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for Multiprogrammed, Parallel, and
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Abstract—Quality-of-service (QoS) management is widely em-
ployed to provide differentiable performance to programs with
distinctive priorities on conventional chip-multiprocessor (CMP)
platforms. Recently, heterogeneous architecture integrating di-
verse processor cores on the same silicon has been proposed to
better serve various application domains, and it is expected to
be an important design paradigm of future processors. Therefore,
the QoS management on emerging heterogeneous systems will be
of great significance. Workloads on heterogeneous architectures
can be multiprogrammed, heterogeneous, and/or domain specific
depending on the form factor and device of interest. Considering
the diverse characteristics of these three classes of workloads is
important when managing QoS on heterogeneous architectures.
For example, for parallel applications, considering the diverse
characteristics of thread synchronization, data sharing, and par-
allelization pattern of representative parallel applications, gov-
erning the execution of multiple parallel programs with different
performance requirements becomes a complicated yet significant
problem. In this paper, we study QoS management for multipro-
grammed, parallel, and domain-specific applications running on
heterogeneous CMP systems. We comprehensively assess a series
of task-to-core mapping policies on a real heterogeneous hard-
ware (QuickIA) by characterizing their impacts on performance
of individual applications. Our evaluation results show that the
proposed QoS policies are effective to improve the performance of
programs with highest priority while striking good tradeoff with
system fairness.

Index Terms—Heterogeneous systems, performance attributes.

I. INTRODUCTION

IN the past decade, multicore processors have become the
mainstream to provide high performance while encapsu-

lating the processor power consumption within a reasonable
envelope. Most commercial multicore processors to date are
homogeneous by replicating a number of identical cores on a
single chip; however, with the rapid development of modern
processors, computer scientists propose heterogeneous archi-
tectures that integrate a diversity of processors onto the same
die to better serve applications from different domains.
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In a practical execution scenario, where a number of appli-
cations are simultaneously running on a chip multiprocessor
(CMP), the quality of service (QoS) that each individual pro-
gram gets from the underlying platform largely depends on
the characteristics of its corunners and resource management
schemes engaged by the system. Fig. 1 illustrates the archi-
tecture of a QoS-aware CMP system where the QoS policies
are employed in different hierarchies: 1) core level; 2) cache
level; and 3) memory level. This hierarchical infrastructure
for QoS management secures that distinctive applications (e.g.,
single threaded, multithreaded, domain specific, etc.) executed
on the common platform match their respective performance
expectation. To date, QoS polices have been extensively stud-
ied in cache level (cache size partitioning) and memory level
(memory bandwidth allocation) in previous works [6]–[8], [24]
since they assume homogeneous platforms where appropriate
allocation of shared resources is critical to the performance
of individual programs. However, while switching to a hetero-
geneous platform equipped with diverse processors, core-level
QoS management needs to be carefully considered because
the task-to-core mapping will impose significant impact on
the performance of individual programs. In this situation,
an application should be assigned to either powerful big
processors (B) or slower small cores (S) based on its charac-
teristic and priority, in order to achieve the desired QoS targets.

In this paper, we study three different types of workloads run-
ning on such heterogeneous architectures: multiprogrammed
single-threaded workloads, parallel workloads, and domain-
specific applications. While running multiprogrammed single-
threaded workloads on homogeneous multicore platforms are
challenging already, things become even more complicated
when multiple parallel applications are executed in a heteroge-
neous CMP system in concurrence. Unlike single-threaded pro-
grams, parallel applications launch a large number of threads
that require more than one processor for execution to fully
explore the thread-level parallelism (TLP). Furthermore, con-
temporary multithreaded applications demonstrate significantly
different characteristics, including parallelization pattern, data
sharing degree, synchronization frequency, etc. As a conse-
quence, the amount and types of cores that the system should
assign to each individual application deserve careful consider-
ation. Fig. 2 demonstrates an example to highlight the impor-
tance of task-to-core mapping schemes for parallel applications
running on heterogeneous platforms. We assume that two par-
allel programs canneal and swaptions are running on a system
composed of two big cores and two small cores. Fig. 2(a) graphs
the relative performance of both applications while executing
on different processors in isolation. The notation 1S indicates
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Fig. 1. QoS-aware heterogeneous CMP system. Different types of simultaneous workloads.

Fig. 2. Illustrating the need for QoS. (a) Performance scaling with core
numbers and types. (b) Performance comparison with different policies
(policy 1: canneal on 2 big cores and swaptions on 2 small cores. policy2:
canneal on 2 small cores and swaptions on 2 big cores).

that a small core is used to run the program, whereas 2S,
1B, and 2B means using 2 small cores, 1 big core, and 2 big
cores for the execution, respectively. We launch four threads
for each program in all cases. It is straightforward to note the
difference between the performance variations of these two
programs. For swaptions, running it on a big core is around
three times faster than the execution on a small core. Program
canneal, however, exhibits a completely different scaling trend
that moving the application from a small core to a big core
results in only 1.19× speedup while giving an extra small core
is able to reduce the execution time by ∼50%. Let us assume
swaptions is coexecuting with canneal on this platform and the
former program is assigned a higher priority. A QoS-unaware
system might blindly distribute swaptions to the small cores and
canneal to big cores, leading to a result, as shown by “policy 1”
in Fig. 2(b). By involving a QoS-enabled mechanism (i.e.,
policy 2), swaptions will be assigned to big cores and canneal
goes to small cores. As can be seen, this significantly boosts the
performance of the HP program at the expense of acceptable
performance degradation of canneal.

In this paper, we aim at addressing the QoS problem
on heterogeneous platforms and make the following main
contributions.

