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Abstract—Recent experimental studies reveal that FinFET 

devices commercialized in recent years tend to suffer from more 

severe NBTI degradation compared to planar transistors, 

necessitating effective techniques on processors built with FinFET 
for endurable operations. We propose to address this problem by 

exploiting the device heterogeneity and leveraging the slower NBTI 

aging rate manifested on the planar devices. We focus on modern 
graphics processing units in this study due to their wide usage in the 

current community. We validate the effectiveness of the technique by 

applying it to the warp scheduler and demonstrate NBTI 

degradation is considerably alleviated with slight performance 

overhead. 
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I. INTRODUCTION 

As we shift into the deep submicron era, innovative materials 
and device architectures is becoming ever demanding to continue 
the trend toward smaller and faster transistors. Among all 
candidates in investigation, the Fin field-effect-transistor (FinFET) 
stands as one of the most promising substitutes for traditional 
devices at the ensuing technology nodes, since it presents several 
key advantages over its planar counterpart [1][13][24][26]. By 
wrapping the conducting channel with a thin vertical “fin” which 
forms the body of the device, the gate is coupled tighter with the 
channel, increasing the surface area of the gate-channel interface 
and allowing much stronger control over the conducting channel 
[1]. This effectively relieve the so-called short channel effects 
(SCE) that are observed on planar transistors manufactured with 
sub-32nm technology, which in turn implies that FinFET device 
can provide superior scalability in the deep submicron regime [1]. 

Another cornerstone motivating the realization of FinFET is 
the potential performance gain. FinFET transistors can be designed 
with lower threshold voltage (Vt) and operate with higher drive 
current, leading to faster switching speed compared to 
conventional planar devices [1]. Released documents from 
industry demonstrate that the FinFET transistor persistently 
demonstrates shorter delay than the planar one while the support 
voltage is varying, enabling the design and manufacturing of faster 
processors. Public documents from leading manufacturers also 
show that the FinFET structure is capable of largely decreasing 
leakage when the transistor is off [1]. Recently, the Ivy Bridge [2] 
and Haswell central processing units [3] released by Intel have 
commercialized this structure (i.e., referred to as “Tri-gate 
transistor” by Intel), which is also expected to be adopted by other 
semiconductor manufacturers on their upcoming products [7]. 

Nonetheless, FinFET is not an impeccable replacement of 
traditional devices as it raises many challenges to the current 
industry. One of the most daunting conundrums is the increasing 
aging rate caused by negative bias temperature instability (NBTI). 
Recent experimental studies demonstrate that FinFET transistors 
are more vulnerable to NBTI, leading to a shorter lifetime than a 
planar device [21][41]. The NBTI aging rate is evaluated by the 

increase of delay on the critical path after a certain amount of 
service time. A chip is considered as failed when the delay 
increment exceeds a pre-defined value after which the timing logic 
of the processor cannot function correctly. Under the same 
operation condition, the FinFET device is observed to degrade 
much faster than the planar counterpart, implying a significantly 
reduced service lifespan of the target processor. This clearly spurs 
the development of new techniques to circumvent this problem and 
prolong the lifetime of FinFET-made processors. 

Fortunately, a brief comparison between the main features of 
FinFET and planar devices sheds some light on alleviating the 
NBTI effect on future processors. By effectively exploiting the 
device heterogeneity and leveraging the higher NBTI immunity of 
planar transistors, the aging of the FinFET structures can be largely 
suppressed. In this paper, we propose a technique built on top of 
this principle to improve the durability of FinFET processors. In 
general, our technique is implemented by replacing an existing 
structure with a planar-device equivalent. Along with minor 
modifications at the architectural level, our proposed technique is 
essentially transferring the “aging stress” from the vulnerable 
FinFET components to the more NBTI-tolerable planar structures, 
which in turn lower down the temperature on the structure in study, 
and thus considerably mitigate the NBTI degradation. Note that the 
proposed scheme is practically feasible because of the good 
compatibility between the FinFET and planar process technology 
[12][18][20]. 

Considering that the general-purpose graphics processing unit 
is becoming an increasingly important component in a wide 
spectrum of computing platforms, we choose a modern GPU as the 
target architecture to evaluate the effectiveness of our proposed 
strategy. In this paper, we mainly concentrate on optimizing the 
reliability of the warp scheduler because of its importance. 
However, the technique described in this paper can be simply 
applied to CPU for NBTI mitigation as well. In general, the main 
contributions of this work are as follows: 

  To the best of our knowledge, this paper is the first attempt to 
address the NBTI alleviation at the architectural level for 
future GPUs manufactured with FinFET. 

