
Accelerating GPU Hardware Transactional Memory with
Snapshot Isolation

Sui Chen Lu Peng Samuel Irving
Division of Electrical & Computer Engineering

Louisiana State University

ABSTRACT
Snapshot Isolation (SI) is an established model in the database com-
munity, which permits write-read conflicts to pass and aborts trans-
actions only on write-write conflicts. With the Write Skew anomaly
correctly eliminated, SI can reduce the occurrence of aborts, save
the work done by transactions, and greatly benefit long transactions
involving complex data structures.

GPUs are evolving towards a general-purpose computing device
with growing support for irregular workloads, including transactional
memory. The usage of snapshot isolation on transactional memory
has proven to be greatly beneficial for performance. In this paper, we
propose a multi-versioned memory subsystem for hardware-based
transactional memory on the GPU, with a method for eliminating
the Write Skew anomaly on the fly, and finally incorporate Snapshot
Isolation with this system.

The results show that snapshot isolation can effectively boost the
performance of dynamically sized data structures such as linked
lists, binary trees and red-black trees, sometimes by as much as
4.5x, which results in improved overall performance of benchmarks
utilizing these data structures.

CCS CONCEPTS
• Computer systems organization → Single instruction, multi-
ple data; • Computing methodologies → Concurrent computing
methodologies;

KEYWORDS
GPU, Transactional Memory, Snapshot Isolation

ACM Reference format:
Sui Chen Lu Peng Samuel Irving Division of Electrical & Computer
Engineering Louisiana State University . 2017. Accelerating GPU Hardware
Transactional Memory with Snapshot Isolation. In Proceedings of ISCA ’17,
Toronto, ON, Canada, June 24-28, 2017, 13 pages.
https://doi.org/10.1145/3079856.3080204

1 INTRODUCTION
Transactional Memory (TM) is a programming model proposed
by Herlihy and Moss [10] that enables a series of read and write

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080204

operations to complete atomically similar to an atomic compare-
and-swap command. The operations are encapsulated in transactions
that will either succeed and commit to the data store, or abort and
restart. A transaction must be aborted if it can result in inconsistent
state resulting from concurrent reads/writes by other transactions
into the system. Many TM system proposals followed, ranging from
hardware to software and hardware-software co-designs [11, 12, 27,
28, 30]. When multi-core and many-core processors emerged, people
began to focus on scalability of TM systems and inter-operation of
different TM systems as well [23, 28, 31]. Transactional Memory has
been implemented in consumer products such as the Intel Haswell
and its successors[14].

The GPU is a throughput-oriented computing device character-
ized by large arithmetic density, high memory bandwidth and a
high degree of parallelism, and is continually evolving towards a
general-purpose computing device, with growing support for irreg-
ular workloads [3] and data structures [22] that are traditionally
non-GPU oriented. Recently, hardware-based transactional memory
systems for GPUs have been proposed [8, 9], offering performance
comparable to fine-grained locking that are as easy to use as coarse-
grained locking, making it a very competitive tool for exploiting the
full potential of GPUs.

Most existing TM systems implement the 2-Phase-Locking (2PL)
concurrency control mechanism, which aborts transactions on write-
read conflicts and write-write conflicts. In comparison, Snapshot
Isolation (SI) is another mechanism that only aborts on write-write
conflicts and can greatly improve performance. However, at the same
time SI permits the Write Skew anomaly, which must be addressed
to obtain correct outputs.

In this paper, we propose applying SI to a GPU-based hardware
transactional memory system in order to achieve better performance
for complex transactions involving dynamically sized data structures
such as the linked list and search trees, and a solution for eliminat-
ing the Write Skew anomaly on the fly. Specifically, we make the
following contributions:

• We devise a versioned memory system for quickly creating
versions and enabling Snapshot Isolation on the GPU;

• We propose a method for detecting dependency loops on-
the-fly and eliminating the Write Skew anomaly that can
scale to hundreds of concurrent transactions on the GPU;

• We demonstrate that the proposed SI-based hardware TM
on the GPU brings speedup over the baseline system that
aborts on all read-write conflicts in applications that utilize
dynamically-sized data structures.

The rest of the paper is organized as follows. Section 2 introduces
related background. Section 3 describes the organization and oper-
ation of the multi-versioned memory system. Section 4 describes

https://doi.org/10.1145/3079856.3080204
https://doi.org/10.1145/3079856.3080204

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Chen et al

the mechanism for detecting and eliminating the Write Skew anom-
aly. Section 5 discusses how the proposed changes interact with the
existing GPU architecture. Sections 6 and 7 discuss experimental
results and we list related works in Section 8 and conclude the paper
in Section 9.

2 BACKGROUND
2.1 Transactional Memory and Snapshot Isolation
A TM system usually provides a certain isolation level by implement-
ing one concurrency control mechanism. The purpose is to make
sure concurrent read-writes always result in valid system states. This
is done by detecting and resolving conflicts, which is a condition
when when two or more transactions access one data item simultane-
ously and at least one of them is a write. A frequently-used conflict
resolution method is to abort all but one transactions in a read-write
or write-write conflict. With this mechanism, concurrent accesses
will be split into disjoint sets with no intersections in between. This
is usually used with the 2-Phase-Locking concurrency mechanism,
with the first phase called the “expanding phase”, when transactions
compete for and acquire locks, and the second phase called the
“shrinking phase”, when locks are released.

Figure 1: Example of unnecessary aborts in a linked list.

This conflict resolution mechanism is pessimistic in that it may
abort more transactions than what is necessary to maintain a consis-
tent program state. An example of why it can result in unnecessary
aborts can be seen from Figure 1: Transactions T1 and T2 attempt
to remove nodes C and F from a linked list. Both transactions need
first iterate through the list to find the element to be removed and its
neighbors and then change the list. In this example, T1 modifies B in
order to remove C from the list, but T2 has read node B when it was
looking for node F, so this pair is considered to be in conflict and
one of them has to be aborted. But this abort is not necessary since
the outcome of T1 and T2 both committing is still a valid linked list
with nodes C and F removed.

The pessimistic approach is one reason why transactional memory
systems sometimes run slower than fine-grained locking. In fine-
grained locking, the critical section can be made small enough to lock

only the most relevant data and block the smallest set of conflicting
transactions; the lock itself can also be acquired using the best
strategy. Using the same example in Figure 1, when T1 locks nodes
B,C and D and T2 locks E,F,G using fine-grained locking, the abort
can be avoided. However, fine-grained locking requires extra efforts,
for example, a lock-sorting algorithm to avoid live-locks and dead-
locks, so it is usually a much more difficult task than simply using
transactional memory.

In contrast, Snapshot Isolation (SI) [1] significantly differs from
2-Phase Locking, as it allows write-read conflicts to pass. SI makes
a guarantee that every transaction will see a consistent snapshot of
the entire system and it will successfully commit only if it doesn’t
conflict with any concurrent updates made during its life time. This
allows a transaction to commit its tentative changes in isolation,
without being affected by other transactions. In the basic SI protocol,
read operations will always complete and only write-write conflicts
will be aborted.

Figure 2: Types of conflicts between transaction pairs in some
GPU TM workloads (Write-write only conflict pairs do exist, but
their numbers are negligible.)