1) To the best of our knowledge, this paper is the first attempt
to provide QoS solutions to managing multiprogrammed,
parallel and domain-specific programs executing on het-
erogeneous CMP system. By examining the execution
behaviors of representative applications, we propose that
distinctive task-to-core mapping policies should be ap-
plied in different execution scenarios.

2) We employ a real heterogeneous hardware to conduct the
investigation of QoS management. This leads to more

Fig. 3. Architecture of the QuickIA Experimental Heterosystem.

convincing conclusions as it avoids missing important
factors that might be overlooked in simulation-based
approaches. For example, our hardware-based study is
able to completely execute an application, whereas ar-
chitectural simulations usually concentrate on a specific
execution phase of the entire program.

3) We propose two categories of task-to-core mapping
schemes to meet the QoS goals in a large spectrum of par-
allel execution circumstances. Employing an appropriate
policy significantly improves the performance of the HP
program while leading to a reasonable balance between
all programs.

4) We demonstrate that finer-granularity control is impor-
tant to optimize the application performance on given
processor mixture. This includes unbalanced workload
distribution and appropriate stage-to-core mapping.

II. BACKGROUND AND MOTIVATION

A. Experimental Heteroplatform

Our evaluation is conducted on a native heterogeneous plat-
form QuickIA [4] developed for the exploration of heteroge-
neous systems. It is built on the basis of a dual-socket Xeon
5400 series server, where the two CPU sockets are connected
to the memory controller via the Intel Front Side Bus (FSB).
We illustrate the specific configuration used in this paper in
Fig. 3. As shown in the figure, the system is equipped with
a quad-core Xeon CPU (Harpertown) with each pair of cores
sharing a 1-MB L2 cache and two Atom CPUs (Silverthorne),
which reside on another socket. For the purpose of this study,
we disable the Intel HyperThreading technique on the Atom
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TABLE I
CONFIGURATION OF THE QUICKIA SYSTEM

TABLE II
DESCRIPTION OF PARSEC BENCHMARKS

CPUs and halt two Xeon cores, making a total of 2 Xeon and
2 Atom processors visible to the operating system. Table I lists
the architectural parameters of integrated CPUs and other infor-
mation of the system. In the following sections, we use small
cores (S) to indicate the Atom processors and refer to the Xeon
processors as big cores.

B. Parallel Applications on Heteroarchitectures

Parallel applications are extremely important for the explo-
ration of ubiquitous CMP systems in the current computer
industry. We choose the PARSEC benchmark suite [2] for the
purpose of this study. A brief description of the applications
is listed in Table II. PARSEC is a widely used multithreaded
program set for contemporary chip-multiprocessor system eval-
uation. It contains 3 kernels and 10 applications that are derived
from a large spectrum of real-world and emerging applica-
tions such as data mining, financial analysis, video encoding,
recognition, etc.

All PARSEC applications follow a common execution pat-
tern consisting of program initialization, parallel phase, and the
completion. The parallel stage is also termed as the region-of-
interest (ROI) as it contains all parallel executions of an appli-
cation. Prior studies [2] have shown that PARSEC applications
demonstrate a variety of data sharing degrees, parallelization
models and synchronization patterns, making them compelling
tools to assess and steer the design of CMP architecture.

C. Multiprogrammed Applications on Heteroarchitectures

In addition to parallel applications, we also look study the
effects of multiprogrammed single-threaded applications run-
ning simultaneously on heterogeneous multicore architectures.

TABLE III
DESCRIPTION OF SPEC BENCHMARKS

TABLE IV
DESCRIPTION OF DOMAIN-SPECIFIC BENCHMARKS

For this study, we picked groups of SPEC2006 applications
to run simultaneously. Table III shows the set of SPEC2006
applications chosen for this paper We chose two groups based
on the compute-intensive and memory-intensive behavior of the
applications.

D. Domain-Specific Applications on Heteroarchitectures

Apart from the extensively studied general-purpose appli-
cations, investigating the performance and QoS challenges
specifically for domain-specific applications running on hetero-
geneous multicore architectures is also fairly important. In this
paper, we chose two domain-specific applications, respectively
from speech recognition and computer vision to conduct the
study, in order to characterize and understand the execution be-
haviors when multiple domain-specific applications are running
on a heterogeneous architecture in concurrence. Specifically,
sphinx3 from SPEC2006, a single-threaded program imple-
menting a speech recognition algorithm, and bodytrack from
PARSEC, which stands as a representative parallel computer
vision application, are selected for the investigation. The goal
is to understand whether it is better to run such applications on
small or big cores since these workloads tend to have soft or
hard real-time performance needs. A side effect is also to study
the benefits of using big core as a domain-specific accelerator
for small cores. A summary of the selected applications are
listed in Table IV.

E. Workload Construction

For PARSEC benchmarks, we simultaneously execute four
programs, one of which is elected as the high-priority (HP)
application, whereas the remaining three are treated as the low-
priority (LP) ones. Note that in later sections of this paper,
we use the acronym HP to indicate HP application and use
the terms LP and LP programs interchangeably. Each program
is spawned four threads and is fed with the native input for
execution. Both the HP and LP applications are executed mul-
tiple times and we report the average performance for each
program. In addition, with such a setup, we mimic the execution
scenario when all four applications are contending for system
resources. For multiprogrammed applications, we run eight
programs simultaneously. Similar to parallel applications, we
choose one of them as the HP application and the rest are treated
as LP ones. For domain-specific application, we run the two
benchmarks together and choose either one as a HP application.
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III. QOS GOALS AND POLICIES