  We propose a hybrid-device warp scheduler for reliable 
operation. By decoupling the warp scheduling into two steps 
of operations and conducting the prerequisites evaluation in a 
planar-device structure, we eliminate a large amount of read 
accesses to the FinFET scheduler hardware and considerably 
alleviate the NBTI effect. 

II. BACKGROUND 

A. NBTI Degradation Mechanism 

Negative Bias Temperature Instability is becoming one of 
dominant reliability concerns for nanoscale P-MOSFETs. It is 
caused by the interaction of silicon-hydrogen (Si-H) and the 
inversion charge at the Si/oxide interface [10]. When a negative 
voltage is applied at the gate of PMOS transistors, the Si-H bonds 
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are progressively dissociated and H atoms diffuse into the gate 
oxide. This process eventually breaks the interface between the 
gate oxide and the conducting channel, leaving positive traps 
behind. As a consequence,   the threshold voltage of the PMOS 
transistor is increased, which in turn elongates the switching delay 
of the device through the alpha power law [34]: 

𝑇𝑠 ∝  
𝑉𝑑𝑑𝐿𝑒𝑓𝑓

𝜇(𝑉𝑑𝑑−𝑉𝑡)𝛼
 …………………………………………..……. (1) 

Where µ is the mobility of carriers, α is the velocity saturation 
index and approximates to 1.3. 𝐿𝑒𝑓𝑓  denotes the channel length. 

The process described above is termed the “stress” phase where 
the threshold voltage is persistently increasing with the service 
time, modeled by the following equation [40]. 

∆𝑉𝑡𝑠𝑡𝑟𝑒𝑠𝑠 =

(
𝑞𝑇𝑜𝑥

𝐸𝑜𝑥
)1.5. 𝐾. √𝐶𝑜𝑥(𝑉𝑔𝑠 − 𝑉𝑡). 𝑒

−𝐸𝑎
4𝑘𝑇

+
2(𝑉𝑔𝑠−𝑉𝑡)

𝑇𝑜𝑥𝐸01 . 𝑇0
−0.25. 𝑇𝑠𝑡𝑟𝑒𝑠𝑠

0.25 ………… (2) 

However, when the stress voltage is removed from the gate, H 
atoms in the traps can diffuse back to the interface and repair the 
broken bond. This results in a decrease in the threshold voltage, 
thus termed the “recovery” stage. This iterative stress-recovery 
processes lead to a saw-tooth variation of the threshold voltage 
throughout the device’s lifespan. The final Vt increase taking both 
stress and recovery into account can be computed as: 

∆𝑉𝑡 =  ∆𝑉𝑡𝑠𝑡𝑟𝑒𝑠𝑠 . (1 − 
2𝜉1𝑇𝑜𝑥+√𝜉2𝑒

−𝐸𝑎
𝑘𝑇 𝑇0𝑇𝑠𝑡𝑟𝑒𝑠𝑠

(1+𝛿)𝑇𝑜𝑥+√𝑒
−𝐸𝑎
𝑘𝑇 (𝑇𝑠𝑡𝑟𝑒𝑠𝑠+𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦)

) …………. (3) 

Note that in equations (2) and (3), 𝑇𝑠𝑡𝑟𝑒𝑠𝑠 and 
𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦  respectively denote the time under stress and recovery. 

Other parameters are either constants or material-dependent 
variables and are listed in Section 4.  

That FinFET devices are more vulnerable to NBTI is generally 
attributed to its unique non-planar architecture, which is visualized 
by Figure 1. As can be seen, compared to a traditional planar 
transistor, the FinFET structure is designed with additional fin 
sidewall surface with higher availability of Si-H bonds [21][41], 
implying larger chances of forming interface trap and 
consequently expediting the device degradation. 

The NBTI aging rate depends on multiple factors including 
both circuit parameters and workload execution patterns. In 
general, it is acknowledged that voltage, temperature, and the 
stress/recovery time have strong impact on the aging rate [10][38]. 
In this work, we mainly focus on the impact of temperature. 
Specifically, our proposed techniques significantly reduce the 
accesses to the target structures, thus lowering down the localized 
activity and temperature, which in turn enhances the structure 
durability. 