SI has the potential of greatly accelerating applications which
involve many transactions aborted by read-write conflicts. For exam-
ple, the breakdown of conflict types between temporally-overlapping
transaction pairs in some GPU programs is shown in in Figure 2.
From the figure it can be seen that transactional applications utilizing
data structures such as binary search trees, linked lists and red-black
trees contain a large portion of read-write only conflicts. These data
structures are dynamically sized and are much easier to implement
using TM than fine-grained locks.

However, Snapshot Isolation suffers from a well known problem
called the Write Skew anomaly. The problem is that transactions
produce correct results when running alone from their own snap-
shots can produce incorrect results when running together. This is a
result of SI not providing full serializability, and must be addressed
for an SI-based system to execute correctly and be useful. One
method to ensure correctness is to identify the cause of the anom-
alies, either manually or by static/dynamic analysis and modify the
application accordingly by introducing artificial locking or introduc-
ing write-write conflicts [2, 19]. There exist educational campaigns
for database users to make them aware of and be able to prevent the

Accelerating GPU Hardware Transactional Memory with Snapshot Isolation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Write Skew anomaly. One notable theoretical foundation to these
methods is types of dependency graphs, the Read Dependency Graph
[5], which represents the relative serialization order of transactions
that can create a system state equivalent to when transactions are
concurrently executed.

A recent application of Snapshot Isolation to transactional mem-
ory is found in the SI-TM system [18] running on the CPU. It
resolves the Write Skew anomaly through a trace-driven approach
[19]: transaction execution traces are generated during runtime to
form a Dynamic Dependency Graph (DDG) as defined by Fekete [5].
The DDG is collapsed into a Read Dependency Graph (RDG), with
edges in the RDG representing the dependency loops in DDG, and
vertices in the RDG representing the source code locations that gen-
erate them. The problem of eliminating dependency loops is solved
by choosing a set of the read operations (“dangerous reads”), con-
verting them into writes to introduce run-time write-write conflicts,
thus eliminating the Write Skew anomaly. As with many test-driven
approaches, the coverage of skew detection depends on the size
of the sampled runs. To catch all possible “dangerous reads”, a
large number of experiments may be required, which may limit the
usefulness of this approach under certain circumstances.

Recent developments in database [2] and coherence [29] have
demonstrated ways to eliminate cyclic read-write dependencies in
database systems and in memory dependency analysis. These works
have outlined the building block for preventing the Write Skew
Anomaly on-the-fly in a transactional memory system, thus saving
the user from having to obtain execution traces and manually fix
application source code.

3 VERSIONED MEMORY SUBSYSTEM
To meet the guarantee of Snapshot Isolation that transactions be able
to see their own snapshots in isolation, an address should be allowed
to map to multiple machine words, each of which being a version
(we use the terms “version” and “snapshot” interchangeably in this
paper.) This is similar to a version control system or a checkpointing
infrastructure, where new versions may be appended to reflect the
changes of the tracked word, and old versions are kept for access to
the word’s history. In terms of its semantics, a version is the previous
version combined with the changes between the two versions. In the
example shown in Figure 3, a linked list initially containing 7 nodes
could have 2 nodes removed, then one more node removed, with 4
nodes left in the end. After each batch of removals, the linked list
becomes a new version of itself, and any version itself is a valid
linked list. Versions are also commutative: In the example, Node
D is removed from Version 1, but may as well be removed from
Version 0; in either case, when all 3 nodes are removed, the result
will be Version 2. In this sense, a versioned memory system may be
implemented as a collection of full snapshots, or the combination of
snapshots and change sets. In our study, we choose the former, as
the quick row copy primitive makes it easier to create full snapshots
than to keep track of change sets.

Transactional memory systems serve as a mechanism to handle
conflicts, a result of accesses from different threads that overlap
both in space and time. This means there exist spatial and temporal
locality in such access patterns. The locality is more noticeable in
GPUs, because of the large number of concurrent threads, as well

Figure 3: Versions and rows in a subarray of a bank of DRAM.
A version may span (a) multiple subarrays and (b) multiple
rows. Versions track the evolution of data structures (shown in
(b)).

as the lock-step execution pattern of threads in a warp. On the other
hand, the high degree of parallelism also requires a high speed in
creating versions.

Because of this access pattern and the requirement, we identify
RowClone [26] as a promising building block for our versioned
memory system. RowClone exploits the internal organization of
DRAMs to copy multiple kilobytes of data referred to as “rows”
completely within memory, enabling fast creation of snapshots.

A DRAM can be thought of as a collection of rows, each many
kilobytes in size. The entire memory is divided into multiple banks
that can operate independently and each bank is made up of multiple
subarrays that have limited physical size to keep signal transmission
time short. A number of DRAM rows that belong to the same sub-
array are connected to a common sense amplifier which are able
to read and write the rows. By connecting multiple rows to the am-
plifier, data can be copied from one row to another, eliminating the
need to copy data through the processor, all at the granularity of
a row buffer, which is generally larger than cache lines. As such,
the row copy operation can reach large bandwidth with very small
energy consumption.

Although a “DRAM row” shares the same name as a “database
row”, a “DRAM row” is not a smallest atomic unit as a “database
row” is; the atomic unit in a transactional memory is usually a
machine word, and a DRAM row is treated as and managed as a
collection of many machine words. This suggests the granularity
of the RowClone operation (multiples of DRAM rows) is a bulk
operation rather than a fine-grained operation, and is more suitable
for copying whole snapshots than keeping fine-grained track of
change sets.

Given the RowClone mechanism we intend to use, the versioned
memory subsystem should do the following: 1) Layout the ver-
sions in a subarray-aware fashion such that the versions may be
created using row copy, 2) Fetch a specific version to service ac-
cesses quickly, 3) Manage the lifetime of versions by creating and

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Chen et al

recycling versions, and 4) Remap the memory such that accesses to
versioned/non-versioned regions works as expected.

Layout of versions Knowing that RowClone operates by copy-
ing between rows belonging to a same subarray and that version
management requires multiple copy operations, we allocate rows
that belong to the same subarray to the storage of versions, so that
the copy operations can be made fast.

A version may be larger than the row buffer size. In this case,
mulitple rows will have to be allocated for a single version, as
indicated in case (b) of Figure 3.

Version lifetime management Logically, the lifetime of a ver-
sion consists of 4 states (except Version 0, the initial version created
at program start and will enter state S3 by definition,) some of which
allow reads/writes:

State Read Write
S1. Space of the version is allocated and contents of
the previous version is copied to it.

No No

S2. The changes made by the committing transactions
from a GPU thread warp (executed in lockstep) are
being written to this version. Multiple non-conflict
changes can be written to it; conflicts are resolved by
aborting some transactions.

No Yes

S3. When warp commit is finished, the version will
be assigned a creation time and will not be written to;
future transactions may start reading from it.

Yes No

S4. The version is recycled, marked as unreadable
when no transactions are reading from it anymore, and
its space is recycled.

No No

In addition to copying and recycling, transactional reads and
writes interact with the versions as well. An example of how copying
and recycling are involved in the different states is shown in Figure
4:

Figure 4: Life cycles of versions and the changes in the states
(S1-S4). Arrows denote copy operations.

In this example, four versions are shown. When there exists a
version at state S3, its next version will enter state S1 and start
copying. When a next version enters state S2, it may be used as a
write target. At any given time, there exists at least one version that
can be read from, and when there is not an ongoing copy, there exists
one version to be written to. During the copying, transactions that
are executing will read from previous versions which are in state S3.
Therefore, the copy operations are overlapped with the transaction
execution.