A. QoS Goals

A primary goal of our QoS management is to improve
performance of the program with the highest priority in shared
execution mode. We use the speedup over a predefined baseline
case for this program as the evaluation metric. The second goal
is to increase the system performance. We employ a widely
used metric, weighted speedup, to assess this goal. Note that,
in this paper, we use the term system throughput and system
performance interchangeably. The third consideration in our
QoS management is the fairness among all programs. The exe-
cution fairness can be quantified in different manners [5], [26],
[29]. In the scope of this paper, we adopt the metric unfairness
defined in [5] for the evaluation since it is widely used in
computer architecture studies concentrating on multiprogram
scenarios. A smaller unfairness value implies better balance
among the involved applications. The following expressions
give the calculation of employed metrics:

Speedup of HP application Speedup =
PerfQoS

Perfbaseline

Weighted Speedup Wspeedup =

N−1∑

i=0

PerfQoS
i

Perfbaseline
i

Unfairness UF =
max(S0, S1, . . . , SN−1)

min(S0, S1, . . . , SN−1)

where Si =
PerfQoS

i

Perfbaseline
i

.

In these expressions, N refers to the total number of ap-
plications running on the system in concurrence and Perf is
interpreted by the execution time. Note that, in this paper, we
allow multiple parallel applications to simultaneously execute.
The notions Perfbaseline and PerfQoS, respectively indicate
the performance of a program under a baseline configuration
without QoS mechanism and that with a QoS policy involved.
In addition, Perfbaseline is measured as the performance of an
application executing on a dedicated small core.

B. QoS Policies

1) Homogeneous-Mapping Policies: The QoS policies pro-
posed in this paper are classified into two categories based
on the types of cores assigned to the HP application. The
first group of policies is defined as the homogeneous-mapping
policies with which a number of identical cores are reserved for
the HP program. This includes assigning either a group of big
cores or multiple small cores to that program.

Assigning an amount of big cores to the HP application is
more straightforward to understand since this guarantees supe-
rior performance boost for the HP program in most scenarios,
satisfying the primary QoS goal of this paper. We illustrate
such a policy in Fig. 4(a). However, this may easily lead to
unfairness among programs when LP applications manifest
large performance degradation on small cores. In order to avoid
unacceptable slowdown for LP programs in practical circum-
stances, it is necessary to introduce heterogeneous-mapping
policies that assign programs to hybrid cores.

Fig. 4. QoS-aware core-mapping strategies. (a) Homogeneous mapping
(big core). (b) Heterogeneous mapping.

2) Heterogeneous-Mapping Policies: Heterogeneous-
mapping policies correspond to the schemes that reserve a
mixture of cores with diverse computing capability to the HP
application. The LP programs are executed on the remaining
available processors. Such strategies are intuitively effective to
evade the dilemma that might be encountered in homogeneous-
mapping policies. Specifically, if the high application is granted
most big cores, LP programs are thereby confined on the small
cores, resulting in unacceptable performance degradation and
potential throughput decrease. On the opposite, running the HP
application on small cores may fail to reach the desired speedup
and thus violates the first QoS requirement. Heterogeneous-
mapping policies provide us a solution to effectively utilize
the diversity among processors and achieve better balance
between the HP and LP applications. We illustrate a possible
core assignment falling into this category in Fig. 4(b).

The proposed homogeneous- and heterogeneous-mapping
policies both comply with the principle of resource dedication
by reserving a set of cores for the HP application. We also pro-
pose a partial-dedicated policy that breaks this law by allowing
part of the processors to be shared among all programs. More
specifically, the HP application is executed on a combination of
dedicated and shared cores, whereas the LP programs running
on the shared ones and other available cores.

3) QoS Policies: The specific QoS policies that are evaluated
on the QuickIA platform are as follows:

1. Big + Big (BB): reserving two big cores to execute the
HP application. The LP applications run on the two Atom
cores.

2. Small + Small (SS): running the HP application on two
small cores and LP applications on all big cores. This
policy together with BB belongs to the homogeneous-
mapping category.

3. Big + Small (BS): assigning a big and a small core to run
the HP applications. All LP programs contend for the
remaining processors. This is a heterogeneous-mapping
policy.

4. Big + Small + Small (BSS): giving an additional small
processor to the HP application on the basis of BS. LP
applications run the remaining big core. BSS falls to
heterogeneous-mapping classification as well.
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5. All for HP (BBSS_BS): allowing the HP application to
use all four cores on the platform, whereas the back-
ground programs use half of the processors (i.e., a big
and a small core, corresponding to the suffix BS). Note
that this is a partial-dedicated policy.

6. Memory bandwidth (Mem_BW): This is a policy de-
rived from an existing QoS management strategy for mul-
tisocket systems where significant contention on memory
subsystem is present [24]. We extend this approach and
apply it to our heterogeneous CMP platform for compar-
ison. Recall the platform description given in Section II.
Since there is no last-level cache shared between the big
and small processors, the main resource under contention
on QuickIA is the off-chip memory bandwidth. There-
fore, we define the following QoS policy. We monitor
the off-chip memory access requests initiated by each
program during the execution. At the end of an interval,
we compare the number of memory accesses (i.e., off-
chip bandwidth requirement) of all programs and migrate
the most memory-intensive one to the Atom processor,
aiming to slowing down its memory request issue rate.
By doing so, we avoid a single program dominating the
off-chip bandwidth; thus, other applications also get a
fair share of the resource under contention. Note that this
approach is designed to optimize the system throughput.
In addition, note that the interval length is set to 5 ms,
which is in the range of the typical Linux scheduler time
slice [25]. We consider this QoS policy as one of the
representative and optimal stat-of-art QoS management
schemes and compare it with our proposed strategies.

