
Mitigating NBTI Degradation on FinFET GPUs

through Exploiting Device Heterogeneity

Ying Zhang, Sui Chen, Lu Peng, Shaoming Chen
Division of Electrical and Computer Engineering

School of Electrical Engineering and Computer Science

Louisiana State University

{yzhan29, csui1, lpeng, schen26}@lsu.edu

Abstract—Recent experimental studies reveal that FinFET

devices commercialized in recent years tend to suffer from more

severe NBTI degradation compared to planar transistors,

necessitating effective techniques on processors built with FinFET
for endurable operations. We propose to address this problem by

exploiting the device heterogeneity and leveraging the slower NBTI

aging rate manifested on the planar devices. We focus on modern
graphics processing units in this study due to their wide usage in the

current community. We validate the effectiveness of the technique by

applying it to the warp scheduler and demonstrate NBTI

degradation is considerably alleviated with slight performance

overhead.

Keywords— NBTI, FinFET, reliability, heterogeneity

I. INTRODUCTION

As we shift into the deep submicron era, innovative materials
and device architectures is becoming ever demanding to continue
the trend toward smaller and faster transistors. Among all
candidates in investigation, the Fin field-effect-transistor (FinFET)
stands as one of the most promising substitutes for traditional
devices at the ensuing technology nodes, since it presents several
key advantages over its planar counterpart [1][13][24][26]. By
wrapping the conducting channel with a thin vertical “fin” which
forms the body of the device, the gate is coupled tighter with the
channel, increasing the surface area of the gate-channel interface
and allowing much stronger control over the conducting channel
[1]. This effectively relieve the so-called short channel effects
(SCE) that are observed on planar transistors manufactured with
sub-32nm technology, which in turn implies that FinFET device
can provide superior scalability in the deep submicron regime [1].

Another cornerstone motivating the realization of FinFET is
the potential performance gain. FinFET transistors can be designed
with lower threshold voltage (Vt) and operate with higher drive
current, leading to faster switching speed compared to
conventional planar devices [1]. Released documents from
industry demonstrate that the FinFET transistor persistently
demonstrates shorter delay than the planar one while the support
voltage is varying, enabling the design and manufacturing of faster
processors. Public documents from leading manufacturers also
show that the FinFET structure is capable of largely decreasing
leakage when the transistor is off [1]. Recently, the Ivy Bridge [2]
and Haswell central processing units [3] released by Intel have
commercialized this structure (i.e., referred to as “Tri-gate
transistor” by Intel), which is also expected to be adopted by other
semiconductor manufacturers on their upcoming products [7].

Nonetheless, FinFET is not an impeccable replacement of
traditional devices as it raises many challenges to the current
industry. One of the most daunting conundrums is the increasing
aging rate caused by negative bias temperature instability (NBTI).
Recent experimental studies demonstrate that FinFET transistors
are more vulnerable to NBTI, leading to a shorter lifetime than a
planar device [21][41]. The NBTI aging rate is evaluated by the

increase of delay on the critical path after a certain amount of
service time. A chip is considered as failed when the delay
increment exceeds a pre-defined value after which the timing logic
of the processor cannot function correctly. Under the same
operation condition, the FinFET device is observed to degrade
much faster than the planar counterpart, implying a significantly
reduced service lifespan of the target processor. This clearly spurs
the development of new techniques to circumvent this problem and
prolong the lifetime of FinFET-made processors.

Fortunately, a brief comparison between the main features of
FinFET and planar devices sheds some light on alleviating the
NBTI effect on future processors. By effectively exploiting the
device heterogeneity and leveraging the higher NBTI immunity of
planar transistors, the aging of the FinFET structures can be largely
suppressed. In this paper, we propose a technique built on top of
this principle to improve the durability of FinFET processors. In
general, our technique is implemented by replacing an existing
structure with a planar-device equivalent. Along with minor
modifications at the architectural level, our proposed technique is
essentially transferring the “aging stress” from the vulnerable
FinFET components to the more NBTI-tolerable planar structures,
which in turn lower down the temperature on the structure in study,
and thus considerably mitigate the NBTI degradation. Note that the
proposed scheme is practically feasible because of the good
compatibility between the FinFET and planar process technology
[12][18][20].

Considering that the general-purpose graphics processing unit
is becoming an increasingly important component in a wide
spectrum of computing platforms, we choose a modern GPU as the
target architecture to evaluate the effectiveness of our proposed
strategy. In this paper, we mainly concentrate on optimizing the
reliability of the warp scheduler because of its importance.
However, the technique described in this paper can be simply
applied to CPU for NBTI mitigation as well. In general, the main
contributions of this work are as follows:

 To the best of our knowledge, this paper is the first attempt to
address the NBTI alleviation at the architectural level for
future GPUs manufactured with FinFET.