The total number of versions allocated is a parameter determined
at kernel launch and due to the limit, versions are recycled and enter
state S4 when there are no references to them.

Accessing a version A version is accessed with an address and a
timestamp. The timestamp is compared with the timestamps of the

existing versions that are in lifetime state S3, and the latest version
that is created before the given timestamp will be accessed.

Memory mapping In the multi-version memory scheme, a ver-
sion may cause multiple regions in the device memory space to
become unavailable, similar to the way in which system memory is
shared between the CPU and the GPU in certain heterogeneous archi-
tectures. Depending on the memory mapping scheme, versions can
take up multiple disjoint regions in the memory space. For example,
suppose we have the following address mapping scheme:

Bit ID 31 27 16 7 0
| | | | |

Bit Usage 0000RRRR RRRRRRRR BBBBCCCC CCCCCCCC

In this mapping scheme, R, B and C denote row, burst and column
addresses, respectively. Suppose addresses 0x800000-0x8003FF is
allocated 8 versions, each with a size of 0x400 bytes, then addresses
0x801000-0x8013FF, 0x802000-0x8023FF, ... 0x807000-0x807FFF
will be occupied. In this example, accesses to those addresses will be
redirected to a reserved space starting from 0xA00000, as illustrated
in Figure 5.

Figure 5: Memory mapping and reallocating scheme

The purpose of relocating the space occupied by versioned regions
is to recover a continuous memory space.

Connecting all components with the Version Index Table To
put the proposed multi-versioned memory in action, the list of ver-
sioned memory regions and their details are stored in the Version
Index Table. The details include the length of the regions, the relo-
cated location for the space occupied by the versions, the creation
times of the respective versions, and the reference counts to the
versions. The table is located on the level as the L2 cache, which
all DRAM requests pass through. A program is allowed to allocate
multiple versioned memory regions. In such cases, there will exist
multiple entries in the Version Index Table.

Version Index Table
Start Addr Length Relocated Creation Time RefCount
0x800000 0x400 0xA00000 {17,123,193,255} {1,23,50,5}
0x880000 0x10000 0xA10000 {12,144,156,300} {0,9,35,47}

Figure 6: Version Index Table

An access will be handled based on whether it is versioned or not.
In the case of a versioned access, the version will be retrieved by the
accompanying timestamp. For the example in Figure 6, there exists
two versioned memory regions, each having 4 versions. Access
to 0x800000 in the first versioned region, when given timestamp

Accelerating GPU Hardware Transactional Memory with Snapshot Isolation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

(1. Predecessor receives successor’s PDTS and computes the logical
timestamp to be sent to the successor)

1 OnPredecessorReceivesTS(pred, succ->PDTS) {
2 if (pred is committed) return PrevTS
3 if (succ->PDTS == -1) {
4 if (pred->PDTS == -1)
5 pred->PDTS = pred->CTS + 10
6 } else if (pred->CTS >= succ->PDTS) {
7 if (pred->PDTS == -1)
8 pred->PDTS = pred->CTS + 10
9 } else {
10 midpoint = (pred->CTS + succ->PDTS) / 2
11 if (pred->PDTS > midpoint)
12 pred->PDTS = midpoint
13 }
14 return pred->PDTS
15 }

(2. Successor receives the updated logical timestamp from the predecessor)
16 OnSuccessorReceivesTS(pred, succ, timestamp) {
17 if (succ->PDTS != -1 && timestamp >= succ->PDTS) {
18 // Declare a dependency loop
19 } else {
20 succ->CTS = ts + 1
21 }
22 }

(3. At commit or abort)
23 AtCommitOrAbort(txn, ts) {
24 txn->PrevTS = txn->CTS
25 txn->CTS = ts + 1
26 txn->PDTS = -1
27 }

Figure 7: Transaction-Level dependency loop detection logical
timestamp updating operations

between 123 and 192 inclusive, will be directed to 0x810000. A non-
versioned access to 0x810000 will be relocated and be reading from
0xA00000. Other non-relocated accesses will proceed as normal.

Reference Counts are incremented by transactions that read from
the region for the first time and decremented by the aborting/committing
transactions that have read from the region.

4 RESOLVING WRITE SKEW ANOMALY
According to prior works [19], a necessary condition for the Write
Skew Anomaly to occur is the presence of inter-transaction write-
read dependency loops in the Dynamic Dependence Graph of a pro-
gram. Thus, eliminating dependency loops prevents the Write Skew
Anomaly from happening. For this purpose, we devise a mechanism
for removing Write Skew Anomalies by detecting and breaking
write-dependency loops that arise during our Snapshot Isolation
concurrency mechanism.

4.1 Detecting Dependency Loops Using
Post-Dating

One issue inherent to GPU is scalability, which is a result of its
enormous concurrency. Because of the presence of up to thousands
of concurrent threads scattered throughout the system, the cost of
communication can be high and the designer of a system has to think
carefully when deciding where to use broadcasts. This also makes a
precise graph tracking mechanism impractical on the GPU, because
the size of the graph grows as the program runs.

In order to avoid building graphs with unbounded size, we choose
to detect dependency loops (We use the term dependency loop to

Figure 8: Detecting dependency loops using post-dated logical
timestamps and an increment of 10. Note that discovery starting
from B and C can be made equivalent to the illustrated example
through rotating the edge numbers.

denote cyclic dependencies, to avoid confusion with clock cycles) on
the fly using a post-dating mechanism similar to TimeTraveler [29],
which uses this method to detect memory race loops. The algorithm
is shown in Figure 7. With a little modification, this method fits
for our purpose, allowing us to track dependency loops between
transactions pairs, when both transactions are executing, as well as
between executing and committed transactions.

In the post-dating method, each transaction is assigned 3 integer
numbers that are updated throughout the post-dating process, which
are called the current logical timestamp (CTS), the post-dated logical
timestamp (PDTS), and the previous logical timestamp (PrevTS,)
as shown in Figure 7. (It should be pointed out that the timestamps
reflect the ordering between the transactions, not the time at which
the transactions start, or when transactional accesses take place,
thus they are called logical timestamps, to avoid confusion with the
time-based timestamps associated with the snapshots.)

When two transactions write and read the same address, a de-
pendency edge between these two transactions is formed, pointing
from the writer being to the successor. The purpose of post-dating is
to detect loops by updating the logical timestamps of predecessors
and successors using a simple rule and checking the invariant that a
transaction’s CTS must be smaller than its PDTS, when the invariant
is violated, a dependency loop is declared.

An example of the operation of the post-dating mechanism involv-
ing 3 transactions and 3 dependency edges is illustrated in Figure
8. In the beginning all transactions are initialized with (CTS=1,
PDTS=-1). Between transaction begin and commit, all the write and
read operations (1○) go through the post-dating process. When a
pair of read and write operations on the same data is seen by the
post-dating mechanism, a dependency edge is discovered, which we
denote as edges A, B and C (2○). Depending on the order in which the
three edges are discovered by post-dating, the three transactions may
obtain different CTS and PTDS logical timestamps (3○). When only

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Chen et al

two out of the three edges are discovered, the invariant is still main-
tained, but when the third edge is constructed, one of the transactions
will discover a violation of the invariant.