The performance of each application under all QoS policies
(PerfQoS

i ) is normalized to that when it is running with an
Atom core alone (Perfbaseline

i ). Note that our QoS evaluation
is conducted on an assumption that approximate features of
programs which are about to execute are already known. This
is fairly reasonable for many real parallel applications such as
banking transactions. From this perspective, all proposed poli-
cies can be classified into static policies because the task-to-core
mapping of a program is permanently set when it is ready to
execute. Nevertheless, we believe that our observations on the
interactions between mapping strategies and QoS results also
hold in other scenarios. Dynamic policies where the core affini-
tization can be adjusted at runtime are left as our future work.

Note that we apply all these combinations to parallel appli-
cations, whereas for single-threaded multiprogrammed appli-
cations, we only experiment with reserving one big core or one
small core for the HP application. For domain-specific applica-
tion, we divide the four cores into two groups and let each ap-
plication map onto one of them, i.e., each with dedicated cores.

IV. QOS EVALUATION

A. Parsec Application

1) General Picture: We start our analysis by comparing the
performance of PARSEC benchmarks between running on the
small and big cores. This provides a general picture of charac-
teristics of the program collection, with which we can choose
the most suitable QoS policies in different circumstances.
Fig. 5 shows the speedup of all applications running on a Xeon
processor over the execution on an Atom processor. Note that in

Fig. 5. Relative performance between a big and a small Core.

Fig. 6. Two performance scaling trends. (1) anneal favoring more cores
(2) blackscholes favoring big cores.

both cases, each program is launched with 4 threads. As can be
observed, the relative performance of these programs between
the big and small cores ranges from 1.1× to 3.6×. Applications
such as canneal, which generate a large amount of off-chip
memory traffic obtain quite limited performance gain from
the Xeon processor. On the other hand, programs including
blackscholes and bodytrack contain substantial floating-point
operations, thus running them on a Xeon processor can sig-
nificantly improve the performance. According to the relative
performance, we approximately classify all programs into three
categories as marked in the figure: Type-I programs (T-I),
which demonstrate moderate performance ratio (1.1×–2.3×),
Type-III programs (T-III), which obtain fairly impressive per-
formance improvement on the big core (>3×), and Type-II
programs (T-II) with relative performance in-between them.

Aside from the sensitivity to core types, the performance
scaling with varying number of cores is another important
feature for parallel applications. We compare the execution
time of all applications while running on the following core
combinations: 1S, 1B, 2S, 2B, 1B1S, 1B2S, and 2B2S. The
notation 1S indicates that a small core is used to execute the
benchmark. Similar explanations apply to other configurations.
Note that these processor mixtures are selected in compliance
with two principles: 1) the total number of available cores is
gradually increased; and 2) both heterogeneous and homoge-
neous configurations are considered.

Fig. 6 demonstrates the performance variation of two repre-
sentative programs when executed on the designated core com-
binations. For program blackscholes, the performance heavily
fluctuates when the underlying hardware is changed. However,
it is straightforward to observe that including big cores is
more decisive to the performance improvement compared with
increasing the number of cores. This indicates that for programs
exhibiting similar behavior as blackscholes, the inclusion of big
cores is a key factor to boost the performance. On the contrary,
canneal is more sensitive to the number of cores used for
execution. As can be seen, its execution time keeps decreasing
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Fig. 7. Execution behaviors when a Type-I program has HP (HP_T-I). (a) Speedup of the HP program. (b) System performance. (c) Fairness.

as extra processors is granted irrespective of the core types.
In general, it is rational to conclude that using more cores is
more effective to increase the performance for applications such
as canneal. This essentially matches the information conveyed
by Fig. 5 that T-III programs favor big processors for faster
execution, whereas T-I programs might prefer more cores for
higher TLP.

2) Evaluation Results: To perform a comprehensive eval-
uation of the proposed QoS policies, we should consider as
many execution scenarios as possible. In this paper, we mimic
different circumstances by combining applications with distinc-
tive scaling behaviors and running these combinations on the
underlying platform.

Recall that we classify all programs into three categories
based on their performance ratios between big and small cores.
We select a program from each category to be the HP applica-
tion and coexecute it with LP workloads from different classifi-
cations. To give an example, let us assume canneal is chosen to
be the HP application. Such execution scenarios are referred
as HP_T-I because canneal is a typical Type-I program, as
shown in Fig. 5. Accordingly, T-I+T-II and T-I+T-III indicate
the scenarios where the LP applications are positioned in the
middle and right segment of the curve in Fig. 5, respectively.
All of these three situations belong to the HP_T-I category, but
implying distinctive execution environments. By doing this, we
cover most circumstances that might be encountered in practice.

HP_T-I: We first concentrate on the HP_T-I execution sce-
narios. Fig. 7(a) demonstrates the speedup of the HP applica-
tion over the baseline (i.e., the 1S case) when different QoS
schemes are applied. As we expect, employing more dedicated
processors (i.e., BSS) results in higher performance improve-
ment for the HP application regardless of the characteristics
of other programs running on the system. Take the T-I+T-I
combination as an example. The BSS policy delivers 2.1×
speedup for the HP program, whereas BB and SS, respectively
increase the performance by 1.9× and 1.8×. We have described
the reason in Section III-B that exploring TLP is more effec-
tive to boost the performance of T-I programs. However, the
BBSS_BS case is an exception since the performance gain
from the execution on four cores (i.e., BBSS) is similar to that
from a dual-core running (i.e., SS/BS), but apparently worse
than the situation on three cores (i.e., BSS). This justifies the
importance of resource dedication when fast execution of the
HP application is a primary QoS goal. In the BBSS_BS case, a
big core and a small core are shared among all four programs
and tend to be persistently busy during the execution, thus the
OS scheduler is likely to assign the HP program to its dedicated

cores on which only one application is running, in order to
achieve a balanced load across the system. The speedup of the
HP application delivered by the Mem_bw scheme is also in the
range of 1.7×–2.1×. This is close to the performance when
other competing QoS schemes are employed. The reason is that
a T-I application is relatively less sensitive to the underlying
processor type; thus, a core migration is unlikely to introduce
noticeable performance variation. However, an important issue
that deserves to notice is the impact of migration overhead.
As we will demonstrate shortly, the overhead can result in
significant performance degradation in particular contexts.