 We propose a hybrid-device warp scheduler for reliable
operation. By decoupling the warp scheduling into two steps
of operations and conducting the prerequisites evaluation in a
planar-device structure, we eliminate a large amount of read
accesses to the FinFET scheduler hardware and considerably
alleviate the NBTI effect.

II. BACKGROUND

A. NBTI Degradation Mechanism

Negative Bias Temperature Instability is becoming one of
dominant reliability concerns for nanoscale P-MOSFETs. It is
caused by the interaction of silicon-hydrogen (Si-H) and the
inversion charge at the Si/oxide interface [10]. When a negative
voltage is applied at the gate of PMOS transistors, the Si-H bonds

Load
Store
unit

Load
Store
unit

Load
Store
unit

Load
Store
unit

Load
Store
unit

…...

Lane 0 Lane 1 Lane N-1

Address coalescing unit Write back

Memory
Hierarchy

Conditions check && issue ready warps

Figure 2. The architecture of the warp scheduler

are progressively dissociated and H atoms diffuse into the gate
oxide. This process eventually breaks the interface between the
gate oxide and the conducting channel, leaving positive traps
behind. As a consequence, the threshold voltage of the PMOS
transistor is increased, which in turn elongates the switching delay
of the device through the alpha power law [34]:

𝑇𝑠 ∝
𝑉𝑑𝑑𝐿𝑒𝑓𝑓

𝜇(𝑉𝑑𝑑−𝑉𝑡)𝛼
 …………………………………………..……. (1)

Where µ is the mobility of carriers, α is the velocity saturation
index and approximates to 1.3. 𝐿𝑒𝑓𝑓 denotes the channel length.

The process described above is termed the “stress” phase where
the threshold voltage is persistently increasing with the service
time, modeled by the following equation [40].

∆𝑉𝑡𝑠𝑡𝑟𝑒𝑠𝑠 =

(
𝑞𝑇𝑜𝑥

𝐸𝑜𝑥
)1.5. 𝐾. √𝐶𝑜𝑥(𝑉𝑔𝑠 − 𝑉𝑡). 𝑒

−𝐸𝑎
4𝑘𝑇

+
2(𝑉𝑔𝑠−𝑉𝑡)

𝑇𝑜𝑥𝐸01 . 𝑇0
−0.25. 𝑇𝑠𝑡𝑟𝑒𝑠𝑠

0.25 ………… (2)

However, when the stress voltage is removed from the gate, H
atoms in the traps can diffuse back to the interface and repair the
broken bond. This results in a decrease in the threshold voltage,
thus termed the “recovery” stage. This iterative stress-recovery
processes lead to a saw-tooth variation of the threshold voltage
throughout the device’s lifespan. The final Vt increase taking both
stress and recovery into account can be computed as:

∆𝑉𝑡 = ∆𝑉𝑡𝑠𝑡𝑟𝑒𝑠𝑠 . (1 −
2𝜉1𝑇𝑜𝑥+√𝜉2𝑒

−𝐸𝑎
𝑘𝑇 𝑇0𝑇𝑠𝑡𝑟𝑒𝑠𝑠

(1+𝛿)𝑇𝑜𝑥+√𝑒
−𝐸𝑎
𝑘𝑇 (𝑇𝑠𝑡𝑟𝑒𝑠𝑠+𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦)

) …………. (3)

Note that in equations (2) and (3), 𝑇𝑠𝑡𝑟𝑒𝑠𝑠 and
𝑇𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 respectively denote the time under stress and recovery.

Other parameters are either constants or material-dependent
variables and are listed in Section 4.

That FinFET devices are more vulnerable to NBTI is generally
attributed to its unique non-planar architecture, which is visualized
by Figure 1. As can be seen, compared to a traditional planar
transistor, the FinFET structure is designed with additional fin
sidewall surface with higher availability of Si-H bonds [21][41],
implying larger chances of forming interface trap and
consequently expediting the device degradation.

The NBTI aging rate depends on multiple factors including
both circuit parameters and workload execution patterns. In
general, it is acknowledged that voltage, temperature, and the
stress/recovery time have strong impact on the aging rate [10][38].
In this work, we mainly focus on the impact of temperature.
Specifically, our proposed techniques significantly reduce the
accesses to the target structures, thus lowering down the localized
activity and temperature, which in turn enhances the structure
durability.

B. Target GPU Architecture

The prevalence of unified programming language (e.g.,
CUDA, OpenCL) has made the general-purpose graphics
processing unit a core component in a large variety of systems
ranging from personal computers to high-performance computing
clusters. Therefore, it is highly important to alleviate the NBTI
degradation on this ever increasingly important platform.