In the first case in 3○, the three edges are discovered in the order
of A, B, C. When C is being discovered, T1 must set its CTS to 34
since it’s a successor to T3 in write-read dependency edge C, and
T3 has a PTDS of 33, but 34 is greater than T1’s PTDS of 11, thus
violating the invariant. In the second case where the order is A, C
then B, and when B is being discovered, T3 must set its CTS to 23
because it’s the successor to T2 in edge B, but 23 is greater than T3’s
PDTS of 5, thus violating the invariant.

For the other cases, B,C,A and C,A,B are equivalent to A,B,C; B,A,C
and C,B,A are equivalent to A,C,B. This can be proven by rotating the
edge names. In all the cases, the loop will be discovered.

When the edges involve committed transactions, the committed
transactions’ CTS and PDTS will be set as usual; the only difference
is when the committed transaction serves as the predecessor, Line 2
in Figure 7 will be executed and the PrevTS will be returned.

Figure 9: Post-dating for loops involving more than 3 transac-
tions.

A dependency loop involving more than 3 transactions such as the
one in Figure 9 can also be discovered by the post-dating algorithm
because:

• Due to transitivity, given dependency Ti → Tj in a chain of
dependency edges, the invariants will always hold before a
dependency loop is discovered, regardless of the order in
which the dependency edges are post-dated: 1) PDTS of
Ti must be greater than CTS of Ti; 2) PDTS of Tj must be
greater than PDTS of Tj and 3) CTS of Tj must be greater
than PDTS of Ti.

• When the closing edge of a dependency of a loop is dis-
covered, it will cause the aforementioned invariant to be
violated, thus declaring a dependency loop.

The violation may also be caused by the logical timestamps run-
ning out of precision, resulting in false positives. Because false
positives can only lead to aborts, it does not affect the correctness of
the transactional memory system.

4.2 Making Post-Dating Scalable
In order to make run-time costs manageable, we have made the
design choice of a Single-writer paradigm, allowing only one writer
to own one machine word during the transaction execution stage. The
choice of single-writer paradigm is reasonable in that the baseline
Snapshot Isolation aborts on write-write conflicts, so the additional
writers are likely to get aborted.

With the single-writer constraint, the difficulty of tracking depen-
dency is reduced, because it now becomes feasible to track the sole

Figure 10: Structure of the Scalable Readers List.

writers of the currently active words in this system. We decide to put
the Writer Table that stores the writer of words on the same level as
the L2 cache, so it is accessible to all the SIMT cores, and is on the
path of all transactional reads and writes. Transactions consult this
table to perform post-dating.

To enable the writers to acknowledge all readers of the request
to update logical timestamps, we choose to implement a Scalable
Reader List, an efficient, scalable and exact scheme for representing
readers similar to the SCD directory [25]. This scheme relies on
efficient highly-associative caches proposed in the ZCache[24] and
the Cuckoo Directory [7].

The Scalable Reader List is a directory with three types of entries
illustrated in Figure 10. The table is indexed by the 30-bit block
address. Given a block address, the relevant table entries are fetched,
which can be one of the four following types:

• Type 0, Unused: the entry does not contain any useful
information and can be deallocated.

• Type 1, Plain Sharer ID: The entry contains 1 to 3 10-bit
Transaction IDs. The number of entries is stored in the 2-bit
field.

• Type 2, Root-Level Bit Vector: Each bit in the 32-bit vector
indicates whether one of the 32 leaf-level bit vectors are
present.

• Type 3, Leaf-Level Bit Vector: Each bit in the 32-bit vector
indicates whether each transaction in the group of 32 trans-
actions is in the reader’s list. The 5-bit field indicates the
position of the Leaf in the Root and is used as an offset in
the 1024-bit space. For example: the 11-th bit in the 21-th
Leaf means the transaction with an ID of 32·21+11=683.

When a transaction reads an address, the read address and the
reader will be appended to the Scalable Reader List. A writer uses
this list to find the writers and update the logical timestamps.

The organization of two-level 32-bit vectors allows at most 1024
concurrent transactions, which is greater than the number of con-
current transactions used in our study. More concurrent transactions
can be achieved by increasing the number of bit vector layers.

4.3 Overhead
The overhead of the components required for detecting dependency
loops is listed in Table 1, which is estimated based on CACTI [17]
using 40nm technology node. The total size of the four tables is
designed to be 768kB, which may be increased when necessary.
Currently the storage is split into the following parts:

Accelerating GPU Hardware Transactional Memory with Snapshot Isolation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Table 1: Area and Power Overhead of the Dependency Loop
Detection Components

Size Area(mm2) Power(mW)
Writer Table 15kB 0.12 31.5
Logical Timestamp Table 12kB 0.01 37.8
Version Index Table 1kB 0.005 3.2
Scalable Reader List 740kB 5.0 2330

• The Writer Table contains 3000 entries. The number is
chosen to match the capacity of the Scalable Reader List.
Each entry in this table takes 40 bits (30 bits block address
plus 10 bits writer ID), with a total size of 3000·40/8=15kB.

• The Logical Timestamp Table contains 1024 entries in
total to accommodate 1024 concurrent transactions. (In our
experiments, the number is limited to 960 to match the
baseline system.) The entries are directly mapped to each
transaction, each containing three 24-bit logical timestamps,
with a total size of 1024·24·3/8=12kB.

• The Version Index Table takes 1kB. Each entry in this
table takes 193 bits (2×30-bit original and relocated block
addresses, 5 bits versioned area size and 8×32-bit creation
times such that 60+8·32+5=193 bits). The space can ac-
commodate 1024/(193/8)=42 versioned regions.

• The Scalable Reader List takes the rest of the space, which
is 768-15-12-1=740kB. With each entry taking 69 bits (30
bits block address, 2 type bits, 37 bits content), the space
accommodates 740·1024/(69/8)≈87856 entries. This trans-
lates to 87856/33=2662 addresses in the worst-case sharer
scenario (each address taking 33 entries). Since worst-case
does not always happen, the space is large enough to cover
the same number of unique addresses as the Writer Table
(3000).

Post-dating based loop detection are overlapped with loads and
writes and therefore do not block. It’s only required that all logical
timestamp updates originating from a transaction must be completed
before the transaction starts committing.

When any loop-detection tables (Writer Table or Scalable Readers
List) overflow, all future transactions, as well as transactions trying
to obtain entry in any of those tables, will abort and wait for current
transactions to either commit or abort and free up space in the tables.

In the case timestamp in the Version Index Table overflows, all
current versions will be invalidated, all concurrent transactions will
abort, and the timestamps will be reset to zero.

In the case the post-dating timestamps (CTS and PDTS) overflow,
the same strategy may be applied to abort all currently executing
transactions and restart the CTS and PDTS to zero.

5 INTERACTION WITH EXISTING GPU HTM
Figure 11 shows the hardware components added to the baseline
GPU HTM hardware, WarpTM [8]. These components enable SI
and address the GPU-specific challenges for Write Skew Anomaly
elimination: First, GPUs usually lack the ability to broadcast cache
line invalidation messages across cores as on the CPU; Second, the
single-writer paradigm and the corresponding components help keep
dependency tracking cost low.

Figure 11: The SI-enabled GPU HTM architecture with GPU-
specific components.

Figure 12: Transaction execution flow.

Figure 12 shows how the hardware components are involved in
the execution of transactions. In the beginning, transactions perform
access to snapshots in the versioned memory (step 1○) by provid-
ing an address and its beginning timestamp, and the corresponding
version is accessed through the Version Index Table, using the pro-
cess described in Section 3 mean time. Transactional logging is also
performed in the meantime.