The system performance achieved with each policy is
graphed in Fig. 7(b). Recall that the performance of each ap-
plication is normalized to that when it is running on a dedicated
Atom core. As can be observed, SS is the optimal among all
QoS strategies from the perspective of overall performance.
For example, the SS policy delivers a weighted speedup of
3.16 for the T-I+T-III combination while employing BB, BS,
BSS, and BBSS_BS, respectively lead to system performance
2.67, 2.92, 2.45, and 2.81. It is no surprise to see that the BSS
scheme tends to largely degrade the system performance since
all LP applications are confined on a single processor, resulting
in slow executions due to severe resource contention. The BS
scheme is more interesting in that it leads to comparable per-
formance to SS in the T-I+T-I scenario, but significantly falling
behind the same competitor in both T-I+T-III and T-I+T-II
contexts. This is caused by the different performance scaling
features of those applications. T-II and T-III programs are
more sensitive to the core types and achieve much higher
execution rates on a big core. As a consequence, decreasing
the number of available Xeon cores (i.e., from SS to BS)
for LP programs significantly prolong their execution time,
thus leading to lower system performance in both T-I+T-II
and T-I+T-III scenarios. In contrast, T-I programs have small
performance ratio between big and small cores. Therefore, the
global performance delivered by SS and BS is fairly close when
the LP programs belong to the T-I category. Now, let us shift our
concentration to the Mem_bw scheme. As demonstrated in the
graph, this scheme is not showing notable benefit on boosting
system throughput compared with our proposed policies. This
is surprising since the Mem_bw strategy is designed from the
throughput optimization perspective. A key reason of the dis-
crepancy is the migration overhead introduced by this approach.
This particularly impacts the performance of memory-intensive
applications (e.g., in the T-I + T-I scenario) because there are a
large amount of cache rewarming after migration. As a conse-
quence, the overall throughput benefit is largely mitigated.
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Fig. 8. Execution behaviors when a Type-III program (HP_T-III) or a Type-II program (HP_T-II) has HP. (a) Speedup of the HP program. (b) System performance.

Fig. 7(c) plots the fairness achieved with each mapping
policy in the HP_T-I scenario. As can be noted, in all the three
categories, the SS scheme leads to remarkably lower unfair-
ness values compared with other policies. This is essentially
determined by the slowdown of the LP applications because
the HP programs (i.e., T-I) are not sensitive to the core type.
As described earlier, the performance of individual applications
tend to be largely degraded due to severe resource contention.
This is exacerbated when all the shared cores are small ones
(i.e., in the BB mode). In this configuration, the slowdown of
the LP applications is quite significant, resulting in unreason-
ably high unfairness value. On the other hand, by employing
the SS scheme, all the powerful big cores are reserved for the
LP applications, which is beneficial to improving the perfor-
mance of the programs running on the shared cores. Therefore,
the SS mapping policy results in the most attractive balance
among all involved applications. The fairness associated with
the Mem_bw scheme is fairly close to the SS scheme. This is
because the HP T-I application is likely to be frequently sched-
uled on the Atom processor due to its high memory bandwidth
requirement. In general, the evaluation results demonstrate that
using a number of small cores to run the HP application in
HP_T-I scenario is the most preferable strategy in a QoS-aware
system, because it is capable of effectively accelerating the HP
program while resulting in a good tradeoff to LP programs.

HP_T-III and HP_T-II: We now shift our focus to circum-
stances where a T-III application is assigned higher priority. The
speedup of the HP program is shown in Fig. 8(a). We observe
that the BB policy always delivers the optimal performance for
the HP application in all evaluated combinations. Specifically, 2
dedicated big cores are able to accelerate the HP application by
4.68×, 4.82×, 4.31×, respectively for T-III+T-I, T-III+T-III,
and T-III+T-II over the baseline case. This is fairly reason-
able due to the intrinsic characteristics of T-III programs.
Heterogeneous-mapping policies (i.e., BS/BSS) outperform the
SS strategy by providing intermediate speedup (2×– 4×) to the
HP program. For the BBSS_BS scheme, it leads to a slightly
better performance than the BS scheme. This trend is similar
to the observation made in Fig. 7(a), indicating the significance
of dedicated processors for HP programs. On the other aspect,
the speedup of the HP application obtained from the Mem_bw
scheme largely depends on the behavior of its corunners. Let us
focus on the HP_T-III scenario. As can be observed from the
figure, the acceleration is acceptable when the LP jobs are from
the T-I category (i.e., T-III+T-I). This is reasonable because
that a T-I application usually initiates a large amount of off-
chip memory requests and is likely to be assigned to the Atom

Fig. 9. Execution fairness for HP_T-III and HP_T-II scenarios.

processor, leaving the HP job to execute on the Xeon core and
benefit from its powerful computing capability. Note that in
this scenario, the performance improvement in Mem_bw still
largely trails the BB scheme. This is mainly due to the resource
contention on the big core because it is not a dedicated resource.
On the contrary, when all applications demonstrate similar
memory behavior (T-III+T-III/T-II), the HP job is highly likely
to be scheduled on the small core if its off-chip memory
accesses are slightly higher than its corunners. In this case, its
performance will be close to that delivered by the SS scheme.