B. Target GPU Architecture 

The prevalence of unified programming language (e.g., 
CUDA, OpenCL) has made the general-purpose graphics 
processing unit a core component in a large variety of systems 
ranging from personal computers to high-performance computing 
clusters. Therefore, it is highly important to alleviate the NBTI 
degradation on this ever increasingly important platform. 

In this section, we follow the Nvidia terminology to depict the 
architecture of a representative GPU. The major component of a 
modern GPU is an array of Streaming Multiprocessors (SMs), each 
of which contains an amount of CUDA cores (SPs), load/store 
units and special function units (SFUs). A CUDA core is 
responsible for performing integer ALU and floating point 
operations while the SFUs are devoted to conducting 
transcendental operations such as sine, cosine, and square root. 
Each stream multiprocessor also contains a register file, a shared 
memory and a level 1 cache (usually including the instruction, 
data, constant, and texture caches) that are shared among all 
threads assigned to the SM. All stream multiprocessors connect to 
an interconnection network, which transfers the memory 
requests/services between the SMs and the shared L2 cache.   

An application developed in CUDA (or OpenCL) contains at 
least one kernel running on the GPU. A typical kernel includes 
several blocks composed of substantial threads. During a kernel 
execution, multiple blocks are assigned to an SM according to the 
resource requirement. A group of threads from the same block 
form a warp treated as the smallest scheduling unit to be run on the 
hardware function units in an SIMT fashion. 

III. HYBRID-DEVICE WARP SCHEDULER 

As an emerging platform targeting for massively parallel 
computing domains, a modern GPU is designed with several 
unique characteristics different from a regular CPU. In this section, 
we concentrate on the warp scheduler because it is an important 
structure that is frequently accessed during program execution. By 
observing representative execution behaviors of a large collection 
of GPU applications, we propose a technique exploiting the device 
heterogeneity to alleviate the NBTI degradation. As we will 
demonstrate shortly, the proposed technique does not introduce 
any additional component to the existing GPU architecture, thus 
minimizing the hardware cost for the implementation. 

A. Opportunity for Improvement 

To improve the thread-level parallelism (TLP) and maximize 
the execution throughput, a modern GPU usually allows multiple 
warps to reside on the same streaming multiprocessor and hide the 
execution latencies by switching among those resident warps. At 
any instant, a warp is considered as ready for execution only when 
several constraints are simultaneously satisfied. 

A first-order prerequisite is the functional correctness, which is 
secured by ensuring data dependencies between warp instructions. 
When a warp cannot be dispatched because of unsatisfied data 
dependency, it should wait until all of its operands are ready. A 
scoreboard hardware structure is responsible for keeping track of 
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Figure 1. FinFET transistor structure: (a) overview (b) side view 
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data dependencies in a modern GPU. In addition, warps on a 
streaming multiprocessor contend for limited functional units. 
When the dispatch port of the functional unit that a warp needs to 
use is not vacant, the warp cannot be issued even when its data 
dependencies have been satisfied. 

The warp scheduler is an SRAM hardware structure in charge 
of selecting candidates from all resident warps to dispatch. For the 
purpose of high performance, a warp scheduler is capable of 
dispatching one warp per clock cycle, requiring that scanning 
through all the scoreboard entries and querying the dispatch ports 
of all functional units should be performed at each cycle [23][25]. 
Figure 2 illustrates the high-level organization of a warp scheduler 
equipped in an SM to elaborate the scheduling process. As shown 
in the figure, all entries, each of which stores complete information 
of a warp instruction, are going through the conditions checking in 
parallel in order to identify the candidates ready for execution. 
Note that to minimize the delay, the scheduler must read the 
detailed information of a warp (warp ID, opcode, etc) while 
evaluating the constraints so that it can dispatch warps as soon as 
they are ready. Selected warps are sent to the appropriate function 
units according to the instruction opcode afterwards.  

This particular design naturally inspires a technique to mitigate 
the NBTI degradation on the scheduler. If the readiness of all warp 
instructions are known ahead via a certain “predicate”, then only 
the entries with all constraints met are accessed, which in turn 
decreases the localized activity and temperature, and improves the 
structure durability.  