In this section, we follow the Nvidia terminology to depict the
architecture of a representative GPU. The major component of a
modern GPU is an array of Streaming Multiprocessors (SMs), each
of which contains an amount of CUDA cores (SPs), load/store
units and special function units (SFUs). A CUDA core is
responsible for performing integer ALU and floating point
operations while the SFUs are devoted to conducting
transcendental operations such as sine, cosine, and square root.
Each stream multiprocessor also contains a register file, a shared
memory and a level 1 cache (usually including the instruction,
data, constant, and texture caches) that are shared among all
threads assigned to the SM. All stream multiprocessors connect to
an interconnection network, which transfers the memory
requests/services between the SMs and the shared L2 cache.

An application developed in CUDA (or OpenCL) contains at
least one kernel running on the GPU. A typical kernel includes
several blocks composed of substantial threads. During a kernel
execution, multiple blocks are assigned to an SM according to the
resource requirement. A group of threads from the same block
form a warp treated as the smallest scheduling unit to be run on the
hardware function units in an SIMT fashion.

III. HYBRID-DEVICE WARP SCHEDULER

As an emerging platform targeting for massively parallel
computing domains, a modern GPU is designed with several
unique characteristics different from a regular CPU. In this section,
we concentrate on the warp scheduler because it is an important
structure that is frequently accessed during program execution. By
observing representative execution behaviors of a large collection
of GPU applications, we propose a technique exploiting the device
heterogeneity to alleviate the NBTI degradation. As we will
demonstrate shortly, the proposed technique does not introduce
any additional component to the existing GPU architecture, thus
minimizing the hardware cost for the implementation.

A. Opportunity for Improvement

To improve the thread-level parallelism (TLP) and maximize
the execution throughput, a modern GPU usually allows multiple
warps to reside on the same streaming multiprocessor and hide the
execution latencies by switching among those resident warps. At
any instant, a warp is considered as ready for execution only when
several constraints are simultaneously satisfied.

A first-order prerequisite is the functional correctness, which is
secured by ensuring data dependencies between warp instructions.
When a warp cannot be dispatched because of unsatisfied data
dependency, it should wait until all of its operands are ready. A
scoreboard hardware structure is responsible for keeping track of

Si-Substrate

F
I
N Oxide

Gate

Fin
Body

Gate Stack

Fin Sidewall

Fin topwall

HFin

WFin

 (a) (b)
Figure 1. FinFET transistor structure: (a) overview (b) side view

Load
Store
unit

Load
Store
unit

Load
Store
unit

Load
Store
unit

Load
Store
unit

…...

Lane 0 Lane 1 Lane N-1

Address coalescing unit Write back

Memory
Hierarchy

Conditions check && issue ready warps

Figure 2. The architecture of the warp scheduler

data dependencies in a modern GPU. In addition, warps on a
streaming multiprocessor contend for limited functional units.
When the dispatch port of the functional unit that a warp needs to
use is not vacant, the warp cannot be issued even when its data
dependencies have been satisfied.

The warp scheduler is an SRAM hardware structure in charge
of selecting candidates from all resident warps to dispatch. For the
purpose of high performance, a warp scheduler is capable of
dispatching one warp per clock cycle, requiring that scanning
through all the scoreboard entries and querying the dispatch ports
of all functional units should be performed at each cycle [23][25].
Figure 2 illustrates the high-level organization of a warp scheduler
equipped in an SM to elaborate the scheduling process. As shown
in the figure, all entries, each of which stores complete information
of a warp instruction, are going through the conditions checking in
parallel in order to identify the candidates ready for execution.
Note that to minimize the delay, the scheduler must read the
detailed information of a warp (warp ID, opcode, etc) while
evaluating the constraints so that it can dispatch warps as soon as
they are ready. Selected warps are sent to the appropriate function
units according to the instruction opcode afterwards.

This particular design naturally inspires a technique to mitigate
the NBTI degradation on the scheduler. If the readiness of all warp
instructions are known ahead via a certain “predicate”, then only
the entries with all constraints met are accessed, which in turn
decreases the localized activity and temperature, and improves the
structure durability.

To justify the potential effectiveness of this strategy, we run a
wide spectrum of GPU applications, aiming to observe typical
behaviors on the warp scheduler. Figure 3 plots a snapshot of the
warp scheduler’s behavior when WP is running on a GPU in order
to exemplify the activity on the scheduler. The horizontal axis
corresponds to the elapsed time and the vertical axis represents the
accumulative number of ready warps at each time interval. The
number is collected every 50 cycles. With this setting, the
maximum number of ready warps cannot exceed 100 on each
sampling point considering that two warp instructions can be
issued at each cycle. As can be seen from the figure, there are a
large amount of execution periods with number of ready warps far
less than the theoretical peak, implying a significant reduction in
accesses to the scheduler entries in potential. We generally observe
that, at any given instant, less than 35% of all the warps have the
two prerequisites satisfied for all the tested benchmarks. This
observation confirms that there is large headroom for us to
optimize the reliability on the warp scheduler.

