94% and
58.82% power saving with only 3% performance loss.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

As our society has entered a data-centric world, a huge amount
of data is transferred and processed over the Internet. As indicated

∗ Corresponding author at: Software School, Fudan University, Shanghai, China.
E-mail addresses: luyping@sina.com (Y. Lu), yee.lie@gmail.com (Y. Li),

espiesong@gmail.com (B. Song), zhangweihua@fudan.edu.cn,
whzhang.fd@gmail.com (W. Zhang), haibochen@sjtu.edu.cn (H. Chen),
lpeng@lsu.edu (L. Peng).

http://dx.doi.org/10.1016/j.jpdc.2016.03.001
0743-7315/© 2016 Elsevier Inc. All rights reserved.
in the forecast of CISCO Inc. [8], until 2014, the data quantity
generated everymonthwill reachmore than 0.6million PB. Among
such a huge amount of data, multimedia data has become one of
the most common data types being processed.

With the dramatic increase of multimedia data, it is vitally
important to continually collect, index and retrieve such ever-
increasing data to extract useful information and understand
them. Therefore, image feature extraction algorithms (IFEAs),
as the fundamental components of image and video retrieval
applications, have been designed and developed for many years.
Among the IFEAs, SIFT (Scale Invariant Feature Transform) [20,21]

http://dx.doi.org/10.1016/j.jpdc.2016.03.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.03.001&domain=pdf
mailto:luyping@sina.com
mailto:yee.lie@gmail.com
mailto:espiesong@gmail.com
mailto:zhangweihua@fudan.edu.cn
mailto:whzhang.fd@gmail.com
mailto:haibochen@sjtu.edu.cn
mailto:lpeng@lsu.edu
http://dx.doi.org/10.1016/j.jpdc.2016.03.001

2 Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14
and SURF (Speeded Up Robust Features) [4] are two most popular
ones [25,2]. They have beenwidely used inmany applications, such
as image and video retrieval [18,27], object recognition [15,3], and
face recognition and authentication [7,10].

However, the processing speed of the current image feature ex-
traction algorithms (IFEAs) still has a large room to be improved.
For example, SIFT can only process about 1.8 images or frames per
second on an average CPU and SURF can only process about 2.6 im-
ages or frames per second based on our experiments. Such results
make them impossible to be used in scenarios with real-time re-
quirements, such as large-scale content-based image retrieval or
object recognition systems. The major reason stems from their de-
sign complexity: to make the algorithms insensitive to rotation,
scaling, contrast and viewpoint changing, some complex transfor-
mations are included in the design of the IFEAs. Moreover, to guar-
antee retrieval accuracy, hundreds or thousands of feature points
are extracted to represent an image or a frame. Each feature point
will be further described with information around it and filled into
a high-dimensional vector. Therefore, the algorithms are not only
computation intensive but also data intensive.

The popularity of multi-core architecture and the increase of
computation resources on such platforms provide a new opportu-
nity to accelerate the processing speed of the IFEAs. Such oppor-
tunity has been evidenced by recent efforts on parallelizing these
algorithms, such as [14,35,36]. However, the achieved speedup
can still be further improved. For example, the parallelizing effort
in [37,29] only achieves a speedup of about 6X on a 16-core ma-
chine.

In this paper, we first systematically analyze the characteristics
related to parallelization of the IFEAs (SIFT and SURF). We find that
there exist some inherent parallel constraints, such as imbalanced
workloads in different feature points, sub-blocks, images, and
indeterminate timedistributions of different functions. To alleviate
these constraints, we design and implement an adaptive pipeline
parallelism scheme (AD-PIPE) for the IFEAs with constant input
workloads. AD-PIPE partitions different functions into different
pipeline stages in a producer–consumermanner. Such a design can
efficiently overcome the constraints of imbalanced workloads. To
alleviate the constraint of indeterminate time distributions among
stages,we apply an adaptive strategy. The strategy candynamically
check workloads in different pipeline stages and adjust the thread
number in different stages to achieve a balanced partition. To
further improveAD-PIPE from the perspective of both performance
and energy, we also extend AD-PIPE to design and implement a
power-efficient version for variable input workloads, called AE-
PIPE. AE-PIPE can adjust the number of threads between the
working state and the idle state based on input workloads to
reduce unnecessary computation resources.

Experimental results show that such designs are efficient and
scalable. AD-PIPE can achieve a speedup of 16.88X and 20.33X
respectively over SIFT and SURF on a 16-core commodity machine
and a real-time processing speed of about 30 and 52 images or
frames per second. For AE-PIPE, it can achieve about 23.81% and
25.30% power saving respectively over SIFT and SURF for variable
input workloads, and up to 52.94% and 58.82% power saving for
constant workloads with only 3% performance loss.

In summary, the main contributions of this paper can be
summarized as follows.

• An analysis and an evaluation of various parallelism in the
IFEAs, including image level, block level, scale level, pipeline
level and their combinations.

• The observations on parallelism constraints in the IFEAs,
including the imbalanced workloads and indeterminate time
distributions.
• The design and implementation of an efficient adaptive pipeline
scheme for the IFEAs with constant input workloads, which is
suitable for the IFEAs and outperforms prior designs with good
scalability.

• The design and implementation of a power-efficient parallelism
for the IFEAswith variable inputworkloads,which can schedule
threads based on input workloads.

The paper is organized as follows. Section 2 gives an overview
of various IFEAs and related acceleration work. Section 3 describes
SIFT and SURF in brief and presents a systematic characteristics
analysis of them. Section 4 focuses on the design and implemen-
tation of our adaptive pipeline parallel scheme. Adaptive power-
efficient pipeline parallelism is discussed in Section 5. In Section 6,
we show detailed evaluation results on multi-core platforms. Fi-
nally, we conclude our work in Section 7.

2. Related work

In this section, we first introduce some image feature extraction
algorithms (IFEAs). Then, we discuss some previous acceleration
efforts on the IFEAs.

2.1. Image retrieval algorithms

As the fundamental components of image and video retrieval
applications, image retrieval algorithms extract features to repre-
sent an image (or a video frame). Image features usually can be di-
vided into two categories: global feature-based and local feature-
based.

Global feature-based algorithms (GFAs): GFAs usually use a
single feature to represent an image or a video frame, such as color
histogram and texture. Due to using only one feature to represent
the entire image, GFAs fast extract the features but with low
precision inmatching (more than 30% error rate [28]), which limits
their applications. Furthermore, the algorithms cannot be used to
retrieval images after some transformations, such as re-sizing and
cropping [5]. Thus in many applications, GFAs are insufficient.

Local feature-based algorithms: In contrast to GFAs, local
feature-based algorithms (LFAs) extract hundreds or thousands of
features to represent an image. To guarantee the retrieval accuracy,
the algorithms generally include some complex computation
steps. Due to high precision in matching, they have been widely
used in many real-world applications.

Among all LFAs, SIFT and SURF are twomost popular and robust
ones [25,2]. Thus, we will mainly focus on them in this paper.
SIFT [20,21] is the most publicly accepted and robust local feature-
based image extraction algorithm. Tomeet different requirements,
there are many variants of SIFT, such as GLOH [25], and PCA-
SIFT [17]. Since all the variants are based on SIFT, in this paper,
we only focus on the original SIFT algorithm for research. Another
widely-used algorithm is SURF [4]. After proposed in 2006, it has
been applied to many applications, and tends to be an efficient
alternative of SIFT. Both of twoalgorithms are insensitive to various
transformations, such as scaling, rotation and illumination.