To justify the potential effectiveness of this strategy, we run a 
wide spectrum of GPU applications, aiming to observe typical 
behaviors on the warp scheduler. Figure 3 plots a snapshot of the 
warp scheduler’s behavior when WP is running on a GPU in order 
to exemplify the activity on the scheduler. The horizontal axis 
corresponds to the elapsed time and the vertical axis represents the 
accumulative number of ready warps at each time interval. The 
number is collected every 50 cycles. With this setting, the 
maximum number of ready warps cannot exceed 100 on each 
sampling point considering that two warp instructions can be 
issued at each cycle. As can be seen from the figure, there are a 
large amount of execution periods with number of ready warps far 
less than the theoretical peak, implying a significant reduction in 
accesses to the scheduler entries in potential. We generally observe 
that, at any given instant, less than 35% of all the warps have the 
two prerequisites satisfied for all the tested benchmarks. This 
observation confirms that there is large headroom for us to 
optimize the reliability on the warp scheduler. 

B. Two-stage Scheduling  

Our proposed technique to enhance the durability of the warp 
scheduler stems from the aforementioned fact at the first place. In 
order to identify the ready warps, the baseline scheduler is 
decoupled into two components as visualized in Figure 4. By doing 

so, the prerequisites checking is extracted from the original parallel 
accesses and is performed prior to obtaining the detailed 
information of warp instructions. This checking operation outputs 
the ID of all available candidates resided on the SM, triggering the 
consequent accesses to the hardware structure which stores all 
necessary information to dispatch ready warps based on the 
specific scheduling policy. If a large amount of resident warps are 
eliminated from the candidate list due to the violation of 
scheduling constraints, substantial accesses to the scheduler 
hardware (i.e., the structure at the right side in Figure 7) can be 
avoided.  

A non-trivial issue requiring careful consideration in this 
particular scheduler design is what information should be checked 
in the first stage. Theoretically, evaluating more scheduling 
prerequisites would filter larger number of accesses since only the 
common set of candidates that satisfy each individual constraints 
are allowed to continue the second stage. However, for certain 
conditions, checking them in the first stage would lead to 
undesirable execution behavior because their evaluation results 
might be changed in the following cycle. The checking on function 
units’ (FU) availability falls into this category. This is because that 
the FU status is updated every cycle and a function unit that 
appears to be free in the current cycle is not necessarily available 
in the following cycle, if it is assigned to another warp instruction. 
Therefore in this work, we only check the data dependency in the 
first stage. As we will demonstrate in section 6, this still results in 
sufficiently high filter rate for most benchmarks and largely 
alleviate the NBTI degradation.    

On the other hand, considering that the failure of any structure 
located on the critical path will prevent the entire chip from 
working correctly, the component where the condition evaluations 
are conducted tends to become the bottleneck from the perspective 
of reliability, since all of its entries still needs to be scanned every 
cycle. To overcome this problem, we propose to manufacture this 
component with the more NBTI-tolerable planar devices. This 
hybrid-device design effectively leverages the benefits of both 
devices, aiming to enhance the processor durability. Note that the 
planar-transistor-made component recording the data dependency 
and function unit availability is unlikely to suffer from early failure 
because it only requires one bit for each entry and thus consume 
negligible power. Also recall that this design is technically feasible 
due to the good compatibility between FinFET and planar 
processes as demonstrated in patents [12][20].  

Another naturally arising concern with this design is the 
performance degradation resulted from the sequential scheduler 
access. Nevertheless, as we will demonstrate in section 5, the 
performance overhead for most applications are fairly small 
because only actual accesses to the FinFET part of the scheduler 

 
Figure 3. A snapshot of the scheduler activity while running WP 
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introduces an extra cycle delay. In scenarios where none of the 
resident warps pass the constraints checking, the execution latency 
is not impacted. 

IV. EXPERIMENTAL SETUP 

We validate the proposed techniques using a modified 
GPGPU-Sim 3.1 [14], a cycle-accurate GPGPU simulator. 
GPUWattch [29] and HotSpot 5.0 [8] are integrated in the 
simulator for power and temperature calculation, respectively. The 
chip floorplan required by HotSpot is calibrated against the one 
used in a recent paper focusing on GPU thermal management [31]. 
The target architecture is configured based on a Fermi GTX 480 
[6] that is widely used in many high-performance computers. 
Table 1 lists the architectural parameters for our simulation. 