B. Two-stage Scheduling

Our proposed technique to enhance the durability of the warp
scheduler stems from the aforementioned fact at the first place. In
order to identify the ready warps, the baseline scheduler is
decoupled into two components as visualized in Figure 4. By doing

so, the prerequisites checking is extracted from the original parallel
accesses and is performed prior to obtaining the detailed
information of warp instructions. This checking operation outputs
the ID of all available candidates resided on the SM, triggering the
consequent accesses to the hardware structure which stores all
necessary information to dispatch ready warps based on the
specific scheduling policy. If a large amount of resident warps are
eliminated from the candidate list due to the violation of
scheduling constraints, substantial accesses to the scheduler
hardware (i.e., the structure at the right side in Figure 7) can be
avoided.

A non-trivial issue requiring careful consideration in this
particular scheduler design is what information should be checked
in the first stage. Theoretically, evaluating more scheduling
prerequisites would filter larger number of accesses since only the
common set of candidates that satisfy each individual constraints
are allowed to continue the second stage. However, for certain
conditions, checking them in the first stage would lead to
undesirable execution behavior because their evaluation results
might be changed in the following cycle. The checking on function
units’ (FU) availability falls into this category. This is because that
the FU status is updated every cycle and a function unit that
appears to be free in the current cycle is not necessarily available
in the following cycle, if it is assigned to another warp instruction.
Therefore in this work, we only check the data dependency in the
first stage. As we will demonstrate in section 6, this still results in
sufficiently high filter rate for most benchmarks and largely
alleviate the NBTI degradation.

On the other hand, considering that the failure of any structure
located on the critical path will prevent the entire chip from
working correctly, the component where the condition evaluations
are conducted tends to become the bottleneck from the perspective
of reliability, since all of its entries still needs to be scanned every
cycle. To overcome this problem, we propose to manufacture this
component with the more NBTI-tolerable planar devices. This
hybrid-device design effectively leverages the benefits of both
devices, aiming to enhance the processor durability. Note that the
planar-transistor-made component recording the data dependency
and function unit availability is unlikely to suffer from early failure
because it only requires one bit for each entry and thus consume
negligible power. Also recall that this design is technically feasible
due to the good compatibility between FinFET and planar
processes as demonstrated in patents [12][20].

Another naturally arising concern with this design is the
performance degradation resulted from the sequential scheduler
access. Nevertheless, as we will demonstrate in section 5, the
performance overhead for most applications are fairly small
because only actual accesses to the FinFET part of the scheduler

Figure 3. A snapshot of the scheduler activity while running WP

Operand Ready?

Yes

No

Yes

Yes

…
...

Reconvergence
Stack

FU free?
Other warp
information

Function Units

Ready warps

Warp Scheduler

Planar

FinFET

No

No

00110100010….

00110111010…

…
...

00110111010…

WID:1 op: cvt

WID:2 op: ld

WID:5 op: sine

Yes

Figure 4. The architecture of hybrid-device 2-stage scheduler

Periods with low scheduler activity

introduces an extra cycle delay. In scenarios where none of the
resident warps pass the constraints checking, the execution latency
is not impacted.

IV. EXPERIMENTAL SETUP

We validate the proposed techniques using a modified
GPGPU-Sim 3.1 [14], a cycle-accurate GPGPU simulator.
GPUWattch [29] and HotSpot 5.0 [8] are integrated in the
simulator for power and temperature calculation, respectively. The
chip floorplan required by HotSpot is calibrated against the one
used in a recent paper focusing on GPU thermal management [31].
The target architecture is configured based on a Fermi GTX 480
[6] that is widely used in many high-performance computers.
Table 1 lists the architectural parameters for our simulation.

To evaluate the effectiveness of our techniques in practice, we
choose a set of programs from several benchmark suites
[5][14][16], representing typical HPC applications derived from
different domains. A full list of applications used in this work is
given in Table 2. For each program, we run them till completion
and use the execution statistics to mimic distinct workload
patterns. In specific, to model the NBTI degradation after a 7-year
lifespan, we extrapolate the collected activity to represent the load
in 7 years under the steady temperature. Note that our technique
does not explicitly introduce recovery stages to the structure in
study, so the recovery time is set to zero. We report the final
increase in the critical path delay as a measurement of the NBTI
aging on the hardware. Equations (2) and (3) described in section
2.1 are used to compute the variation in the threshold voltage,
which in turn translates to the delay increase via equation (1). We
set the parameters referred by the equations according to recent
studies on device features [9][15][36]. Table 3 lists the specific
parameter values used in this paper.