In the meantime, dependency loop detection (step 2○) is per-
formed. For a write request, the writer’s ID will be inserted into
the Writer Table if no other writers to the address exists, and all the
readers of the same address are extracted from the Reader List and
their timestamps are updated using the post-dating mechanism; if
there already exists a writer, the new writer is aborted, otherwise,
the writer with a larger ID will abort. For read requests, the reader’s
ID will be inserted into the Scalable Reader List, the writer of the
read address will be found from the Writer Table, and the same
post-dating process will be run. The operations overlap with the

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Chen et al

memory accesses and transactional logging in step 1○ which involve
global memory writes. These processes are usually long enough to
hide the post-dating latency. The loop detection results will be sent
back to the transaction that made the access to abort transactions
that may form dependency loops.

We do not need to peform intra-warp conflict detection as WarpTM
does before a warp commits. The reason is intra-warp conflict de-
tection aborts on all intra-warp read-write conflicts, which is not
desirable in Snapshot Isolation. The write sets of transactions are
sent to the multiple Commit Units based on the memory partition
the write destinations are in.

The function of the Commit Units in our system is simpler than
that in WarpTM and KiloTM. With SI, the Commit Unit only need to
check transactional writes (the single-writer limit apples to running
transactions only, so it is still possible for multiple writes to the same
address to exist in the commit stage) and aborts transactions when
the writes are in conflict with other committing transactions. For
this reason, the Commit Unit only does not need to validate read
requests and the read log is not transferred to the Commit Unit as in
WarpTM. The commit procedure starts in each of the Commit Units
when the logs have been transfered to it (step 3○). The transaction
IDs will be removed from the Writer Table or Scalable Reader Lists
once a transaction passes the commit procedure.

During transaction execution and commit stages, the Bulk In-
Memory Copy Unit will copy the content of the current snapshot,
currently in state S3 to the next snapshot, currently in state S1 (de-
scribed in Figure 4), in an asynchronous fashion(step 4○). It scans
the addresses in the regions indicated in the Version Index Table and
issues copy commands to the corresponding rows, which will then
copy the rows in parallel in the respective subarrays.

When the commit procedure is completed, the SIMT core will
collect the results from the related commit units. When there is no
write-write conflict in all its related Commit Units, the transaction
is considered to have passed validation (step 5○), and instructs the
related Commit Units to write its changes to the new snapshot in state
S2. Because GPU warps execute in lock step, a warp of transactions
will be committing and writing back simultaneously, which allows
the changes to be merged, reducing the number of versions that need
to be created. When transactions from this warp finish writeback,
the state of the snapshot will be changed from S2 to S3 (step 6○),
becoming the “current transaction” from the future transactions’
perspective, and will be given a stamp and be read from, as described
in Section 3. The execution flow repeats from step 1○ for the next
transaction.

Number of concurrent snapshots We set a finite number of
concurrent snapshots in the system due to capacity and practicality
considerations. As described in Section 3, there may exist multi-
ple snapshots in state S3 which are available for read. The more
concurrent snapshots, the more recent the versions read from by
transactions will be.

A transaction chooses the snapshot to read from by its transaction
start time and the timestamp of the snapshots, namely the latest ver-
sion available at its start time. With a limited number of concurrent
transaction, a transaction will be forced to read an older snapshot.
This still results in correct execution; however, it is similar to having

Table 2: GPGPU-Sim Configuration

GPU
SIMT Cores / SIMD Width 15 / 16 x 2
Warps/Threads per Core 48 warps × 32 = 1536 Threads
Memory Partitions 6
Core/Interconnect/Memory clock 1400/1400/924 MHz
Warp Scheduler Count 2 per Core
Warp Scheduler Policy Greedy-then-oldest

L1 Data Cache per Core 60KB / 48KB, 128B Line, 6-Way
(Not caching global accesses)

Shared Memory per Core 16KB
Interconnect Topology 1 Crossbar per direction
Interconnect Bandwidth 32B/cycle = 288GB/s per direction
Interconnect Latency 5 Cycles to traverse
DRAM Scheduler Out-of-order, FR-FCFS
DRAM Scheduler Queue Size 16
DRAM Return Queue Size 116
DRAM Timing Hynix H5GQ1H24AFR
Min DRAM Request Latency 330 Compute cycles

Transactional Memory

Concurrency Control 2 Warps per core
(960 Concurrent Txns)

Commit Unit Clock 700 MHz
Validation/Commit BW 1 Word per cycle per CU

Warp TM-Specific
L2 Cache for all Cores 256KB × 6 partition = 1536KB
Intra-Warp CD Resources 4KB Shared memory per warp
Intra-Warp CD Mechanism 2-Phase Parallel Conflict Resolution
TCD Last Written Time Table 16KB (2048 Entries in 4 sub arrays)
TCD Detection Granularity 128 Byte

Snapshot Isolation-Specific
L2 Cache for all Cores 128KB × 6 Partitions = 768KB
Writer Table 15KB
Scalable Reader List 740KB
Timestamp Table 12KB
Version Index Table 1kB
Concurrently Active Versions 8
Row Copy Size 2KB Per Subarray
Row Copy Latency 68 ns
Number of Subarrays 64 per bank

the transaction start much earlier but get stalled until its actual start
time, which may increase the chance of an abort.

When a transaction starts, the reference count of the snapshot it’s
using is incremented by 1. When it commits or aborts, the count is
decremented by 1. When it restarts from an abort, it will choose the
latest version in the pool of available snapshots, so older snapshots
will eventually be referenced by no transactions. Then, it will be
garbage-collected to make room for new versions.

Note that some applications may not have dynamic data structures
as those shown in Figure 2, and SI won’t have performance benefits
for those applications. We will turn off the SI mechanism and use
normal baseline configuration to avoid runtime overhead in this case.

6 EXPERIMENT SETUP
We have extended the WarpTM system using GPGPU-Sim 3.2.1 [6],
which simulates a device resembling the NVidia GTX480. WarpTM
also includes the baseline KiloTM, with the difference being that it
does not have intra-warp conflict detection.

We use applications utilizing dynamically sized data structures
that involve many write-read conflicts. These applications are listed
in Table 3, which we describe below:

Linked List is a linked list, which allows both concurrent in-
sertions and deletions, where the early-release technique is not
available. In Linked List 1 and 2 we spawn 100 and 200 threads
respectively, each of which inserts one element in the linked list by

Accelerating GPU Hardware Transactional Memory with Snapshot Isolation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Table 3: Benchmark Properties

(Transaction length and read/write set size measured under baseline (WarpTM) settings)

Name Threads Read/Write
Set Size

Average Tx
Length

(Cycles)
Linked List 1 100 114 / 4 17646
Linked List 2 200 240 / 4 59876
Binary Tree 1 1000 33 / 8 327025
Binary Tree 2 100 36 / 6 26910
GraphCut1 32 37 / 3 80859
GraphCut2 32 52 / 5 84249
Red Black Tree 1 200 47 / 14 86501
Red Black Tree 2 400 47 / 14 131218
Vacation 1 150 92 / 4 241258
Vacation 2 140 144 / 12 338872

first iterating to the insertion point then perform the insert. The lists
are initially empty.