To evaluate the effectiveness of our techniques in practice, we 
choose a set of programs from several benchmark suites 
[5][14][16], representing typical HPC applications derived from 
different domains. A full list of applications used in this work is 
given in Table 2. For each program, we run them till completion 
and use the execution statistics to mimic distinct workload 
patterns. In specific, to model the NBTI degradation after a 7-year 
lifespan, we extrapolate the collected activity to represent the load 
in 7 years under the steady temperature. Note that our technique 
does not explicitly introduce recovery stages to the structure in 
study, so the recovery time is set to zero. We report the final 
increase in the critical path delay as a measurement of the NBTI 
aging on the hardware. Equations (2) and (3) described in section 
2.1 are used to compute the variation in the threshold voltage, 
which in turn translates to the delay increase via equation (1). We 
set the parameters referred by the equations according to recent 
studies on device features [9][15][36]. Table 3 lists the specific 
parameter values used in this paper. 

V. RESULT ANALYSIS 

A. Improvement on Reliability 

Figure 5 demonstrates the NBTI degradation in terms of the 
increase in scheduler delay on both the baseline GPU and the one 

with hybrid-device 2-stage warp scheduler. Note that in the figure, 
the bars marked by “2-stage” refer to the proposed design. A higher 
delay increase indicates more severe NBTI degradation. As can be 
observed, the aging due to NBTI on the scheduler hardware is 
largely suppressed for all benchmarks under investigation when 
the proposed technique is applied. On average, the hybrid-device 
2-stage scheduler presents merely 2.36% longer delay after the 
designed service life, reduced from 7.7% on the baseline GPU. 

While the general improvement on the durability is significant, 
however, it is notable that the benefits corresponding to different 
workloads are obviously distinct. For example, the load 
represented by NN causes the scheduler delay to be prolonged by 
around 8.4% after 7 years services on the baseline GPU. With the 
adoption of the proposed technique, this degradation can be 
reduced to 1.96%. On the other hand, an execution pattern similar 
to Backprop prevents the scheduler obtaining the same amount of 
benefit from the technique. Specifically, the scheduler still suffers 
from 2.9% longer delay after employing the hybrid-device design, 
while the baseline platform shows 8.6% longer delay that is similar 
to the degradation corresponding to NN. 

Considering the exponential relationship between temperature 
and NBTI degradation, we collect the localized temperature on the 
scheduler hardware and demonstrate it in Figure 6 for further 
analysis. Not surprisingly, although the proposed technique can 
significantly cool down the scheduler in most cases, we note that 
the temperature reductions are apparently different among the 
evaluated programs, which is similar to the observation made from 
Figure 5. When executing NN, the temperature on the scheduler is 
reduced by up to 15°C, whereas the temperature reduction for 
Backprop is about 11°C. To gain more insights into the reason 

Table 3. Parameter values for computing NBTI.            

Parameters FinFET 

value 

Planar 

value 

Description 

Tox 1.2nm 1nm 
Effective oxide 

thickness 

Vt 0.179v 0.3v Threshold voltage 

Eo 0.335v/nm 0.12v/nm Electrical field 

Fixed parameters 

q 1.602×10-19 Electron charge 

Vdd 0.9v Operating voltage 

Ɛox 1.26×10-19F/m 
Permittivity of gate 

oxide 

ξ1 0.9 

Other constants 

ξ2 0.5 

k 8.6174 × 10-5 ev/K 

δ 0.5 

T0 10-8 s/nm2 

 

 
Figure 5. The NBTI degradation on the warp scheduler 
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Table 1. Architectural parameters for the GPU in study.            

     Parameter Values 

          #SM 15 

          #SP 32/SM 

       LDST units 16/SM 

  Shared memory 32KB/SM 

 L1 data cache 16KB/SM 

     Scheduler Greedy than oldest (GTO) 

Core frequency 1400MHz 

Interconnection       

Interconnection 

1 crossbar/direction 

  L2 cache 
768KB: 128 cache line size, 16-way 

associativity. Access latency 5 cycles 

 L2 frequency 700MHz 

 Memory FR-FCFS scheduling, 64 max. requests/MC 

SIMD lane width 16 

Threads/warp      

eads/warp 

32 

    Technology 22nm 

 
Table 2. Benchmarks used in this work.            