V. RESULT ANALYSIS

A. Improvement on Reliability

Figure 5 demonstrates the NBTI degradation in terms of the
increase in scheduler delay on both the baseline GPU and the one

with hybrid-device 2-stage warp scheduler. Note that in the figure,
the bars marked by “2-stage” refer to the proposed design. A higher
delay increase indicates more severe NBTI degradation. As can be
observed, the aging due to NBTI on the scheduler hardware is
largely suppressed for all benchmarks under investigation when
the proposed technique is applied. On average, the hybrid-device
2-stage scheduler presents merely 2.36% longer delay after the
designed service life, reduced from 7.7% on the baseline GPU.

While the general improvement on the durability is significant,
however, it is notable that the benefits corresponding to different
workloads are obviously distinct. For example, the load
represented by NN causes the scheduler delay to be prolonged by
around 8.4% after 7 years services on the baseline GPU. With the
adoption of the proposed technique, this degradation can be
reduced to 1.96%. On the other hand, an execution pattern similar
to Backprop prevents the scheduler obtaining the same amount of
benefit from the technique. Specifically, the scheduler still suffers
from 2.9% longer delay after employing the hybrid-device design,
while the baseline platform shows 8.6% longer delay that is similar
to the degradation corresponding to NN.

Considering the exponential relationship between temperature
and NBTI degradation, we collect the localized temperature on the
scheduler hardware and demonstrate it in Figure 6 for further
analysis. Not surprisingly, although the proposed technique can
significantly cool down the scheduler in most cases, we note that
the temperature reductions are apparently different among the
evaluated programs, which is similar to the observation made from
Figure 5. When executing NN, the temperature on the scheduler is
reduced by up to 15°C, whereas the temperature reduction for
Backprop is about 11°C. To gain more insights into the reason

Table 3. Parameter values for computing NBTI.

Parameters FinFET

value

Planar

value

Description

Tox 1.2nm 1nm
Effective oxide

thickness

Vt 0.179v 0.3v Threshold voltage

Eo 0.335v/nm 0.12v/nm Electrical field

Fixed parameters

q 1.602×10-19 Electron charge

Vdd 0.9v Operating voltage

Ɛox 1.26×10-19F/m
Permittivity of gate

oxide

ξ1 0.9

Other constants

ξ2 0.5

k 8.6174 × 10-5 ev/K

δ 0.5

T0 10-8 s/nm2

Figure 5. The NBTI degradation on the warp scheduler

0

2

4

6

8

10

D
el

ay
 in

cr
ea

se
 (

%
)

baseline 2-stage

Table 1. Architectural parameters for the GPU in study.

 Parameter Values

 #SM 15

 #SP 32/SM

 LDST units 16/SM

 Shared memory 32KB/SM

 L1 data cache 16KB/SM

 Scheduler Greedy than oldest (GTO)

Core frequency 1400MHz

Interconnection

Interconnection

1 crossbar/direction

 L2 cache
768KB: 128 cache line size, 16-way

associativity. Access latency 5 cycles

 L2 frequency 700MHz

 Memory FR-FCFS scheduling, 64 max. requests/MC

SIMD lane width 16

Threads/warp

eads/warp

32

 Technology 22nm

Table 2. Benchmarks used in this work.

Application Domains

1 B+tree Search

2 Backprop Pattern Recognition

3 Blackscholes Financial Engineering

4 Gaussian Linear Algebra

5 Heartwall Medical Imaging

6 LPS 3D Laplace Solver

7 Myocyte Biological Simulation

8 NN Neural Network

9 NW Bioinformatics

10 WP Weather Prediction

Figure 6. The steady temperature on the warp scheduler

300

310

320

330

340

Te
m

p
er

at
u

re
 (

K
)

baseline 2-stage

behind this phenomenon, let us recall the rationale of the 2-stage
scheduler that is described in section 3.2. The essential reason for
the reduced scheduler accesses is that a large amount of
prerequisite evaluations turn out to be false, thus the unnecessary
operations on the “unready warps” are avoided. In other words,
how much benefit can be obtained from the proposed technique
largely depends on the amount of accesses that can be filtered.
Table 4 lists the percentage of accesses saved by the constraint
checking stage. As can be seen, the data dependency checking
stage can generally filter out more than 92% of accesses to the
scheduler, thus considerably enhancing the durability of the
hardware. In particular, we note that 76.9% of scheduler accesses
when executing Backprop are dispensable, while for NN this ratio
rises up to 97.4%, implying higher possibilities to lower the power
and temperature on the scheduler.

We also plot the power consumption of the scheduler in Figure
7 to visualize the changes on the scheduler activity. Clearly, the
hybrid-device 2-stage scheduler significantly reduces the
scheduler power for all evaluated benchmarks, which in turn
lowers the local temperature and improves the hardware durability.