Binary Tree is a binary search tree with pre-initialized elements,
which allows insertion, deletion and query operations. In Binary
Tree 1, we initialize a tree with 1000 elements and spawn 1000
threads, each removing one element from the tree. In Binary Tree
2, we initialize a tree with 1000 elements and spawn 100 threads to
perform 50 insertion and 50 remove operations.

GraphCut is an implementation of Karger’s randomized algo-
rithm [16] for computing the minimal cut of a graph. In Graph Cut 1
we solve a graph with 60 vertexes and 180 edges with 32 threads. In
Graph Cut 2 we solve a graph with 90 vertexes and 270 edges with
32 threads.

Red Black Tree is the red-black tree implementation from the
RSTM suite [20], which we adapted to the GPU. In Red Black Tree
1 and Red Black Tree 2 we initialize a tree with 1000 elements and
perform 50/50 and 100/100 insertion/remove operations respectively.

Vacation is the Vacation benchmark from the STAMP benchmark
suite [21], which we adapted to CUDA while keeping the seman-
tics unchanged. It includes its own linked list and red-black tree
implementation. Vacation Benchmark simulates a travel reservation
system, which includes a database with four tables: Flight, Room,
Car and Customers. Each Customer has a linked list storing the
reservations made. A reservation points to flight, room or car. Thus,
Vacation is similar to having 4 red-black trees and 1 linked list run-
ning simultaneously. In Vacation 1 we perform all “table-modifying”
operations with no user queries, i.e. we add or delete entries in the 4
red-black trees all initialized with a size of 500 entries. In Vacation
2 we simulate 5 customers and all threads make reservations for the
5 customers. The table sizes are initialized to be 1000.

We run the benchmarks using 4 configurations as listed in Table
2:

• WarpTM is the baseline GPU hardware TM, with intra-
warp conflict resolution.

• KiloTM is the other pre-existing system, which is WarpTM
without intra-warp conflict resolution.

• SITM_TS is the Snapshot Isolation-enabled TM with loop
detection using post-dated timestamps, with the single-
writer restriction.

• SITM_Oracle is the Snapshot Isolation-enabled TM with
perfect loop detection (we construct a dynamic dependence

Figure 13: Overall Speedup.

Figure 14: Normalized Energy Consumption.

graph in the simulator) with no cost. There is no single-
writer restriction for SITM_Oracle. SITM_Oracle has no
cost in post-dating or row copy. (This is not achievable in
reality.)

For a fair comparison, WarpTM and KiloTM are given a larger
L2 cache as indicated in Table 2 (1536kB), to account for the extra
space taken by cyclic conflict detection in Snapshot Isolation.

7 RESULTS
Figures 13 and Figure 14 show the overall speedup and energy
consumption of the benchmarks. Overall, the baseline WarpTM is
the slowest among all of the benchmarks. In fact, it is slower than
KiloTM, which indicates that intra-warp conflict detection based
only on address does not help with the benchmarks used in our
experiments. Since intra-warp conflict resolution aborts on all write-
read conflicts, we believe this is the reason why it is slower than
KiloTM. For the same reason, KiloTM is slower than both Snapshot
Isolation-based systems because it aborts transactions with write-
read conflicts in the Commit Unit. This is most obvious in the Linked
List benchmarks. By comparing Linked List benchmarks, it can be

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Chen et al

Figure 15: Normalized Wasted Work due to Aborts.

seen that KiloTM and WarpTM do not scale well; actually, the
execution gets serialized in WarpTM and KiloTM.

Speedup for red-black tree and binary tree may be explained in a
way resembling linked lists: a branch of a tree is similar to a linked
list, but since there exists many branches in a tree, the serialization
in a tree is not nearly as serious as in a linked list. However, there is
still enough access patterns like those found in a linked list to allow
Snapshot Isolation to perform much faster.

Similarly, in the Graph Cut application, a series of edge contrac-
tion operations are performed, each modifying in the structure of the
graph. This can be compared to an insertion and a deletion in the
linked list.

In fact, one may also think of graphs as generalized trees which
can contain loops. Because the same access pattern is observed in
all those data structures, dynamically sized lists, trees and graphs
can all benefit from Snapshot Isolation.

The overall energy consumption is largely affected by the execu-
tion time. Although SITM_TS introduces extra power consumption
on the Writer Table, Timestamp Table, Scalable Reader List and
Version Index Table, the overall energy consumption is still less than
WarpTM due to decreased running time. It can be even significantly
lower than KiloTM when the running time difference is large enough,
such as in Linked List.

We take a look into the finer details in the following analysis.

7.1 Speedup Analysis
The design of Snapshot Isolation is to avoid unnecessary write-read
aborts. To give a quantitative measure of this, we compute the sum
of the duration of all aborted transactions in clock cycles for each of
the configurations and normalize them that of the WarpTM baseline,
as shown in Figure 15. The higher the bars are, the more work is
wasted on aborted transactions. Overall, the resultant speedup is gen-
erally inversely correlated to the amount of work wasted. KiloTM
generally resulted in less wasted work than WarpTM, and both SI-
based configurations resulted in even less wasted work than KiloTM.
To compare SITM_TS and SITM_Oracle: the performance gap be-
tween SITM_TS and SITM_Oracle is correlated to the gap between
the amount of wasted work of them. When SITM_TS has less or

Figure 16: Breakdown for Abort Reasons.

Figure 17: Normalized Duration of Transactions.

similar amount of wasted work than SITM_Oracle, its performance
may be close to that of SITM_Oracle (in benchmarks BinaryTree 1
and 2, RBTree 1 and 2, Vacation 1). When SITM_TS wastes more
work than SITM_Oracle, its performance will fall farther behind
SITM_Oracle due to the overhead it has compared to SITM_Oracle.

Figure 16 shows the number of aborts caused in each of the
benchmarks, normalized to the number of aborts in WarpTM. From
the figure, we can see WarpTM often aborts more than KiloTM
does; most of them are caused by intra-warp conflict resolution. For
SITM_TS, many aborts come from the single-writer restriction. This
type of aborts usually happens in early stages of transactions where
the transactions have not performed much work. As a result, the
length of the aborted transactions tend to be smaller, resulting in a
smaller aggregated time even the number of aborted transactions
may be larger.

Figure 17 shows the amount of time transactions spend in the
Commit Unit and the SIMT cores. It can be seen from the figure
that the amount of time spent in the Commit Unit is shorter in
SITM_TS and SITM_Oracle because the Commit Unit does not
need to perform value-based validation for the read sets like in
WarpTM and KiloTM (Only the write set needs to be validated
in Snapshot Isolation.) As a result the average durations of both
SI-based configurations are shorter than that of both WarpTM and
KiloTM, and this can match the observation of aggregate time for
aborted transactions in Figure 15.

Accelerating GPU Hardware Transactional Memory with Snapshot Isolation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

Figure 18: Number of Aborts Seen by Each Dependency Loop.

Figure 19: Number of Total Possible Dependency Loops.

It can be seen from Figures 16 and 17 that SITM_Oracle re-
duces the number of aborts for LinkedList 1 and 2, GraphCut 1 and
2, which is as expected. For the other benchmarks, SITM_Oracle
resulted in a shorter transaction execution time, which turns into
greater speedup. For SITM_TS, the absolute number of aborts may
increase due to single-writer limits. Nevertheless, Figure 17 suggests
SITM_TS’s aborted transactions tend to be much shorter. Since
SITM_TS still allows transactions with read-write conflicts to pass,
this will overall results in less wasted work, leading to advantage
over non-SI configurations.