The system performance is shown in Fig. 8(b). We observe
that for the T-III+T-I combination, the BB policy outperforms
other schemes by delivering the system performance up to 6.74.
In T-III+T-III and T-III+T-II scenarios, however, BB trails the
SS and BS strategies as it results in relatively lower global
performance. For example, the system performance under the
BS scheme is around 6.58 while adopting BB leads to a perfor-
mance not exceeding 6.01 in the T-III+T-III circumstance. This
observation justifies our induction described in Section III-B
that reserving many big cores for an individual application
(i.e., the HP one) is beneficial to boost its performance without
heavily degrading the performance of other programs if they are
not sensitive to core types; on the contrary, when LP programs
exhibit large slowdown on small cores, the HP program is
virtually accelerated at the expense of significant performance
degradation of LP applications.

We demonstrate the execution fairness among programs for
the HP_T-III scenario in Fig. 9. As can be observed from
the diagram, heterogeneous-mapping policies briefly lead to
more balanced performance across the programs than the
homogeneous-mapping schemes because the latter ones tend to
cause unreasonable disparity between the execution speed of in-
dividual programs. For example, when a T-III+T-III application
mixture execute with the BB strategy, all LP programs demon-
strate significant performance degradation on the shared small
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cores. Meanwhile, the HP application enjoys impressive per-
formance boost as it runs on dedicated big cores, implying an
unfair execution pattern. On the contrary, when both HP and
LP programs are assigned a mixture of big and small cores,
the execution disparity can be effectively alleviated. Similar to
the trend shown in Fig. 7(a), the execution fairness resulted
from the Mem_bw scheme is sensitive to the behaviors of the
corunners. For example, in the T-III+T-III scenario, we observe
large bias among the performance of different applications.
Since a program may execute on the Atom processor for rel-
atively long time, its performance is largely degraded and leads
to unbalanced execution rate. In general, by comprehensively
evaluating these QoS goals, it is rational for us to conclude
that an appropriate heterogeneous-mapping policy is the most
preferable scheme in the HP_T-III circumstance.

3) Performance Optimization on Core Combinations: For a
multithreaded application, choosing an appropriate paralleliza-
tion model is one of the most important considerations since it
largely determines the program scalability and other execution
behaviors. Recall the description listed in Table I, the selected
PARSEC benchmarks generally fall into two categories with
respect to the parallelization model [2], namely data parallel
and pipeline. In this situation, understanding the impact of
parallelization model on performance variation stands as a key
point to further improve program performance and enhance the
QoS management at a finer granularity. Here, we present simple
yet effective approaches to optimize typical data-parallel and
pipeline parallel applications. As we will demonstrate shortly,
these techniques are capable of efficiently utilizing assigned
processors for heterogeneous-mapping policies.

Optimizing data-parallel application: Our first study aims to
optimize the performance of data-parallel programs. We choose
blackscholes as an example. Blackscholes is an important ap-
plication in the high performance computing (HPC) domain.
It is derived from a financial analysis problem and calculates
the prices for a portfolio with the well-known Black-Scholes
partial differential equation (PDE) [3]. The portfolio is denoted
by a large amount of options which are divided into several
work units equal to the number of spawned threads. As a data-
parallel application, the process of each thread in blackscholes
is completely parallel.

Our investigation starts from demystifying the surprising
phenomenon observed in Fig. 6 that using a big and a small
core results in even worse performance than engaging an ex-
clusive big core when executing blackscholes. To understand
the program execution behaviors, we use emon (Intel perfor-
mance monitoring tool) [1] to record the CPU utilizations.
Fig. 10 graphs the utilizations when blackscholes is executing
on a big and a small core. As can be seen, both cores enter the
parallel phase to process their own threads after the initializa-
tion stage. The Xeon processor completes its tasks much faster
than the Atom cores; however, the program cannot proceed to
the completion stage until the slow threads running on Atom
finish the computations. In other words, threads assigned to
Atom cores are the bottleneck of the overall performance. By
digging into the source code, we find that all options are evenly
distributed across worker threads, resulting in much longer
execution time on Atom due to its low computation capability.

Employing an imbalanced workload distribution policy [27]
is a simple solution to increase the utilization of big cores.

Fig. 10. CPU utilizations of blackscholes running with 1B1S.

TABLE V
WORKLOAD DISTRIBUTIONS FOR Blackscholes

Fig. 11. Performance variation of blackscholes with different work load
distributions.

We thereby modify the default task division and test four
different assignments, as listed in Table V. Note that the total
number of options is 10 000 000. In addition, note that we
always affinitize thread 0 and thread 1 on the small core while
mapping other two threads to the big core. The variation of
the execution time is shown in Fig. 11. We plot both the time
spent in executing the parallel phase (ROI) as well as the total
time. As can be observed, the execution time is decreasing as
we gradually increase the work share given to big cores; the
best performance is achieved when options are distributed as
suggested by configuration 3, where the work share given to
big cores is four times of that assigned to small cores.