B. Performance Overhead

The extra cycle introduced by the 2-stage scheduler is likely
to result in undesirable performance overhead for the program
execution. Figure 8 shows the performance in terms of normalized
IPC (normalized to the baseline GPU) of all benchmarks running
on a GPU with the 2-stage scheduler. It is straightforward to note
that the performance degradation is distinct among the program
collection. In this subsection, we briefly analyze the possible
impact on the performance due to the extra cycle and explain the
different performance degradation.

The GPU’s massive parallelism may be able to hide part of the
extra latency during the execution depending on the features of
applications. We use the terms “longest warp” and “longest-warp
chain” to help explain the latency manifested in the results. We
define “longest warp” as the warp with the longest running time
during a kernel launch and “longest-warp-chain” as the set of
longest warps in each of the sequence of kernel launches in the
lifetime of an application. In a typical GPU application, the
running time of a longest-warp chain is the sum of execution
latencies of all warps in the chain because a) when a kernel is
launched, all its warps are started simultaneously and b) a kernel

is not launched until all warps of the previous kernel launch
complete. In other words, latency on the longest warp could not
be hidden as easily as that on other warps. Longest warps also do
not overlap temporally. For each longest warp we can compute its
average latency as:

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
∑ 𝐶𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

………………………………..……….. (4)

Where N is the number of kernel launches and 𝐶𝑛 and 𝐼𝑛 are
respectively the number of cycles and warp instructions of the
longest warp in each kernel launch.

The 𝐼𝑛 instructions in a kernel launch are the instructions
issued to and executed by a warp. The extra cycle introduced to
the scheduler will be added before each of the instructions is
executed. Since the instructions are executed in-order, this is
equivalent to adding extra cycles to the entire longest-warp chain.
The average latency of the warp after adding the extra cycles
should become:

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝑒𝑙𝑎𝑦𝑒𝑑 =
∑ 𝐶𝑛

𝑁
𝑛=1 +∑ 𝐼𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

……………………..…… (5)

The overhead indicators can be deducted from the two latencies

shown above:

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝐼𝑛𝑑 =
∆𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦
=

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑑𝑒𝑙𝑎𝑦𝑒𝑑−𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦
=

∑ 𝐶𝑛
𝑁
𝑛=1 +∑ 𝐼𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

−
∑ 𝐶𝑛

𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

∑ 𝐶𝑛
𝑁
𝑛=1

∑ 𝐼𝑛
𝑁
𝑛=1

=
∑ 𝐶𝑛

𝑁
𝑖=1 +∑ 𝐼𝑛−∑ 𝐶𝑛

𝑁
𝑖=1

𝑁
𝑖=1

∑ 𝐶𝑛
𝑁
𝑖=1

=
∑ 𝐼𝑛

𝑁
𝑖=1

∑ 𝐶𝑛
𝑁
𝑖=1

=

1

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦
…………………………………………………..… (6)

The normalized IPC (measured) and the one derived from the
overhead indicator (projected) are both plotted in Figure 8. As the
figure shows, they are closely correlated. The average latencies
and the overheads are determined by the behaviors of the longest
warps which are in turn closely related to the characteristics of
individual applications. For example, B+tree involves a kernel
launch with 48 warps on each SM and initiates many global
memory transactions (159.26 per cycle). Its longest warp has an
average delay of more than 100 cycles. NN, on the other hand, has
a much smaller average delay (smaller than 10), because it
generates much fewer global memory transactions (only 0.06 per
cycle) and each SM executes only 8 warps. With such few
memory transactions and fewer warps, each of the warps,
including the longest warp, does not have to wait for long-delay
memory operations while sharing more computational resources.
This different memory request intensities result in average
latencies of the longest warp chains as 41.7 and 8.53 cycles for
B+tree and NN, respectively. Consequently, we observe
apparently different performance losses for these two
benchmarks.

VI. RELATED WORK

NBTI Mitigation: NBTI has been recognized as a major
reliability concern as the semiconductor industry shifts into the
deep submicron era. Abella et al. [10] develop a set of techniques
to relieve the NBTI aging for typical structures in a modern CPU.

Table 4. Filter rate on the first stage of warp scheduler.