2.2. Previous acceleration efforts

Parallelization, as an efficient approach, has beenwidely used in
different areas for performance acceleration, such as atmosphere
prediction [32,31,19], graph processing [34], and architecture
simulation [30]. Since the LFAs include complex computations
and have to describe hundreds of feature points, they are time-
consuming, which limits their application fields in the real world
with real-time requirements. In order to solve the problem, many
efforts have been done to accelerate SIFT and SURF through
exploiting inherent parallelism in them.

Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14 3
To understand the characteristics of these LFAs better, Lu
et al. [23] constructed amultimedia retrieval benchmark and com-
pare their characteristicswith traditionalmultimedia applications.
Zhang et al. [22] analyze the gaps between current hardwares and
the architectural characteristics of multimedia retrieval applica-
tions and proposed a novel hardware architecture for multimedia
retrieval applications.

Zhang et al. [37] implemented a parallel SIFT algorithm and
showed a 6.4X speedup on an 8-core machine. Feng et al. [14]
achieved a speedup of 11X on a 16-core machine. Both of them
exploited block level parallelism, which parallelized SIFT through
partitioning an image into different sub-blocks. Although two
designs achieve some performance improvements, both their
results include around 2X speedup from serial optimizations such
as cache optimization. Therefore, the true speedup gained from
the parallelism was about 3X for an 8-core machine and 5.5X
for a 16-core machine. In [35], Zhang implemented a scale level
parallelism over SURF on multi-core CPU. In order to overcome
imbalanced workloads of scale level, they improved their design
with block level parallelism in [36]. As evaluated in [13], their
design actually gained a speedup of 6.0X from its parallelism for
a 16-core machine.

Frompreviousworks, it is obvious that large gap exists between
parallel designs and the ideal speedup, which means that there
might be some limitations in those designs or in SIFT and SURF
themselves. As analyzed in the following sections, there exist
some constraints, such as imbalanced workloads. Such limitations
greatly affect the performance of prior parallel designs. Researches
mainly focused on mapping a LFA onto some specific hardware
by exploiting a specific form of parallelism, instead of analyzing
parallel characteristics of the LFAs in detail and designing a real
effective parallel scheme. Moreover, most of them don’t consider
power efficiency in their designs, which is one of most important
issues in real-world environments. Therefore, in this paper, we
first comprehensively analyze parallel constraints. Based on the
analysis, we design an effective parallel framework for the LFAs.
Our approach can achieve not only good performance but also
power efficiency.

3. SIFT and SURF overview

In this section,we first briefly introduce SIFT and SURF, and then
analyze their characteristics, such as themajor parallelism in them.
At last, we analyze the factors which will influence the efficiency
of different parallelizations.

3.1. SIFT and SURF

SIFT and SURF are two most popular and robust LFAs [25,2].
As shown in Fig. 1, both of them consist of an initialization stage,
feature detection stage, and feature description stage. An overview
of their workflow is shown as follows:

• Initialization stage: This stage does some initialization work,
including loading the image, getting the intensity of each image
pixel and calculating the intermediate representation.

• Feature detection: This stage is to detect feature points (also
called points) in an image or a video frame. As shown in Fig. 2,
a m ∗ n scale space pyramid is constructed to guarantee scale
invariance. SIFT and SURF use different computation methods
to construct the pyramid. In SIFT, image size is varied between
adjacent octaves and the Gaussian filter is repeatedly applied
to smooth subsequent intervals in the same octave. After that,
SIFT constructs difference-of-Gaussian pyramid by subtracting
adjacent Gaussian intervals. SURF leaves the original image
unchanged and varies only the filter size to construct the
pyramid, which is more computationally efficient than SIFT.
After building the scale space, each point in the pyramid is
compared with its surrounding 26 points in a 3 ∗ 3 ∗ 3 cube. If
its value is the extreme value, the point is extracted as a feature
point candidate. To guarantee the quality of extracted points,
the candidates with low contrast or localized along edges are
discarded. The remaining candidates are the final feature points.

• Feature description: In this stage, each detected point will
be described by an n-dimensional vector. First, an orientation
value is calculated based on the information around it to make
the algorithm rotation invariant. Then, a descriptor window
is constructed, and the feature vector is computed based on
the orientation information. The value of the feature vector is
also normalized to keep the algorithm illumination invariant.
In SURF, each feature point is described as a 64-dimensional
vector. And in SIFT, a 128-dimensional vector is used.

3.2. Available parallelism

There exist several levels of parallelism in SIFT and SURF,
including image level, scale level, block level, and pipeline as
shown in Fig. 3. They are described as follows:

• Image level: On image level, images are divided into several
groups and the groups can process LFAs in parallel. There are
two partition methods for image level parallelism. The first
one is a static partition, which groups the images statically.
The other is a dynamical manner. After each thread finishes its
current work, it gets a new one from unprocessed images.

• Scale level: Each scale in the scale-space pyramid is constructed
and detects feature points independently. Thus scales can be
processed concurrently.

• Block level: Each input image can be divided evenly into some
sub-blocks, and blocks can be processed by LFAs concurrently.

• Pipeline: Different stages in SIFT and SURF, such as detection
(Det) and description (Des), can be distributed to different cores
andwork in a pipelinemanner. Input images are treated as data
streams to flow through all stages one by one.

• Their combination: The parallelism stated above can also be
combined together. For example, the combination of image
level and block level first divides the images into groups, and
then each image in the group can use the block level parallelism
to further parallelize the algorithm.

3.3. Constraints for parallelization

Before we get down to implement efficient parallel LFAs, it is
better to understand their characteristics. Based on the character-
istics analysis, we can find what and where the limitations exist.
Only by overcoming these obstacles can we design and implement
a more efficient parallel algorithm. Hence, we analyze the major
characteristics that may be potential constraints for parallelizing
SIFT and SURF. For simplicity, we mainly use two image sizes for
later evaluation. The image set of 640 ∗ 480 as standard or small
image set, and 1600 ∗ 1200 images are chosen as the large image
set.

3.3.1. Indeterminate time distributions
We investigate time distributions of different processing stages

in LFAs for various image sizes. Here, to illustrate the problem
more clearly, we choose two coarse-grained stages, detection and
description, as an example.We downloaded 20 2048∗1536 images
from the Internet and converted them to various image sizes.
Fig. 4 gives the time ratio of two stages (description/detection)
for different image sizes. The value is the average results of 20
imageswith the same size. The results show that time distributions

4 Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14
Fig. 1. Workflow of SIFT and SURF.
(a) SIFT. (b) SURF.

Fig. 2. The pyramid structure in SIFT and SURF. The pyramid consists ofm octaves; each octave consists of n intervals.
(a) Image level. (b) Scale level.

(c) Block level. (d) Pipeline.

Fig. 3. Different primary parallelism in the LFAs (SIFT and SURF). Blocks with shadow are those components mapped on different cores.
of the two stages are changeable for different image sizes. The
major reason is the difference in their image sizes and the number
of points. The larger the image is, the more time detection stage
consumes. The more the points are, the more time description
stage consumes. On average, when the size of the image is up-
scaling, the ratio decreases. Actually, time distributions for the
images with the same size are also various due to their various
feature point number.
3.3.2. Imbalanced workloads
Another big constraint of the LFAs is imbalance workloads. The

imbalance exists on image level, scale level, block level, and feature
point level.