7.2 Dependency Loop Detection
Figure 18 shows the number of loop-breaking aborts received per
dependency loop. The numbers are the outcome of two factors: 1)
how much do the loops themselves overlap and 2) the false-alarm
rate. When the loops overlap more, it is more likely that one aborted
transaction breaks more than one loop. False alarms may also cause a
dependency loop to receive more than one abort. Overall, the number
of aborts per dependency loop does not show a great difference
between SITM_TS and SITM_Oracle except in BinaryTree1: In the
early stages of this benchmark, many transactions attempt to replace

Figure 20: Sensitivity of speedup to number of versions avail-
able.

the parent of a tree node with the next largest element in the tree,
resulting in many writes to the same addresses. This causes the gap
in the number of aborts between to SITM_TS and SITM_Oracle to
widen, which contributed to the difference in the overall numbers of
aborts per dependency loop. In later stages of the benchmark as well
as in other benchmarks, the difference between the number of aborts
of SITM_TS and SITM_Oracle is more stable, resulting in similar
numbers of aborts per loop.

Figure 19 shows the total number of possible dependency loops
that can ever be formed by all transactions throughout the benchmark
lifetime. It can be seen that the number for SITM_TS is much
smaller than that of SITM_Oracle. The reason is many transactions
are aborted due to single-writer abort, such that the transactions
could not have the chance to overlap with other transactions to
form dependency loops. This also suggests although the purpose
of the single-writer restriction is to keep post-dating scalable, it
also eliminates much potential dependency loops by coincidence by
aborting transactions.

7.3 Sensitivity to Number of Versions and
Postdating Delta

We performed a study on how the the number of concurrently avail-
able versions affects overall performance, shown in Figure 20. The
results suggest that a larger number of concurrently available ver-
sions will generally imply better performance. This is because with
more versions available, transactions can see more recent snapshots.
On the contrary, With fewer versions available, transactions are more
likely to see stale snapshots, which can turn into more frequent write-
write conflicts. For example, when inserting into a linked list, a more
recent snapshot will contain a longer linked list. A longer list is more
likely to cause the insertion operations to modify addresses farther
away from each other, lowering the chance of conflict.

As is shown in Figure 20, a concurrent version number of 8
results in near-optimal performance, we consider it to be the balance
between performance and cost and decide to use this number in our
experiments.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Chen et al

Figure 21: Number of Sharers per Snapshot.

Figure 21 shows there are many transactions that read from the
same snapshot, which is a result of the high level parallelism on the
GPU. In addition to the high level parallelism, transactions on a GPU
are run in warps which execute in lock-step, so that all transactions
in a warp start at the same time step, thus sharing the same snapshot.
The large number of transactions overlapping in time means many
commits of the transactions may be merged together, reducing the
number of version creation and row-level copy needed, lowering
the amortized cost of such operations. This is an example where a
high degree of parallelism doesn’t necessarily mean a high cost in
versioning.

We have observed the choice of the post-dating delta (which is
10 in Figure 7) does not have a significant influence on the overall
speedup.

8 RELATED WORKS
For GPU-based hardware transactional memory, existing works in-
clude KiloTM [9] and WarpTM [8] which is a hardware implemen-
tation of modified RingSTM [27]. This implementation is shown
to benefit from two early conflict resolution schemes proposed by
Chen and Peng [4] for certain workloads. For software TMs that can
be implemented in CUDA, Holey and Zhai proposed Lightweight
Transactions [12] and Xu et al. proposed GPU-STM [30]. Their
designs eager and lazy approaches for both conflict detection and
commit. One limitation of Software-based TM systems is memory
copies are compiled into word level copy loops, so copies must be
coalesced to be efficient. Furthermore, copy loops are compiled into
load and store instructions, forcing data to make detour to the SIMT
cores and back to the memory, consuming interconnect bandwidth
and compute cycles. In contrast, hardware-based TM can achieve
bulk copy from within the memory system, overcoming those limits
and reducing run-time overhead considerably.

Snapshot Isolation was first proposed by Berenson et al. in 1995
[1], and has been implemented in popular databases such as Post-
greSQL, Oracle and SAP Hana, implemented using methods such as
version chains. The Write Skew Anomaly has been known since the
introduction of SI to the database community and Fekete et al. [2]

proposed the concept of Dynamic Dependency Graph which served
as a theoretical foundation for removing the Anomaly.

The first application of Snapshot Isolation to transactional mem-
ory is described in SI-TM [18], with a system for the user to identify
application source code lines that cause the Write Skew Anomaly
and remove them [19]. This method is trace-driven and runs offline.

On-line detection of dependency loops using the Post-Dating
method is used in Wait-n-Go TM [15], which does not integrate
Snapshot Isolation and uses it to eliminate cyclic aborts. The method
itself comes from TimeTraveler [29] which uses the method for the
purpose of saving data race log file size by detecting cyclic memory
races since acyclic memory races need not be recorded. Applying
the Post-Dating method to GPU depends on the realization of a
directory protocol for many-cores, such as the SCD [25] and other
in-memory processing techniques such as RowClone[26] and other
near-memory processing techniques[13].

9 CONCLUSION
We have applied the Snapshot Isolation mechanism to a GPU-based
hardware TM system. With a feasible mechanism for creating ver-
sions quickly and detecting dependency loop, this system can work
out well for applications involving linked lists, binary search trees,
red-black trees and graphs, achieving great speedup over systems
using conventional conflict detection mechanism. We believe this
can expand the use cases for TM systems on the GPU: It will no
longer only handle small and fixed-size transactions, but large ones
with dynamically-sized, complex data structures as well.

10 ACKNOWLEDGEMENTS
We appreciate the invaluable comments from the anonymous re-
viewers. This work is supported in part by US National Science
Foundation (NSF) grants CCF-1017961, CCF-1422408 and CNS-
1527318. We also acknowledge the computing resources provided
by the Louisiana Optical Network Initiative (LONI) HPC team.

REFERENCES
[1] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick

O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. In Proceedings of the
1995 ACM International Conference on Management of Data (SIGMOD).

[2] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2009. Serializable Isolation
for Snapshot Databases. In ACM Transactions on Database Systems (TODS),
Vol. 34. 1–42. https://doi.org/10.1145/1620585.1620587

[3] George. C. Caragea, Fuat Keceli, Alexadros Tzannes, and Uzi Vishkin. 2010.
General-Purpose vs. GPU: Comparison of Many-Cores on Irregular Workloads.
In Proceedings of the Second Usenix Workshop on Hot Topics in Parallelism.
http://www.usenix.org/event/hotpar10/final

[4] Sui Chen and Lu Peng. 2016. Efficient GPU Hardware Transactional Memory
through Early Conflict Resolution. In Proceedings of the 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 274–284. https:
//doi.org/10.1109/HPCA.2016.7446071

[5] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis
Shasha. 2005. Making Snapshot Isolation Serializable. In ACM Transactions on
Database Systems (TODS), Vol. 30. 492–528. https://doi.org/10.1145/1071610.
1071615

[6] Wilson W. L. Feng. 2013. GPGPU-Sim 3.2.1. http://www.ece.ubc.ca/~wwlfung/
code/kilotm-gpgpu_sim.tgz. (2013). Retrieved on 2015-05-30.