Optimizing pipeline application: The second parallelization
model is pipeline. With this paradigm, each stage takes as input
the outcome of its previous stage, making the entire application
proceed as a pipeline. Pipeline model is another important par-
allelization pattern in contemporary multithreaded applications
since complete data parallelism might be hard to achieve in
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TABLE VI
EXECUTION INFORMATION OF DEDUP WITH DIFFERENT STAGE PINNING

some applications. In this case, it will be much easier to decou-
ple the entire computation into multiple modules and parallelize
each individual module. Dedup and x264 from the PARSEC
benchmark suite adopt this model. We choose dedup as an
example to illustrate the optimization for pipelined parallel
applications. Dedup implements a two-level data stream com-
pression algorithm consisting of global compression and local
compression. The main computation work is decomposed into
five modules, corresponding to five pipeline stages. In particu-
lar, the first and the last stage are, respectively responsible for
breaking up the data and assembling the output stream, whereas
the intermediate three stages perform the actual compression of
data chunks. Only the intermediate three stages are parallelized
and each stage has its dedicated thread pool. In addition, the
number of threads spawned in each stage is identical.

Since each stage performs distinctive job and inclines to cost
different time, we employ a stage-to-core mapping approach,
which is similar to the scheme used in [27], to understand the
execution behaviors. We assume a 1B1S core reservation and
test a number of configurations, as listed in Table VI, in order
to evaluate how the affinity will impact the performance. We list
the time spent on each pipeline stage in order to derive the bot-
tleneck of the parallel phase (ROI) for all tested configurations.
As can be observed, the third parallel stage remains the ROI
bottleneck irrespective of the mapping scheme. In other word,
although the execution time of all parallel modules varies across
configurations, the third parallel stage always takes the longest
time and determines the performance of the entire parallel
phase. Due to this reason, the third parallel stage needs to be
executed on big cores to achieve the optimal performance if
hybrid cores are granted by the QoS policy (e.g., BS or BSS).

The impact of the sequential phase: While the parallel exe-
cution phase encompasses the most important and interesting
parts of a multithreaded application, the program serial por-
tion also plays a role in deciding its overall performance. As
indicated by Amdahl’s law, the maximal performance gain of
a program running on a multiprocessor system over a unipro-
cessor system is essentially determined by the length of its
serial portion. This implies that the time spent on the sequential
part should be minimized. Note that in the scope of this paper,
the serial portion is specialized to program initiation and final-
ization. With this kept in mind, we shall execute the program
stages that are before and after the parallel phase on a big core.

Putting all together: Putting all of these together, we rerun
blackscholes and dedup with a big and a small core. We com-
pare the resultant performance to that of previous executions.
As can be seen from Fig. 12, using a big and a small core with
finer-granularity control is obviously faster than the execution
on a single big core and nonoptimal 1B1S combination for both
programs. Specifically, the optimized configuration (1B1S_opt)

Fig. 12. Performance comparison between default execution and execution
with finer-granularity control.

accelerates blackscholes and dedup by 20% and 9.8% over
the single big core execution (1B), respectively. In addition,
we revisit the heterogeneous-mapping policies and propose
BS_smart and BSS_smart policies, in which those optimization
techniques are applied to the HP program. The comparison
between the default and smart policies are demonstrated in
Fig. 13. As can be observed, the smart heterogeneous-mapping
schemes constantly outperform the default ones by delivering
higher speedup for the HP program and better system per-
formance. We also note that introducing the finer-granularity
optimization does not influence our selection on QoS poli-
cies from the fairness perspective. In specific, the smart
heterogeneous-mapping schemes lead to more reasonable fair-
ness value than the default schemes, but still trailing the SS
strategy in the HP_T-I scenario. For the HP_T-II and HP_T-III
combinations, the BS_smart policy further reduces the unfair-
ness among programs, thus appearing as the most promising
scheme. In addition, we include the results associated with the
Mem_bw scheme in the graph as well to make the comparison
results more comprehensive. Not-surprisingly, our enhanced
policy outperforms Mem_bw on all QoS goals in study.

B. Multiprogrammed Application

As described in the previous section, we use SPEC2006
workload for multiprogrammed applications. Fig. 14 shows the
performance speedup of running on Xeon core versus on Atom
core. We can see that all these workloads will benefit from big
core, with various speedup from 1.5× up to 4.5×. In general,
most memory intensive workloads such as milc and astar get
less performance speedup than those computation intensive
workloads such as games and zeusmp. When multiple applica-
tions are running simultaneously on the heterogeneous architec-
ture, it is uncertain which application will get the big core and
which one gets the small core. In addition, even with small core,
it could be shared between two applications if the number of ap-
plications is more than the number of cores available. To show-
case the benefit of QoS policy, we select seven computation
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Fig. 13. Comparison between default policies and smart policies. (a) Speedup of HP program. (b) System performance. (c) Execution fairness.

Fig. 14. Speedup of SPEC2006 running on big core versus on small core.

Fig. 15. Slowdown of sphinx3 running with group 1 and group 2 compared
with running alone

intensive workloads as group1 and a mix of three computation
and four memory intensive workloads as group 2. We choose
sphinx3 to run together with these two groups, respectively and
show its performance without QoS policy and with QoS policy.
As shown in Fig. 15, the base case is when sphinx3 shares all
four cores with the other seven workloads. The second and third
case indicated by “small” and “big” is when sphinx3 is treated

Fig. 16. Speedup of bodytrack compared with running on one small core with
various configurations.

as HP and run on the dedicated small and big core, respectively.
The y-axis shows the slowdown compared with the case where
it is running alone without competition with other applications.
We notice that sphinx3 suffers from fierce contention, whereas
it is coexecuting with other applications in a QoS-unaware
environment, leading to significant performance degradation.
Specifically, when running with computation intensive work-
loads (i.e., group 1), its slowdown is more than four times;
whereas the competitor is a mixture of computation-intensive
and memory-intensive applications (i.e., group 2), however, the
execution time of sphinx3 is prolonged by up to 15X due to the
resource contention. In this situation, involving an appropriate
QoS policy is capable of providing impressive benefit for the
HP application and reducing its performance loss.