Imbalance on image level: Fig. 5 shows the number of feature
points detected in each image in the small image set. As the re-
sults shown, some images have a larger number of feature points
while others have a smaller number of feature points. The various

Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14 5
Fig. 4. Time distributions between detection and description stages. The ratio is
the time of description stage dividing that of detection stage.

Fig. 5. Imbalance on image level.

number of feature points in the images leads to different execution
time, which leads to imbalanced workloads in image level.

Imbalance on scale level: Furthermore, during building the
scale pyramid, workloads of each scale are also imbalanced. Fig. 6
illustrates such a condition, where the processing time of each
scale for building pyramids is shown. We divided the diagram
of pyramid structure into rows where each row stands for each
octave. The execution time of each octave is labeled in the right
corner of the row, and that of each interval is labeled in the
corresponding left parallelograms. The diagram illustrates that
workloads for each scale are imbalanced. The upper scales need
more time to be processed.

Imbalance on block level: Imbalance workloads also exist on
block level. To illustrate this problem, we evenly divide a 640∗480
image into 4 ∗ 4 blocks and collect the number of feature points
detected in each block. The data are shown in Fig. 7. As the data
shown, the number of feature points detected in each block is dif-
ferent. Therefore, the parallelism in prior research [37,14,36] can-
not achieve a good performance because of imbalanced workloads
on block level.

Imbalance on point level: Workloads of different points are
also imbalanced. Fig. 8 shows the description time of each feature
point of SIFT and SURF in a standard image. The major reason of
such a result is that when a feature point is in an upper scale, the
diameter for orientation computation is larger than that of the fea-
ture point on a lower level, which will lead to different compu-
tation cost for different points in different locations. Therefore, it
cannot achieve a balanced partition to exploit the parallelism on
feature point level.

3.3.3. Constraints for parallelization
Balancedworkloads have been one of themost important issues

to achieve good performance and good scalability for parallel ap-
plications. Although there are several types of parallelism in SIFT
and SURF, the characteristics, such as indeterminate time distribu-
tions and imbalanced workloads, greatly affect their efficiency.

• Constraints for image level parallelism: The major constraint
is imbalanced workloads in image level parallelism since some
images may have thousands of points while others may have
little. Therefore, it is impossible to achieve a balanced partition
when allocating images to different threads.

• Constraints for block or scale level parallelism: The perfor-
mance of block level or scale level parallelism is also limited by
(a) SIFT. (b) SURF.

Fig. 6. Imbalance on scale level.

6 Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14
imbalanced workloads in them respectively. Moreover, to ex-
ploit scale level or a block parallelism, synchronization cannot
be avoided. Taking block level parallelism of SIFT as an example,
synchronization has to be involved after each scale of Gaussian
pyramid is built because the calculation of the Gaussian scale
in one block may use the data of other blocks. Thus, frequent
synchronization is another factor that affects the performance.

• Constraints for pipeline parallelism: It appears that pipeline
parallelism will not be influenced by the constraint of imbal-
ance workloads since each point detected in the former stage
is transferred equally to the latter ones. However, the indeter-
minate time distributions make the design of static pipelines
impractical. Moreover, it is difficult to achieve a scalable and
balanced partition when the core number increases.

4. Scheduling for constant workloads

In a multimedia retrieval system, there generally are two input
conditions. The first condition is constant input flow, which mean
the incoming image or video frame number is a constant value.
For example, the input images are read from a data set stored
on computer disks. The second one is variable input flow, such
as website user requests. Our goal is to overcome the parallel
limitations for such inputs and fully utilize hardware resources. In
this section,wedesign and implement an adaptive pipeline parallel
scheme (AD-PIPE) for constant input flow, which is suitable for
both SIFT and SURF and is more efficient and scalable compared
to prior designs. We will first give out the theoretical analysis and
discuss the basic design of AD-PIPE. Then we show the throttling
mechanism to avoid thrashing threads between the two pipeline
stages.

4.1. Design consideration

As discussed in Section 3.3, there exist some constraints when
parallelizing the IFEAs. Such constraints will waste computation
resources on multi-core platforms since they would involve a
lot of waiting time, which will lead to poor performance. So we
firstly analyze the utilization of parallel resources and illustrate our
design consideration.

Suppose there is a set of cores C = {c0, c1, . . . , c|C |−1} (|C |

denotes the number of elements in set C , and that is the number of
cores here). When a parallel application is executed on cores in C ,
there are two kinds of time for each core ci,: the working time TWi
and the waiting time TIi . TWi stands for the actual working time to
deal with real workloads. TIi represents the idle time involved by
the parallel constraints in the IFEAs, such as imbalancedworkloads.
Therefore, when parallelized the IFEAs are executed, the utilization
of each core is the proportion of its working time in its total
execution time. The total utilization (U) of cores is the sum of these
cores’ utilization. It can be represented as follows:

U =

|C |−1
i=0

TWi

TWi + TIi
.

Based on this formula, higher utilization means better perfor-
mance. Thus, when parallelizing the IFEAs tomulti-core platforms,
we should maximize the utilization to achieve the best perfor-
mance. It can be formulized as follows:

Maximize(U) → Maximize

σ =
U
|C |

→ 1

where σ denotes utilization rate of corresponding cores C .
To achieve this goal, we involve the thought of the greedy

algorithm in our design. In other words, to get a globally optimal
solution, we will try to make a locally optimal choice for each core.
Fig. 7. Imbalance on block level.

Fig. 8. Imbalance on feature point level.

Therefore, our goal can be converted to achieve the local optimal
utilization ui for each core ci:

Maximize

ui =

TWi

TWi + TIi

→ 1.

Based on above analysis, we design and implement an adaptive
pipeline parallel scheme (AD-PIPE) to alleviate the parallel
constraints and maximize U when parallelizing the IFEAs. We
mainly exploit the pipeline parallelism in our design, meanwhile
eliminate the constraint of indeterminate time distributions with
our adaptive strategy, which can maximize TW . The basic design
consideration is that the constraint of imbalanced workloads
existing in other parallelisms is more difficult to be detected
and adjusted since it is impossible to predict when and where
imbalance workloads exist.

In a pipeline parallelism, a whole process of an application is
partitioned into different stages, which works in a streamingman-
ner. Input data flows through stages and are processed one by one.
Therefore, there exist two major issues in the design of pipeline
parallelism. The first issue is how to achieve a balanced partition,
which can avoid unnecessary wait among pipeline stages. Gener-
ally, pipeline stages are statically partitioned based on the percent-
age of their execution time. However, the design of static pipeline

Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14 7
Fig. 9. The basic architecture of AD-PIPE.

has the limitation of indeterminate time distributions among dif-
ferent stages in SIFT and SURF for different inputs. The other issue
is the efficiency of the communication between adjacent pipeline
stages, which also has a great influence on the pipeline perfor-
mance.