Application Filter Rate
B+tree 75.82%

Backprop 76.93%
Blackscholes 88.74%

Gaussian 98.82%
Heartwall 88.46%

LPS 90.59%
Myocyte 99.85%

NN 97.41%
NW 97.70%
WP 99.49%

Geo-mean 90.96%

Figure 7. The power consumed by the warp scheduler

0

2

4

6

8

P
o

w
er

 (
W

)

baseline 2_stage

Figure 8. Normalized IPC on the GPU with 2-stage scheduler

0.8

0.84

0.88

0.92

0.96

1

N
o

rm
al

iz
ed

 IP
C

measured IPC projected IPC

For combinational logics, they insert desired vectors as inputs to
the structures for recovery. To alleviate the aging for memory-like
components, they propose a strategy to avoid the bias on different
bits. Ramakrishnan et al. [33] introduce a similar approach to
reduce the NBTI wearout in FPGAs by loading the reversing bit
patterns in idle periods. Gunadi et al. [22] introduce a scheme
called Colt to balance the utilization of devices in a processor for
reliability improvement. Specifically focusing on the storage
components, Shin et al. [35] propose to proactively set the PMOS
transistors to recovery mode, and moving data around free cache
arrays during operation.

Converse to these works which attempt to manipulate the time
under stress and recovery, Tiwari et al. [38] propose a framework
named facelift to combat NBTI degradation by adjusting higher
level parameters including operating voltage, threshold voltage
and the application scheduling policy. To enhance the reliability of
storage cells, Abella [11] proposes to use NAND gates instead of
inverters to reduce the average degradation on each PMOS. On the
other hand, Rahimi et al. [32] focus on the GPUs designed in
VLIW fashion and present a compiler-based technique to slow
down the NBTI aging for this particular architecture.

Characterization of FinFET Reliability: As FinFET is widely
considered as an attractive replacement of planar transistors for the
next few technology nodes, studies focusing on the reliability of
this new structure is becoming fairly important. Lee et al. [28]
investigate the NBTI characteristics on SOI and body-tied
FinFETs and observe that a narrow fin width leads to more severe
degradation than a wider fin width. Crupi et al. [19] compare the
reliability of triple-gate and planar FETs. The author show that the
behavior of time-dependent dielectric breakdown (TDDB) is not
changed on the triple-gate architecture under different gate
voltages and temperatures. This is also corroborated in the work
conducted by Groeseneken et al. [21], which further demonstrate
that FinFET devices tend to suffer from more severe NBTI
degradation. In [39], Wang et al. analyze the soft-error resilience
of FinFET devices and conclude that FinFET circuit is more
reliable than bulk CMOS circuit in terms of soft-error immunity.

VII. CONCLUSION

FinFET technology is recognized as a promising substitute of
conventional planar devices for building processors in the next
decade due to its better scalability. However, recent experimental
studies demonstrate that FinFET tends to suffer from more severe
NBTI degradation compared to the planar counterpart. In this
work, we focus on the NBTI reliability issue of a modern GPU
made of FinFET and propose to address this problem by exploiting
the device heterogeneity. We introduce a technique that merely
involves minor modifications to the existing GPU architectures.
The proposed technique leverages planar devices’ higher
immunity to NBTI and is effective in slowing down the aging rate
of the device. Our evaluation results demonstrate that the minor
changes to the warp scheduler can considerably alleviate the
degradation due to NBTI with slight performance overhead.

REFERENCES

[1] Intel Corporation. Intel’s revolutionary 22nm transistor technology. May
2011.

[2] Intel Corporation. 3rd Generation of Intel Core i7 Processor.
http://ark.intel.com/products/family/65505.

[3] Intel Corporation. 4th Generation of Intel Core i7 Processor.
http://ark.intel.com/products/family/75023.

[4] Nvidia Corporation. CUDA C Programming Guide.
[5] Nvidia Corporation. CUDA Computing SDK 4.2.
[6] GTX 480 Specifications. http://www.geforce.com/hardware/desktop-

gpus/geforce-gtx-480/specifications
[7] http://www.eetimes.com/document.asp?doc_id=1264668.
[8] Hotspot 5.0 Temperature Modeling Tool.

http://lava.cs.virginia.edu/HotSpot

[9] Predictive Technology Model. http://ptm.asu.edu
[10] J. Abella, X. Vera, and A. Gonzalez. Penelope: The NBTI-aware processor.

In MICRO’07.
[11] J. Abellea, X. Vera, O. Unsal, and A. Gonzalez. NBTI-resilient memory cells

with NAND gates for highly-ported structures. In Workshop on Dependable
and Secure Nanocomputing, Jun. 2007.

[12] B. A. Anderson, A. J. Joseph, and E. J. Nowak. Integrated circuit including
FinFET RF switch angled relative to planar MOSFET and related design
structure. U.S. Patent 8125007 B2, Feb. 2012.

[13] A. Asenov, C. Alexander, C. Riddet, and E. Towie. Predicting future
technology performance. In DAC’13.

[14] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt. Analyzing CUDA
Workloads Using a Detailed GPU Simulator, in ISPASS’09.

[15] S. Chaudhuri, and N. K. Jha. 3D vs. 2D analysis of FinFET logic gates under
process variations. In ICCD’11.

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K.
Skadron. Rodinia: A Benchmark Suite for Heterogeneous Computing. In
IISWC’09.