C. Domain-Specific Application

We choose sphinx3 from SPEC2006 and bodytrack from
PARSEC for concurrent execution, in order to mimic the
workload for perceptual computing domain. Fig. 16 shows



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: QoS MANAGEMENT ON HETEROGENEOUS ARCHITECTURE FOR APPLICATIONS 11

Fig. 17. Execution results of running two domain-specific applications simul-
taneously with four QoS policies.

the speedup of running bodytrack on various configurations
compared with when it is running on one small core. As can be
observed, using more cores is able to improve its performance;
moreover, big cores are able to deliver more significant benefit
compared with the small cores. For example, running bodytrack
on two small cores doubles the performance, but it is not as
good as running on one big core. Essentially this indicates that
bodytrack prefers big cores. Fig. 17 shows the result of running
these two applications simultaneously, whereas four different
QoS policies are employed. Option1 is to run sphinx3 on a
small core; alternatively, option2 is to run sphinx3 on a big
core. Option 3 refers to our proposed heterogeneous-mapping
policy with finer-granularity optimization for bodytrack. In this
particular scenario, we decide to assign sphnix3 on the big core
based on the result of option 2. Therefore, option 3 is essentially
BSS_smart as described in Section IV-A. Finally, with option 4,
the Mem_bw scheme is utilized. In all cases, we let bodytrack
use the rest cores without sharing any core with sphinx3. The
y-axis on the left shows the slowdown compared with the op-
timal execution configuration: running on big core for sphinx3
and running on all four cores for bodytrack. The y-axis on the
right shows the system throughput and execution unfairness.
The figure clearly shows the tradeoff between the QoS goals:
the variation trend of unfairness is approximately opposite to
that of the system throughput, and option 3 delivers the highest
throughput because it results in the most balanced execution.
This is consistent with our observation made in Section IV.
Note that with option 3, the performance of bodytrack is fairly
close to its performance with four cores, although it is assigned
three cores by the policy. This is not surprising due to the finer-
granularity optimization.

D. Summary

Fig. 18 shows the average speedup of SPEC2006/PARSEC/
Domain-Specific workloads considered in this paper running on
one big core versus on one small core. Compared × SPEC2006
programs, PARSEC benchmark gain relatively less benefit from
the big core, but by nature they will benefit from more cores.
For the domain-specific application, both application benefit
from the big core at almost the same level. This indicates that

Fig. 18. Average speedup of SPEC2006/PARSEC/Domain-Specific bench-
marks running on one big core versus on one small core.

appropriate QoS policies need to be carefully applied to meet
the user requirement.

V. RELATED WORK

In recent years, researchers have introduced the QoS problem
into the computer architecture area with special concentration
on the management of shared resources. Iyer [6] describes a
framework to enable QoS in shared caches on CMP platforms.
The proposed framework implements QoS enforcement on
shared cache via selective cache allocation and dynamic cache
partitioning to meet the performance requirement for applica-
tions with varying locality properties and memory sensitivities.
In [7], the authors further extend the work by proposing a group
of specific policies and architectural sup-port to appropriately
allocate the shared cache and memory bandwidth, in order to
meet preset QoS goals on CMP systems. Kannan et al. [8]
propose a similar mechanism for QoS management in CMPs.
Luo et al. [12] focus on balancing the execution throughput
and fairness on SMT processors, and propose the fetch gating
to achieve the desired goal. Qureshi and Patt [17] develop a
utility-based cache partitioning technique to improve the sys-
tem performance when multiple programs are simultaneously
executed. The fairness via resource throttling is elaborated in
[5]. Mutlu [13] propose a technique for parallelism-aware batch
scheduling by designing a shared DRAM controller which
provides QoS for threads.

There are also studies discussing thread affinities. Klug et al.
introduce a technique to determine the optimal thread pinning
for an application at runtime based on performance monitoring
events information [10]. The optimization of critical section
execution on heterogeneous system is studied by Suleman et al.
[21]. Poovey and others propose dynamic thread mapping on
asymmetric CMPs based on parallelization patterns [15].

Our work deviates from the aforementioned studies in that
we first comprehensively characterize the execution behaviors
of different types of parallel applications running on a real het-
erogeneous platform, and then propose a set of simple yet effec-
tive QoS polices which exploit the heterogeneity across cores.
In addition, compared with our previous work [28], this study
extends the scope of the application to multiprogrammed and
domain-specific workloads, thus making the evaluation more
comprehensive. By identifying the most appropriate stage-
to-core mapping, the proposed schemes are able to provide
expected performance for concurrent-running applications with
different priorities.
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VI. CONCLUSION

As heterogeneous CMP gradually become an important trend
in the next decade and beyond, providing QoS for programs
running on a heterogeneous platform should be carefully con-
sidered. While prior QoS studies on traditional homogeneous
system mainly concentrate on the management of shared re-
sources including cache and memory bandwidth, task-to-core
mapping plays a role while incorporating QoS with hetero-
geneous CMPs. This is particularly important when multi-
ple single-threaded and parallel programs are simultaneously
running on the system. To address this problem, our paper
starts from profiling a wide spectrum of parallel applications
and typical domain-specific programs on a real heterogeneous
prototype, then proposes a series of policies for QoS control
via appropriate thread mapping in different scenarios. The
evaluation results show that the described policies effectively
accelerate high priority the program while delivering acceptable
global throughput and fairness.
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