4.2. Adaptive pipeline design

To efficiently eliminate the constraint of indeterminate time
distributions, we design an adaptive pipeline parallel scheme (AD-
PIPE) over SIFT and SURF. In AD-PIPE, the number of threads
of different stages is dynamically adjusted based on current
workloads. If workloads are too heavy for one pipeline stage,
its thread number will be increased, and the stages with low
workloads will be decreased. However, when the number of
pipeline stages increases, more synchronization between the
adjacent stages will be involved, and TIs for two stages will
increase. To avoid this problem,we apply a coarse-grained pipeline
partition. In other words, we only partition the SIFT and SURF
into two stages: detection and description. As shown in Fig. 9, all
threads are divided into two groups in AD-PIPE based on an initial
proportion parameter, such as 1:3 or 1:1.Whenmore computation
resources are available, the threads for two stageswill be increased
based on the initial proportion parameter. Therefore, instead of
designing a single-producer and single-consumer pipeline in prior
research, we apply amulti-producer andmulti-consumer pipeline.
In such a design, some threads are doing detection and the
others are doing description. Detection threads build scale-space
pyramid, detect feature points concurrently and write them into
the shared buffer, while description threads read feature points
from the shared buffer and describe them concurrently. To detect
whether there are imbalance workloads between two stages, we
check the buffer states cyclically. When the buffer keeps full for
a certain time, it means that detection stages run much faster
than the description stages. In such a condition, the idle time for
the threads in the detection stages will increase. To improve the
utilization, the number of detection threads should be reduced, and
that of description threads should be increased correspondingly.
Similarly, when the buffer keeps empty for a certain time, it means
that the description stages run much faster now. Therefore, some
description threads should be changed back to do the detection
work.

4.3. Buffer design

Besides the design of pipeline partition, buffer design must
be carefully considered with this adaptive strategy for dynamical
adjustment of thread numbers. For example, if we use 1:3 static
pipeline on a 16 core machine, that is, 4 detection threads and 12
Table 1
The speedup of different wait time (ticks), and different buffer sizes over SIFT based
on 16 cores.

Ticks Buffer size
8 12 16 32 64 128 256

5.0E+6 12.14 12.46 12.42 13.07 13.02 5.98 6.61
1.0E+7 13.18 13.37 13.26 13.53 13.38 12.61 8.62
5.0E+7 13.84 14.07 13.75 14.05 13.58 12.85 11.74

Table 2
The speedup of differentwait time (ticks), and different buffer sizes over SURF based
on 16 cores.

Ticks Buffer size
8 12 16 32 64 128 256

5.0E+6 14.25 14.47 14.58 14.81 15.14 15.00 14.83
1.0E+7 14.64 14.90 14.72 14.88 14.95 15.05 14.79
5.0E+7 14.29 14.45 13.49 14.29 14.32 13.41 12.37

description threads, we can use 4 local-shared single-producer and
multiple-consumer buffers, one of which is shared by a group of
one detection thread and three description threads, to alleviate
the buffer contention. However, this kind of buffer design is
inefficient for our adaptive pipeline scheme. When the number
of detection thread is decreased, idle description threads should
be reassigned to other groups to help their description work. In a
similar way, when the number of detection threads in a certain
group is increased, description threads in other groups should
be reassigned to help description work in this group. Therefore,
this kind of reassignment is inefficient because workloads of each
groupmay be imbalanced. Thus, in our AD-PIPE, we adopt a global-
shared multiple-producer and multiple-consumer buffer to store
all detected feature points from different detection threads. This
global buffer is a circular queue, where detection threads store
features to the tail of this global queue and description threads
reads them from the head. We use semaphores to detect whether
the buffer is full or empty and locks to assure atomic access to
a buffer entry. To avoid unnecessary communication and reduce
synchronization overhead, the feature points detected in an image
are not partitioned and actually only the pointer to features needs
to be stored in the buffer. Thus, the overhead of accessing the buffer
is tiny.

4.4. Throttling mechanism

The throttling mechanism must be taken into account to avoid
too frequently thrashing threads between the two pipeline stages.
We control the frequency of thrashing threads through twoparam-
eters: buffer size (size of shared buffer) and wait time (ticks from
last adjustment of thread numbers), which are two important fac-
tors thatmay affect the overall performance. If the buffer size is too
large, the adaptive pipeline will be insensitive to the changing of
workloads, thusmay not adjust system resource allocation in time.
However, if the buffer is too small, AD-PIPE may be too sensitive.
As a result, frequent changes of thread work will harm locality and
cause extra overhead. Moreover, as another important parameter
of our AD-PIPE, if the wait time is too short, the threads in differ-
ent stages may be frequently adjusted, which will cause additional
overhead. If the wait time is too long, some threads may wait too
long time for the buffer which will also affect the performance. To
decide the parameter of buffer size and wait time, we use the hy-
brid image set to evaluate the relation between performance and
two factors on 16 cores. The data are shown in Tables 1 and 2. As
the results shown, when the buffer size is 12 and the wait time is
5.0E+7 ticks, AD-PIPE of SIFT can achieve the best performance.
And over SURF, the buffer size and wait time are 64 and 5.0E+6
ticks respectively. Therefore, we apply two configurations as the
default parameters for AD-PIPE in the following parts of this paper.

8 Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14
Table 3
Two actions of thread transfer of AD-PIPE.

Buffer state Detection Description

Action 1 Buffer (Full) −1 +1
Action 2 Buffer (Empty) +1 −1

Fig. 10. The basic workflow of AE-PIPE.

5. Scheduling for variable workloads

Currently, power problems have become one of the most
concerned issues in data center environments, which usually host
hundreds or thousands of servers, such as YouTube, Flickr, and
Facebook [6,26]. Considering a mass of image and video retrieval
applications are running on data center servers day in and day
out and their inputs vary in different time periods of a day, only
accelerating the IFEAs, as the essential part of these programs,
is far from enough to meet the power demand of modern data
center. Therefore, it is appealing to design an efficient version for
variable input workloads to achieve good power efficiency. In this
section, we will first analyze the constraints of AD-PIPE in the
environmentswith variable inputworkloads, and then give out the
design of our energy-efficient adaptive pipeline parallelism (AE-
PIPE).

5.1. Constraints for AD-PIPE

In AD-PIPE, we dynamically adjust threads between two
pipeline stages to fully utilize computation resource. The actions
for thread transfer are shown in Table 3. When the buffer between
two stages is full for a while, the system performs Action 1 which
transfer some threads in the detection state to description state.
Similarly, Action 2 is performed to transfer threads from the
description stage to the detection stage if the buffer is empty for
a while.

Therefore, if input workloads are constant and the input buffer
is always full, AD-PIPE can achieve balanced scheduling and work
well. However, in practical conditions, input workloads of most
server applications showvery variable behavior. As an example, for
a typical multimedia oriented website, the number of users drops
gradually during the early morning (12–7 AM) and the afternoon
(2–5 PM), while it climbs to a peak when users are in noon break
(Noon-2 PM) or after work (6–9 PM) [33]. As a result, there are two
constraints for AD-PIPE under real-world environments.

• AD-PIPE is always running for the worst cases since it assumes
input workloads are constant and always full. All computation
resources are set to make their best effort to do their jobs
regardless of actual input workloads. Therefore, it is power
inefficient in the most conditions.

• AD-PIPE will lead to unnecessarily thrashing threads in some
conditions. For example, when input workloads decrease, the
detection stage will have less work to do, and then the buffer
will be empty. According to the scheme of AD-PIPE, threadswill
be transferred from the description stage to the detection stage.
While the detection stage gets more threads, the buffer will be
full. Some threads will be transferred to the description stage.
Then the description stage gets more threads and has less work
to do, so the buffer becomes empty again. Under this situation,
the buffer state will change between empty and full frequently,
which will result in thrashing threads unnecessarily.
As a result, many computation resources are wasted due to
redundant running time caused by these constraints, which will
lead to tremendous amounts of power waste. So we now analyze
the wasted resources rate and identify our goal to extend AD-PIPE
for power efficiency.