[17] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance associativity for
high performance energy efficient non-uniform cache architectures. In
MICRO’03.

[18] J. P. Colinge, “Multiple-gate SOI MOSFETs”, Solid-State Electronics, vol.
48, no. 6, June 2004.

[19] F. Crupi, B. Kaczer, R. Degraeve, V. Subramanian, P. Srinivasan, E. Simoen,
A. Dixit, M. Jurczak, and G. Groeseneken. Reliability comparison of triple-
gate versus planar SOI FETs. In IEEE Transactions on electron devices, vol.
53, no. 9, Sept. 2006.

[20] B. B. Doris, D. C. Boyd, M. Leong, T. S. Kanarsky, J. T. Kedzierski, M.
Yang. Hybrid planar and FinFET CMOS devices. U.S. Patent 7250658 B2,
Jun. 2007.

[21] G. Groeseneken, F. Crupi, A. Shickova, S. Thijs, D. Linten, B. Kaczer, N.
Collaert, and M. Jurczak. Reliability issues in MUGFET nanodevices. In
IEEE 46th Annual International Reliability Physics Symposium (IRPS),
April 2008.

[22] E. Gunadi, A. A. Sinkar, N. S. Kim, and M. H. Lipasti. Combating aging
with the colt duty cycle equalizer. In MICRO’10.

[23] J. Hennessy, D. A. Patterson. Computer architecture: a quantitative
approach. 5th edition.

[24] A. B. Kahng. The ITRS design technology and system drivers roadmap:
process and status. In DAC’13.

[25] H. Kim, R. Vuduc, S. Baghsorkhi, J. Choi, and W. Hu. Performance analysis
and tuning for general purpose graphics processing units (GPGPU). DOI:
10.2200/S00451ED1V01Y201209CAC020

[26] V. B. Kleeberger, H. Graeb, and U. Schlichtmann. Predicting future product
performance: modeling and evaluation of standard cells in FinFET
technologies. In DAC’13.

[27] E. Kultursay, J, Swaminathan, V. Saripalli, V. Narayanan, M. Kandemir, and
S. Datta. Performance enhancement under power con-straints using
heterogeneous CMOS-TFET multicores. In CODES+ISSS’12.

[28] H. Lee, C-H. Lee, D. Park, and Y-K. Choi. A study of negative-bias
temperature instability of SOI and body-tied FinFETs. In IEEE Electron
Device Letters, vol. 26, no.5, May 2005.

[29] J. Leng, T. Hetherington, A. Eltantawy, S. Gilani, N. S. Kim, T. M. Aamodt,
V. J. Reddi. GPUWattch: enabling energy optimizations in GPGPUs. In
ISCA’13.

[30] S. Mahapatra, P. B. Kumar, and M. A. Alam. Investigation and modeling of
interface and bulk trap generation during negative bias temperature
instability of p-MOSFETs. In IEEE Transactions on Electron Devices, vol.
51, no.9, Sept. 2004.

[31] R. Nath, R. Ayoub, and T. S. Rosing. Temperature aware thread block
scheduling in GPGPUs. In DAC’13.

[32] A. Rahimi, L. Benini, R. K. Gupta. Aging-aware compiler-directed VLIW
assignment for GPGPU architectures. In DAC’13.

[33] K. Ramakrishnan, S. Suresh, N. Vijaykrishnan, M. J. Irwin, and V.
Degalahal. Impact of NBTI on FPGAs. In VLSI’07.

[34] T. Sakurai and R. Newton. Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas. IEEE Journal of
Solid-State Circuits, 1990.

[35] J. Shin, V. Zyuban, P. Bose, and T. M. Pinkston. A proactive wearout
recovery approach for exploiting microarchitectural redundancy to extend
cache SRAM lifetime. In ISCA’08.

[36] S. Sinha, G. Yeric, V. Chandra, B. Cline, and Y. Cao. Exploring sub-20nm
FinFET design with predictive technology models. In DAC’12.

[37] B. Swahn and S. Hassoun. Gate sizing: FinFETs vs 32nm Bulk MOSFETS.
In DAC’06.

[38] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing down aging in
multicores. In MICRO’08.

[39] F. Wang, Y. Xie, K. Bernstein, and Y. Luo. Dependability analysis of nano-
scale FinFET circuits. In ISVLSI’06.

[40] W. Wang, V. Reddy and A. Krishnan, “Compact Modeling and Simulation
of Circuit Reliability for 65-nm CMOS Technology”, IEEE Transactions on
Device and Materials and Reliability, 7(4):509-517, December 2007.

[41] Y. Wang, S.D. Cotofana, and L. Fang. Statistical reliability analysis of NBTI
impact on FinFET SRAMs and mitigation technique using independent-gate
devices. In NANOARCH’12.