# Application Domains 

1 B+tree   Search 

2 Backprop  Pattern Recognition 

3 Blackscholes Financial Engineering 

4 Gaussian Linear Algebra 

5 Heartwall Medical Imaging 

6 LPS 3D Laplace Solver 

7 Myocyte Biological Simulation 

8 NN Neural Network 

9 NW Bioinformatics 

10 WP Weather Prediction 

 

 
Figure 6. The steady temperature on the warp scheduler 
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behind this phenomenon, let us recall the rationale of the 2-stage 
scheduler that is described in section 3.2. The essential reason for 
the reduced scheduler accesses is that a large amount of 
prerequisite evaluations turn out to be false, thus the unnecessary 
operations on the “unready warps” are avoided. In other words, 
how much benefit can be obtained from the proposed technique 
largely depends on the amount of accesses that can be filtered. 
Table 4 lists the percentage of accesses saved by the constraint 
checking stage. As can be seen, the data dependency checking 
stage can generally filter out more than 92% of accesses to the 
scheduler, thus considerably enhancing the durability of the 
hardware. In particular, we note that 76.9% of scheduler accesses 
when executing Backprop are dispensable, while for NN this ratio 
rises up to 97.4%, implying higher possibilities to lower the power 
and temperature on the scheduler. 

We also plot the power consumption of the scheduler in Figure 
7 to visualize the changes on the scheduler activity. Clearly, the 
hybrid-device 2-stage scheduler significantly reduces the 
scheduler power for all evaluated benchmarks, which in turn 
lowers the local temperature and improves the hardware durability. 

B. Performance Overhead 

The extra cycle introduced by the 2-stage scheduler is likely 
to result in undesirable performance overhead for the program 
execution. Figure 8 shows the performance in terms of normalized 
IPC (normalized to the baseline GPU) of all benchmarks running 
on a GPU with the 2-stage scheduler. It is straightforward to note 
that the performance degradation is distinct among the program 
collection. In this subsection, we briefly analyze the possible 
impact on the performance due to the extra cycle and explain the 
different performance degradation. 

The GPU’s massive parallelism may be able to hide part of the 
extra latency during the execution depending on the features of 
applications. We use the terms “longest warp” and “longest-warp 
chain” to help explain the latency manifested in the results. We 
define “longest warp” as the warp with the longest running time 
during a kernel launch and “longest-warp-chain” as the set of 
longest warps in each of the sequence of kernel launches in the 
lifetime of an application. In a typical GPU application, the 
running time of a longest-warp chain is the sum of execution 
latencies of all warps in the chain because a) when a kernel is 
launched, all its warps are started simultaneously and b) a kernel 

is not launched until all warps of the previous kernel launch 
complete. In other words, latency on the longest warp could not 
be hidden as easily as that on other warps. Longest warps also do 
not overlap temporally. For each longest warp we can compute its 
average latency as: 

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =  
∑ 𝐶𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

………………………………..……….. (4) 

Where N is the number of kernel launches and 𝐶𝑛 and 𝐼𝑛 are 
respectively the number of cycles and warp instructions of the 
longest warp in each kernel launch. 

The 𝐼𝑛  instructions in a kernel launch are the instructions 
issued to and executed by a warp. The extra cycle introduced to 
the scheduler will be added before each of the instructions is 
executed. Since the instructions are executed in-order, this is 
equivalent to adding extra cycles to the entire longest-warp chain. 
The average latency of the warp after adding the extra cycles 
should become: 

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝑒𝑙𝑎𝑦𝑒𝑑 =  
∑ 𝐶𝑛

𝑁
𝑛=1 +∑ 𝐼𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

……………………..…… (5) 

The overhead indicators can be deducted from the two latencies 

shown above: 

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝐼𝑛𝑑 =
∆𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦
=

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝑒𝑙𝑎𝑦𝑒𝑑−𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦
=

∑ 𝐶𝑛
𝑁
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The normalized IPC (measured) and the one derived from the 
overhead indicator (projected) are both plotted in Figure 8. As the 
figure shows, they are closely correlated. The average latencies 
and the overheads are determined by the behaviors of the longest 
warps which are in turn closely related to the characteristics of 
individual applications. For example, B+tree involves a kernel 
launch with 48 warps on each SM and initiates many global 
memory transactions (159.26 per cycle). Its longest warp has an 
average delay of more than 100 cycles. NN, on the other hand, has 
a much smaller average delay (smaller than 10), because it 
generates much fewer global memory transactions (only 0.06 per 
cycle) and each SM executes only 8 warps. With such few 
memory transactions and fewer warps, each of the warps, 
including the longest warp, does not have to wait for long-delay 
memory operations while sharing more computational resources. 
This different memory request intensities result in average 
latencies of the longest warp chains as 41.7 and 8.53 cycles for 
B+tree and NN, respectively. Consequently, we observe 
apparently different performance losses for these two 
benchmarks.  