Suppose there is a set of cores C and for each core ci, there
are two kinds of running time of it: TWi and TIi . In addition, the
whole execution time of the application can be divided in k non-
overlapping intervals N = {n0, n1, . . . , nk−1}. In each interval
ni. There are two kinds of running time of it. One is effective
working time TE which is the actual working time for dealing
with images and redundant time. The other is redundant time TR,
which is unnecessary, such as idle time or thrashing time. When
TR increases, the power efficiency will decrease because more
computation resources will be wasted. The total wasted resource
rate A which will lead to power inefficiency can be represented as
follows:

A =

k−1
i=0

|C |−1
j=0

TRi,j
TRi,j + TEi,j

.

To achieve the goal of power efficiency, we shouldminimize the
meaningless execution time to reducewasted power consumption.
In other words, we shouldminimize the total wasted resource rate
A:

Minimize(A) → 0.

Here, we also adopt the thought of the greedy algorithm as AD-
PIPE. That is, in order to achieve the global minimized wasted
resources rate A, our goal can be converted to achieve minimized
wasted resources rate ai in a certain interval ni:

Minimize

ai =

|C |−1
j=0

TRj
TRj + TEj

→ 0.

Therefore, some dynamic mechanisms should be involved to
deal with variable workloads and achieve power-efficient.

5.2. Adaptive energy-efficient pipeline parallelism

Our goal is A → 0, and that is to say improving power efficient
as much as possible while maintaining the achieved performance.
To achieve such a goal, we extend AD-PIPE to adjust the number
of working threads according to the current input workloads,
calledAdaptive Energy-Efficient Pipeline Parallelism (AE-PIPE).We
will first show the workflow of AE-PIPE and then discuss the
fluidity of threads to achieve a better trade-off between energy and
performance.

5.2.1. Workflow of AE-PIPE
For AD-PIPE, we schedule the threads through monitoring the

buffer state between the detection stage and the description stage.
However, such a design cannot work well when input workloads
change. The hardware resource of a data center is generally set to
be able to deal with the worst case. However, input workloads in
most conditions are less than that of the worst case. Since fewer
input workloads need fewer computation resources, redundant
resources can be set in a low power state for power efficiency.
Hence, we need to detect both of input workloads and inner
workloads to achieve our goal in AE-PIPE.

There are several ways to monitor both kinds of workloads in
different stages. We can detect the change of both workloads in
every stage, which means each stage schedules threads according
to the change of bothworkloads. However, such a designwill result
in chaos and the overhead will be larger for two reasons.

Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14 9
• The description stage is unable to judge which kind of work-
loads causes the buffer state changes. If current workloads of
the description stage are decreasing, it can be raised from the
imbalance between two stages or input workloads. When the
buffer state changed, the description stage cannot figure out
which condition happens since the description stage only co-
operate with the detection stage.

• It would be difficult to synchronize between two stages if both
of them schedule threads for input workloads. For example,
when the workloads increase, the working threads should be
increased. However, if both of them try to increase the num-
ber of threads, it will be difficult to decide how to allocate the
available threads.

To avoid such constraints, we let the description stage only
detect the inner workload change, and the detection stage is
responsible for detecting both two workloads. In the design of AD-
PIPE, we dynamically balance workloads between the detection
stage and the description stage by transferring threads from the
description state to the detection state and vice versa. When
we aim to additionally maintain workloads of two stages in line
with the actual input workloads, another mechanism should be
extended to deal with the workload change. The basic workflow
of AE-PIPE is shown in Fig. 10, and it is almost the same as AD-PIPE
except that the input buffer (Buffer 1) is used to detect the change
of input workloads. In other words, the description stage and the
detection stage detect the imbalance between them as AD-PIPE.
And the detection stage additionally detects input workloads and
makes relevant adjustment.

5.2.2. Threads fluidity
In AD-PIPE, a thread is transferred only between the detection

state and the description state. For AE-PIPE, in order to save
energy and react to the input workload change, a new thread
state, idle state, is introduced. When the thread state is idle, the
CPU which executes this thread will shut down or be in sleep
mode depending on the hardware implementation. In order to
balance the number of threads in the idle state and working state
according to input workloads, we get threads from idle state if we
need more threads to handle current workloads and maintain the
performance. Conversely, in order to save energy and decrease, we
put threads into the idle state if there are redundant and wasteful
threads.

After involving another thread state, the scheduling of threads
becomes a little bit complex, the input buffer (Buffer 1) is involved
to detect the change of input workloads and it has the same
throttling mechanism as the origin one. Therefore, in the interval
i, if the input buffer is full for a while, which means that input
workloads raise and the current working threads cannot fully
deal with it. Then, the threads in the idle thread state will be
dragged to the detection state and start to work. Such a design can
prevent AE-PIPE from losing performance caused by too many idle
threads. After the threads go to work, they are controlled by AD-
PIPE mechanism to achieve the outstanding acceleration onmulti-
core platform. When input workloads drop, the input buffer will
be empty for a while, which means some threads are looping and
consuming energy wastefully. Therefore, the redundant threads
should take a nap and be transferred to the idle state at this time.
The dynamic scheduling of threads is shown in Fig. 11, Buffer 1 is
placed between the idle state and the detection state in the figure
while it is actually between input images and the detection stage
because detecting the input workload change is directly controlled
through detecting the states of Buffer 1.

Combined with AD-PIPE, we summarize four thread transfer
actions which are listed in Table 4. There are four actions for
AE-PIPE scheduling. Action 1 and Action 2 which origin exists
Table 4
Four actions of thread transfer show the changing number of different state threads.

Buffer state Idle Detection Description

Action 1 Buffer 2 (Full) – −1 +1
Action 2 Buffer 2 (Empty) – +1 −1
Action 3 Buffer 1 (Full) −1 +1 –
Action 4 Buffer 1 (Empty) +1 −1 –

Table 5
Three input image sets and the average feature point number in SIFT and SURF.

Image set Size SIFT features SURF features

Small 640 ∗ 480 2722 999
Large 1600 ∗ 1200 4925 2132
Hybrid small & large 3824 1566

in AD-PIPE balance workloads between the detection stage and
the description stage. Similarly, Action 3 and Action 4 are used
to balance the number of idle threads and working threads. For
the detection stage, it reacts to both two kinds of workloads and
threads in it can be transferred to idle state or the description state
correspondingly. For the description stage, it is only responsible
for its own workloads. When workloads change, the description
stage can only get or transfer its threads to the detection stage first.
Then the detection stage decides whether some threads should be
transferred to the idle state or wake upmore threads from the idle
state.

With the help of threads fluidity, we decrease TRi while main-
tain TEi at themost suitable level for each interval i. Hence, AE-PIPE
achieves a better trade-off between performance and energy.

6. Evaluation on multi-core platforms

In this section, we evaluate the performance of adaptive
pipeline parallelism through comparing its results with those of
other parallel schemes.

6.1. Experimental environment

Besides our adaptive pipeline parallel scheme, we also imple-
ment several other parallelism including image level (static and
dynamic), scale level, block level, image-block parallelism (the
combination of image level and block level) and static pipeline paral-
lelism. The hardware platform is a 16-core serverwith 24GBmem-
ory. Each processor is an Intel Xeon E7-4807 CPU with 1.87 GHz
frequency. All the algorithms are compiled by GCC 4.4.0 with opti-
mization argument -O2 under Fedora 11.

For SIFT, we use an open-source version provided by Rob
Hess [16] as the baseline. For SURF, we also choose an open-source
implementation, OpenSURF [11]. Various parallel versions of SIFT
and SURF are implemented with pthread library [9]. We use three
image sets for evaluation based on the feature point number,which
affects the processing time of the IFEAs. The average point number
of each set is listed in Table 5. The small image set is collected by
K. Mikolajczyk [24] with modified 640 ∗ 480 image size. Images in
the large image set are randomly downloaded from Google Image
and each image has 1600∗1200 pixels. The hybrid image set is the
data set including different image sizes. Each image sets includes
48 images. To reduce bias among different runs, each parallelized
version is executed ten times, and the arithmetic mean is used.
Besides different sets, we also checked our results through using
some other images for our evaluation. The conclusions are similar
with testing sets in the paper.

10 Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14
Fig. 11. Dynamic scheduling of AE-PIPE threads.
Fig. 12. The speedup of various SIFT parallelism for the hybrid image set.

Fig. 13. The speedup of various SURF parallelism for the hybrid image set.

6.2. Performance of AD-PIPE

6.2.1. Performance of AD-PIPE
We first evaluate our AD-PIPE using the hybrid image set and

compare it with the other parallelism. The speedup of processing
time in all following experiments is measured by millisecond. The
data are shown in Figs. 12 and 13. As data shown, our AD-PIPE has
good scalability and it outperforms any other parallelism, with a
speedup of 14.07X and 15.14X over SIFT and SURF on a 16-core
machine. However, the speedup of AD-PIPE is a little lower than
the ideal speedup. This is because the performance is limited by a
series of factors such as the time of serial parts, the overhead of the
adaptive adjustment and the communication synchronization.

As shown in Figs. 12 and 13, the performance of scale level par-
allelism is poor. They can only achieve a speedup of 2.34X over
SIFT and 4.60X over SURF on 16 cores. The block level parallelism
over SIFT is also poor, which has a speedup of 3.58X on 16 cores.
The results are consistent with those of prior researches [37,14].
The major reason behind such results is that there are imbalanced
workloads and frequent synchronization in such forms of paral-
lelism. Block level parallelism of SURF requires less synchroniza-
tion than that of SIFT, thus has a comparatively better performance
of 12.22X speedup.

Image level parallelism has a good performance. When the
number of cores is 4, we can see that the speedup is very close
to the ideal speedup of 4X. On 16 cores, the speedup is 11.54X
and 11.03X respectively over SIFT and SURF. The speedup of
the dynamic version is 12.55 and 13.35 respectively. However,
with the core number increasing to 8 and 16, the speedup is
gradually away from the ideal speedup. This is mainly because of
imbalance workloads on image level parallelism. The combination
of image and block parallelism has good scalability, but the
performance is limited by the deficiency of block level or image
level parallelism. Although dynamic image level parallelism can
overcome imbalance workloads to some extent, its results are also
unsatisfied. The reason is that it is difficult for image level to know
where and when the imbalance exists. Therefore, it is impossible
for it to adjust its workloads among all threads based on the overall
workload condition.

The static pipeline is designed to assign resources for two stages
according to the workload of small images in SIFT (1:3 partition for
detection and description stages).1 We can see that the pipeline
can only gain 9.19X and 11.98X speedup with the hybrid image
set on 16 cores. Although they have acceptable scalability, the
performance is not satisfied.

6.2.2. Evaluation on different input sets
To further illustrate the efficiency of our AD-PIPE, we further

compare AD-PIPE with the parallelism with relatively good
performance to show the speedup of the small image sets and
large image sets. The results are evaluated by using 16 cores. As
the data shown in Figs. 14 and 15, AD-SIFT also outperforms other
parallelisms, which has a speedup of 13.45X for small image set

1 We also test other partitions, such as 1:2, the results are similar. Since the space
constraints, those results are not given out.

Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14 11
Fig. 14. The speedupof various SIFT parallelism for different image sets on 16 cores.

Fig. 15. The speedup of various SURF parallelism for different image sets on 16
cores.

and 14.35X for large image set. For small image set, only the results
of dynamic image level parallelism is a little better than those of
AD-PIPE. The reason is that the imbalance for small images is less
serious than that of larger images. Therefore, dynamic image level
parallelism works well. With image size increasing, on one hand,
the imbalance condition become serious. It is difficult to adjust
workloads for it. Moreover, with image size increasing, SIFT and
SURF will suffer from the pressure of memory and bandwidth as
analyzed in [14]. On the whole, AD-SIFT is the most efficient and
scalable parallelism for all three image sets.When the input images
are hybrid, the superior of AD-SIFT is more distinct, which makes
itmore applicable in the real-world environment. Similar situation
is observed over SURF and AD-SURF also outperforms any other
parallelism for all image sets.

6.3. Hyper-threading

Hyper-threading has become a popular design choice in multi-
core design because of its efficiency and low hardware cost.
Therefore, we further extend our implementation to 32 threads on
16 physical cores with hyper-threading. Figs. 16 and 17 show the
hyper-threading performance of SIFT and SURF with 16 physical
cores (with hyper-threading, there are 32 logic cores). When the
configuration of hyper-threading is open, AD-PIPE also shows good
scalability and beats any other parallelism for both SIFT and SURF.
For SIFT, the speedup of AD-PIPE can further increase to 16.88X
for small images, 16.38X for large images, and 14.92X for hybrid
images. For SURF, the speedup of three image sets can also achieve
a speedup of 20.33X, 20.36X and 20.47X respectively for different
data sets, which exceed the ideal speedup and well prove the
effectiveness of hyper-threading and our AD-PIPE implementation.
The performance of image parallelism on the large and hybrid
image set over SURF decreases compared to running on 16 physical
cores without hyper-threading because of increased memory
space and bandwidth requirements. This phenomenon does not
appear in our AD-PIPE scheme, which also further confirms the
effectiveness of our scheme.
Fig. 16. The hyper-threading performance of SIFT parallelismon various image sets
with 16 physical cores.

Fig. 17. The hyper-threading performance of SURF parallelism on various image
sets.

15

10

5

0

Fig. 18. The speedup of AD-PIPE and AE-PIPE for hybrid image set on 16 cores.

6.4. Performance of AE-PIPE

In this section, we first compare the performance of AE-PIPE
with that of AD-PIPE. Then, we evaluate the power efficiency
of AE-PIPE under different input workloads. We choose two
configurations for the power consumption of idle time for CPU
based on prior work [1,12]. One is 40% of busy time, which is a
conservative configuration. The other is 10%,which is an aggressive
configuration. The energy conservationpercentage in the following
experiments is measured through recording the idle time of all
CPUs and calculating its related power consumption based on
different configurations.

6.4.1. Overhead
We compare the speedup of AE-PIPE with AD-PIPE in the same

environment shown in Section 6.2 under full input workloads. The
input is the hybrid image set. As the data in Fig. 18 show, the
performance of AE-PIPE is comparable with that of AD-PIPE. The
slowdown of AE-PIPE is about 3% over SIFT and only 0.27% over
SURF.

We also study buffer checking and scheduling overhead. We
firstly evaluate the time used for each checking buffer and each

12 Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14
60

40

20

0
80 60 40 20

Fig. 19. The energy conservation performance of AE-PIPE for constant workloads
when energy consumption of idle CPU is 10% of the normal state.