VI. RELATED WORK 

NBTI Mitigation: NBTI has been recognized as a major 
reliability concern as the semiconductor industry shifts into the 
deep submicron era. Abella et al. [10] develop a set of techniques 
to relieve the NBTI aging for typical structures in a modern CPU. 

Table 4. Filter rate on the first stage of warp scheduler. 

Application Filter Rate 
B+tree 75.82% 

Backprop 76.93% 
Blackscholes 88.74% 

Gaussian 98.82% 
Heartwall 88.46% 

LPS 90.59% 
Myocyte 99.85% 

NN 97.41% 
NW 97.70% 
WP 99.49% 

Geo-mean 90.96% 

 

 
Figure 7. The power consumed by the warp scheduler 
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Figure 8. Normalized IPC on the GPU with 2-stage scheduler 
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For combinational logics, they insert desired vectors as inputs to 
the structures for recovery. To alleviate the aging for memory-like 
components, they propose a strategy to avoid the bias on different 
bits. Ramakrishnan et al. [33] introduce a similar approach to 
reduce the NBTI wearout in FPGAs by loading the reversing bit 
patterns in idle periods. Gunadi et al. [22] introduce a scheme 
called Colt to balance the utilization of devices in a processor for 
reliability improvement. Specifically focusing on the storage 
components, Shin et al. [35] propose to proactively set the PMOS 
transistors to recovery mode, and moving data around free cache 
arrays during operation. 

Converse to these works which attempt to manipulate the time 
under stress and recovery, Tiwari et al. [38] propose a framework 
named facelift to combat NBTI degradation by adjusting higher 
level parameters including operating voltage, threshold voltage 
and the application scheduling policy. To enhance the reliability of 
storage cells, Abella [11] proposes to use NAND gates instead of 
inverters to reduce the average degradation on each PMOS. On the 
other hand, Rahimi et al. [32] focus on the GPUs designed in 
VLIW fashion and present a compiler-based technique to slow 
down the NBTI aging for this particular architecture. 

Characterization of FinFET Reliability: As FinFET is widely 
considered as an attractive replacement of planar transistors for the 
next few technology nodes, studies focusing on the reliability of 
this new structure is becoming fairly important. Lee et al. [28] 
investigate the NBTI characteristics on SOI and body-tied 
FinFETs and observe that a narrow fin width leads to more severe 
degradation than a wider fin width. Crupi et al. [19] compare the 
reliability of triple-gate and planar FETs. The author show that the 
behavior of time-dependent dielectric breakdown (TDDB) is not 
changed on the triple-gate architecture under different gate 
voltages and temperatures. This is also corroborated in the work 
conducted by Groeseneken et al. [21], which further demonstrate 
that FinFET devices tend to suffer from more severe NBTI 
degradation. In [39], Wang et al. analyze the soft-error resilience 
of FinFET devices and conclude that FinFET circuit is more 
reliable than bulk CMOS circuit in terms of soft-error immunity. 

VII. CONCLUSION 

FinFET technology is recognized as a promising substitute of 
conventional planar devices for building processors in the next 
decade due to its better scalability. However, recent experimental 
studies demonstrate that FinFET tends to suffer from more severe 
NBTI degradation compared to the planar counterpart. In this 
work, we focus on the NBTI reliability issue of a modern GPU 
made of FinFET and propose to address this problem by exploiting 
the device heterogeneity. We introduce a technique that merely 
involves minor modifications to the existing GPU architectures. 
The proposed technique leverages planar devices’ higher 
immunity to NBTI and is effective in slowing down the aging rate 
of the device. Our evaluation results demonstrate that the minor 
changes to the warp scheduler can considerably alleviate the 
degradation due to NBTI with slight performance overhead. 
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