80 60 40 20

40

20

0

Fig. 20. The energy conservation performance of AE-PIPE for constant workloads
when energy consumption of idle CPU is 40% of the normal state.

thread wake-up/sleep delay through constructing two test appli-
cations,which purely perform two operations respectively on a 16-
core machine. We then run AE-PIPE for both AD-PIPE and AE-PIPE
under mix workloads and count the frequency for buffer checking
and thread status change. Based on such information, there is about
0.43% overhead for checking buffers and related scheduling logic.
Therefore, the time overhead for monitoring and re-scheduling
workloads is small and negligible.

Overall, the overhead of AD-PIPE is small and acceptable
considering the energy conservation results of it as shown below.

6.4.2. Constant workloads
In order to show the basic capability of AE-PIPE for power

efficiency, we first evaluate its power performance under constant
workloads, which means the input workloads maintain a certain
percentage of full workloads (maximum processing rate). We
choose five constant configurations: 80%, 60%, 40% and 20% of full
workloads, which reflects the effect of AE-PIPE under the stable
user number or input workloads. The data are shown in Figs. 19
and 20. When input workloads are 80%, it saves 18.03% or 12.02%
over SIFT and 20.04% or 13.36% over SURF. And when it comes to
20%, it saves 52.94% or 35.29% over SIFT and 58.82% or 39.22% over
SURF. Based on such results, it is obvious that there is a definite
inverse correlation between saved energy and input workloads, in
line with expectations. Although constant workloads are ideal and
seldom occur in the real case, it can be used to show the capability
of AE-PIPE that it precisely saves the redundant energy on the
beam.

6.4.3. Practical workloads
It is almost impossible to meet constant workloads in the real

world. So we simulate four practical workloads as showed in
Fig. 21. The width of a single block means the percentage of occu-
pied time in the whole test and the number in the block means the
Fig. 21. Four practical workloads we are testing. The width of a single block means
the percentage of occupied time in the whole test and the number in the block
means the percentage of input workloads.

20

10

30

0

Fig. 22. The energy conservation performance of AE-PIPE for practical workloads
when energy consumption of idle CPU is 10% of the normal state.

20

10

0

Fig. 23. The energy conservation performance of AE-PIPE for practical workloads
when energy consumption of idle CPU is 40% of the normal state.

proportion of input workloads. The first two simulate the situation
that the number of input images goes straight up or down such as
workloads at early afternoon or after work in Section 5.1, and the
next two shows there is a sudden peak period to simulate some oc-
casional situation. Finally, themix onemeans theworkloads swing
randomly to simulate unstable user flow application.

The results are shown in Figs. 22 and 23. For SIFT, it saves
31.74%, 34.71%, 31.36% and 23.81%under 10% idle power consump-
tion and 21.16%, 23.14%, 20.92% and 15.86% under 40% idle power
consumption for different workloads. For SURF, it saves 28.35%,
29.44%, 33.27% and 25.3% or 18.9%, 19.63%, 22.18% and 16.87% for
differentworkloads under the best andworst assumption. Such re-
sults illustrate that AE-PIPE is efficient for power saving and the
effect on SURF is slightly better than SIFT on the whole.

6.5. Accuracy

Since AD-PIPE and AE-PIPE only add buffers and related mon-
itoring logic before detection stage or between detection and de-
scription stage, the execution of detection and description stage

Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14 13
itself is not affected. Under all kinds of workloads, AD-PIPE and
AE-PIPE do not change the normal processing algorithmof SIFT and
SURF so that the extracted feature points of AD-PIPE and AE-PIPE is
the same as that of original sequential version of the IFEAs. There-
fore, the accuracy results of AD-PIPE andAE-PIPE are the samewith
those of sequential versions.

7. Conclusion

In this paper, we first systematically analyze the character-
istics, especially parallel constraints in the SIFT and SURF, two
state-of-the-art local IFEAs. We find that imbalanced workloads
and indeterminate time distributions are the major limitations for
parallelizing them.

To alleviate the effect of the limitations, we designed and im-
plemented an adaptive pipeline parallel scheme (AD-PIPE) for con-
stant input workloads and a power efficient version (AE-PIPE) for
variable input workloads. The algorithms can overcome the ma-
jor parallel constraints in SIFT and SURF and achieve good perfor-
mance and scalability.

Acknowledgments

We are grateful to supports from the National High Technology
Research andDevelopment Programof China (No. 2012AA010905),
the National Natural Science Foundation of China (No. 61370081),
the Key Project of Major Program of Shanghai Committee of Sci-
ence and Technology under Grant (No. 13DZ1108800). We would
like to thank all our anonymous reviewers for valuable feedback on
the paper.

References

[1] L.A. Barroso, U. Holzle, The case for energy-proportional computing, Computer
40 (2007) 33–37.

[2] J. Bauer, N. Snderhauf, P. Protzel, Comparing several implementations of two
recently published feature detectors, in: Proc. International Conference on
Intelligent and Autonomous Systems.

[3] H. Bay, B. Fasel, L.V. Gool, Interactive museum guide: Fast and robust
recognition of museum objects, in: Proceedings of the First International
Workshop on Mobile Vision.

[4] H. Bay, T. Tuytelaars, L.V. Gool, Surf: Speeded up robust features, in:
Proceedings of European Conference on Computer Vision, pp. 404–417.

[5] S.A. Berrani, L. Amsaleg, P. Gros, Robust content-based image searches for
copyright protection, in: Proceedings of the 1st ACM International Workshop
on Multimedia Databases, ACM, pp. 70–77.

[6] R. Bianchini, R. Rajamony, Power and energy management for server systems,
IEEE Comput. 37 (2004) 68–74.

[7] M. Bicego, A. Lagorio, E. Grosso, M. Tistarelli, On the use of sift features for face
authentication, in: Proceedings of Conference on Computer Vision and Pattern
Recognition Workshop, p. 35.

[8] R.E. Bohn, J.E. Short, How much information, Technical Report, CISCO, 2009.
[9] D. Buttlar, J. Farrell, Pthreads Programming: A POSIX Standard for Better

Multiprocessing, O’Reilly Media, Inc., 1996.
[10] P. Dreuw, P. Steingrube, H. Hanselmann, H. Ney, Surf-face: Face recognition

under viewpoint consistency constraints, in: Proceedings of the British
Machine Vision Conference.

[11] C. Evans, Notes on the opensurf library, Tech. Rep. CSTR-09-001, University of
Bristol, 2009, January.

[12] X. Fan, L.A. Barroso, Power provisioning for a warehouse-sized computer, ACM
SIGARCH Comput. Archit. News 35 (2007) 13–23.

[13] Z. Fang, D. Yang, W. Zhang, H. Chen, B. Zang, A comprehensive analysis and
parallelization of an image retrieval algorithm, in: 2011 IEEE International
Symposium on Performance Analysis of Systems and Software, ISPASS, IEEE,
pp. 154–164.

[14] H. Feng, E. Li, Y. Chen, Y. Zhang, Parallelization and characterization of sift
on multi-core systems, in: Proceedings of IEEE International Symposium on
Workload Characterization, pp. 14–23.

[15] I. Gordon, D.G. Lowe, What and where: 3D object recognition with accurate
pose, in: Toward Category-Level Object Recognition, pp. 67–82.

[16] R. Hess, Sift library, 2010. http://blogs.oregonstate.edu/hess/code/sift/.
[17] Y. Ke, R. Sukthankar, Pca-sift: Amore distinctive representation for local image

descriptors, in: Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2004. CVPR 2004, Volume 2, IEEE,
p. II–506.
[18] L. Ledwich, S. Williams, Reduced sift features for image retrieval and indoor
localisation, in: Australian Conference on Robotics and Automation.

[19] L. Li, W. Xue, R. Ranjan, Z. Jin, A scalable helmholtz solver in grapes over large-
scale multicore cluster, Concurr. Comp. Pract. E. 25 (2013) 1722–1737.

[20] D.G. Lowe, Object recognition from local scale-invariant features, Comput. Vis.
2 (1999) 1150–1157.

[21] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.
Comput. Vis. 60 (2004) 91–110.

[22] Y. Lu, X. Wang, W. Zhang, H. Chen, L. Peng, W. Zhao, Performance analysis of
multimedia retrieval workloads running on multi- cores, IEEE Trans. Parall.
Distr. Syst. (TPDS) (2016). http://dx.doi.org/10.1109/TPDS.2016.2533606.

[23] Y. Lu, X. Wang, W. Zhang, Y. Li, W. Zhao, Characterizing multi-media retrieval
applications, in: The 44th International Conference on Parallel Processing
(ICPP), pp. 270–279.

[24] K. Mikolajczyk, Local feature evaluation dataset, 2007. http://www.robots.ox.
ac.uk/∼vgg/research/affine/.

[25] K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors, IEEE
Trans. Pattern Anal. Mach. Intell. 27 (2005) 1615–1630.

[26] P.N. Tseng, Y.L. Lin, W.H. Hsu, Interactive inquiry for object of interest in video
playback bymotion-augmented graph cut, in: Proceedings of the International
Conference on Multimedia, pp. 811–814.

[27] J. Uijlings, A. Smeulders, R. Scha, Real-time bag of words, approximately, in:
Proceeding of the ACM International Conference on Image andVideo Retrieval,
pp. 1–8.

[28] Y. Wan, Q. Yuan, S. Ji, L. He, Y. Wang, A survey of the image copy detection,
in: 2008 IEEE Conference on Cybernetics and Intelligent Systems, IEEE, pp.
738–743.

[29] S. Warn, W. Emeneker, J. Cothren, A.W. Apon, Accelerating sift on parallel
architectures, in: CLUSTER, pp. 1–4.

[30] Z.Weihua,W. Haojun, L. Yunping, C. Haibo, Z.Wenyun, A loosely-coupled full-
systemmulticore simulation framework, IEEE Trans. Parall. Distr. Syst. (TPDS)
(2016). http://dx.doi.org/10.1109/TPDS.2015.2455499.

[31] W. Xue, C. Yang, H. Fu, X. Wang, Y. Xu, L. Gan, Y. Lu, X. Zhu, Enabling and
scaling a global shallow-water atmospheric model on tianhe-2, in: Parallel
andDistributed Processing Symposium, 2014 IEEE 28th International, IEEE, pp.
745–754.

[32] W. Xue, C. Yang, H. Fu, X. Wang, Y. Xu, J. Liao, L. Gan, Y. Lu, R. Ranjan, L. Wang,
Ultra-scalable cpu-mic acceleration of mesoscale atmospheric modeling on
tianhe-2, Comput. IEEE Trans. 64 (2015) 2382–2393.

[33] H. Yu, D. Zheng, B.Y. Zhao, W. Zheng, Understanding user behavior in large-
scale video-on-demand systems, ACM SIGOPS Oper. Syst. Rev. 40 (2006)
333–344.

[34] K. Zhang, R. Chen, H. Chen, Numa-aware graph-structured analytics, in: ACM
SIGPLAN Notices, vol. 50, ACM, pp. 183–193.

[35] N. Zhang, Computing parallel speeded-up robust features (p-surf) via posix
threads, in: Emerging Intelligent Computing Technology and Applications,
Springer, 2009, pp. 287–296.

[36] N. Zhang, Computing optimised parallel speeded-up robust features (p-surf)
on multi-core processors, Int. J. Parallel Program. 38 (2010) 138–158.

[37] Q. Zhang, Y. Chen, Y. Zhang, Y. Xu, Sift implementation and optimization
for multi-core systems, in: Proceedings of IEEE International Symposium on
Parallel and Distributed Processing, pp. 1–8.

Yunping Lu is now a Ph.D. candidate in the School of
Computer Science at Fudan University. Her research inter-
ests are in compilers, computer architecture, paralleliza-
tion and systems software.

Yi Li received the Ph.D. degree in computer science from
Fudan University in 2012. He is currently an assistant
professor of Parallel Processing Institute, FudanUniversity.
His research interests are in compilers, system software,
computer architecture, and algorithm.

http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref1
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref6
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref9
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref11
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref12
http://blogs.oregonstate.edu/hess/code/sift/
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref19
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref20
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref21
http://dx.doi.org/10.1109/TPDS.2016.2533606
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref25
http://dx.doi.org/10.1109/TPDS.2015.2455499
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref32
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref33
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref35
http://refhub.elsevier.com/S0743-7315(16)00022-8/sbref36

14 Y. Lu et al. / J. Parallel Distrib. Comput. 92 (2016) 1–14
Bo Song is an undergraduate student in Software School,
Fudan University. He is working in the Architecture Team
of Parallel Processing Institute in Fudan University. His
recent area is image retrieval algorithms.

His work is also related to computer architecture,
simulation, execution variability and so on.

Weihua Zhang received the Ph.D. degree in Computer Sci-
ence from Fudan University in 2007. He is currently an
associate professor of Parallel Processing Institute, Fudan
University. His research interests are in compilers, com-
puter architecture, parallelization and systems software.
Haibo Chen received the B.Sc. and Ph.D. degrees in
Computer Science from Fudan University in 2004 and
2009, respectively. He is currently a Professor in School
of Software, Shanghai Jiao Tong University, doing research
that improves the performance and dependability of
computer systems. He is a senior member of the IEEE and
the IEEE Computer Society.

Lu Peng received the Ph.D. degree in Computer Engi-
neering from the University of Florida in Spring 2005. He
is currently an associate professor in the Electrical and
Computer Engineering department at Louisiana State Uni-
versity. His research focuses on computer architecture,
memory hierarchy system, reliability, power efficiency
and other issues in processor design.

	Parallelizing image feature extraction algorithms on multi-core platforms
	Introduction
	Related work
	Image retrieval algorithms
	Previous acceleration efforts

	SIFT and SURF overview
	SIFT and SURF
	Available parallelism
	Constraints for parallelization
	Indeterminate time distributions
	Imbalanced workloads
	Constraints for parallelization

	Scheduling for constant workloads
	Design consideration
	Adaptive pipeline design
	Buffer design
	Throttling mechanism

	Scheduling for variable workloads
	Constraints for AD-PIPE
	Adaptive energy-efficient pipeline parallelism
	Workflow of AE-PIPE
	Threads fluidity

	Evaluation on multi-core platforms
	Experimental environment
	Performance of AD-PIPE
	Performance of AD-PIPE
	Evaluation on different input sets

	Hyper-threading
	Performance of AE-PIPE
	Overhead
	Constant workloads
	Practical workloads

	Accuracy

	Conclusion
	Acknowledgments
	References