[7] Michael Ferdman, Pejman Lotfi-Kamran, Ken Balet, and Babak Falsafi. 2011.
Cuckoo Directory: A Scalable Directory for Many-Core Systems. In Proceedings
of the 17th International Symposium on High Performance Computer Architecture
(HPCA). https://doi.org/10.1109/HPCA.2011.5749726

[8] Wilson W. L.. Fung and Tor M. Aamodt. 2013. Energy efficient GPU transactional
memory via space-time optimizations. In Proceedings of the 46th International
Symposium on Microarchitecture (MICRO). https://doi.org/10.1145/2540708.
2540743

https://doi.org/10.1145/1620585.1620587
http://www.usenix.org/event/hotpar10/final
https://doi.org/10.1109/HPCA.2016.7446071
https://doi.org/10.1109/HPCA.2016.7446071
https://doi.org/10.1145/1071610.1071615
https://doi.org/10.1145/1071610.1071615
http://www.ece.ubc.ca/~wwlfung/code/kilotm-gpgpu_sim.tgz
http://www.ece.ubc.ca/~wwlfung/code/kilotm-gpgpu_sim.tgz
https://doi.org/10.1109/HPCA.2011.5749726
https://doi.org/10.1145/2540708.2540743
https://doi.org/10.1145/2540708.2540743

Accelerating GPU Hardware Transactional Memory with Snapshot Isolation ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

[9] Wilson W. L. Fung, Inderpreet Singh, Andrew Brownsword, and Tor M. Aamodt.
2011. Hardware transactional memory for GPU architectures. In Proceedings of
the 44th International Symposium on Microarchitecture(MICRO). https://doi.org/
10.1145/2155620.2155655

[10] Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional Memory: Architectural
Support For Lock-free Data Structures. IEEE Computers Society Press. 289–300
pages. https://doi.org/10.1109/ISCA.1993.698569

[11] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2006. A Flexible Framework
for Implementing Software Transactional Memory. In Proceedings of the 21th
ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages,
and Applications (OOPSLA).

[12] Anup Holey and Antonia Zhai. 2014. Lightweight Software Transactions on
GPUs. Proceedings of the 43rd International Conference on Parallel Processing
(ICPP) (Sep 2014). https://doi.org/10.1109/ICPP.2014.55

[13] Kevin Hsieh, Eiman Ebrahim, Gwangsun Kim, Niladrish Chatterjee, Mike
O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler. 2016.
Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent
Near-Data Processing in GPU Systems. In Proceedings of the 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA). 204–216.
https://doi.org/10.1109/ISCA.2016.27

[14] Intel Corporation. 2016. Chapter 8, Intel Transactional Synchronization Exten-
sions. (2016).

[15] Syed Ali Raza Jafri, Gwendolyn Voskuilen, and T. N. Vijaykumar. 2013. Wait-
n-GoTM: Improving HTM Performance by Serializing Cyclic Dependencies. In
Proceedings of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[16] David R. Karger. 1993. Global Min-cuts in RNC, and Other Ramifications of
a Simple Min-out Algorithm. In Proceedings of the Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’93). Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 21–30. http://dl.acm.org/citation.cfm?id=
313559.313605

[17] HP Labs. 2009. CACTI 5.3. http://quid.hpl.hp.com:9081/cacti/. (2009). Retrieved
on 2016-07-01.

[18] Heiner Litz, David Cheriton, Amin Firoozshahian, Omid Azizi, and John P. Steven-
son. 2014. SI-TM: Reducing Transactional Memory Abort Rates Through Snap-
shot Isolation. In Proceedings of the 19th international conference on Architec-
tural Support for programming Languages and Operating Systems (ASPLOS).
https://doi.org/10.1145/2541940.2541952

[19] Heiner Litz, Richardo J. Dias, and David R. Cheriton. 2014. Efficient Correction of
Anomalies in Snapshot Isolation Transactions. ACM Transactions on Architecture
and Code Optimization (TACO) 11, 4 (2014), 1–24. https://doi.org/10.1145/
2693260

[20] Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David
Eisenstat, William N. Scherer III, and Michael L. Scott. 2006. Lowering the
Overhead of Nonblocking Software Transactional Memory. In Tech Report, Dept.
of Computer Science, Univ. of Rochester.

[21] Chí Cao. Minh, JaeWoong. Chung, Christos Kozyrakis, and Kunle Olukotun.
2008. STAMP: Stanford Transactional Applications for Multi-Processing. In
Proceedings of the IEEE International Symposium on Workload Characterization
(IISWC). https://doi.org/10.1109/IISWC.2008.4636089

[22] Prabhakar Misra and Mainak Chaudhuri. 2012. Performance Evaluation of Con-
current Lock-free Data Structures on GPUs. 18th International Conference on
Parallel and Distributed Systems (ICPADS) (Dec 2012). https://doi.org/10.1109/
ICPADS.2012.18

[23] Anurag Negi, Per Stenstrom, Manuel E. Acacio, Rubén Titos-Gil, and José M. Gar-
cia. 2011. π-TM: Pessimistic invalidation for scalable lazy hardware transactional
memory. In Proceedings of the 20th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT). https://doi.org/10.1109/PACT.2011.41

[24] Daniel Sanchez and Christos Kozyrakis. 2010. The ZCache: Decoupling Ways
and Associativity. In Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). https://doi.org/10.1109/MICRO.
2010.20

[25] Daniel Sanchez and Christos Kozyrakis. 2012. SCD: A scalable coherence
directory with flexible sharer set encoding. In Proceedings of the 18th IEEE
International Symposium on High-Performance Computer Architecture (HPCA).
https://doi.org/10.1109/HPCA.2012.6168950

[26] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarung-
nirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B Gibbons,
Michael A. Kozuch, and Todd C. Mowry. 2013. RowClone: Fast and Energy-
Efficient in-DRAM Bulk Data Copy and Initialization. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
186–197. https://doi.org/10.1145/2540708.2540725

[27] Michael F. Spear, Maged M. Michael, and Christoph von Praun. 2008. RingSTM:
Scalable Transactions with a Single Atomic Instruction. In Proceedings of the
Twentieth Annual Symposium on Parallelism in Algorithms and Architectures
(SPAA). ACM, New York, NY, USA, 275–284. https://doi.org/10.1145/1378533.
1378583

[28] Saša Tomić, Cristian Perfumo, Chinmay Kulkarni, Adrià Armejach, Adrián Cristal,
Osman Unsal, Tim Harris, and Mateo Valero. 2009. EazyHTM: EAger-LaZY
hardware Transactional Memory. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 145–155. https://doi.
org/10.1145/1669112.1669132

[29] Gwendolyn Voskuilen, Faraz Ahmad, and T. N. Vijaykumar. 2010. Timetraveler:
Exploiting Acyclic Races for Optimizing Memory Race Recording. In Proceed-
ings of the 37th Annual International Symposium on Computer Architecture
(ISCA). https://doi.org/10.1145/1815961.1815986

[30] Yunlong Xu, Rui Wang, Nilanjan Goswami, Tao Li, Lan Gao, and Depei Qian.
2014. Software Transactional Memory for GPU Architectures. In Proceedings of
the International Symposium on Code Generation and Optimization (CGO). 49 –
52. https://doi.org/10.1145/2544137.2544139

[31] Lihang Zhao and Jeffrey Draper. 2014. Consolidated Conflict Detection for
Hardware Transactional Memory. In Proceedings of the 23rd International Con-
ference on Parallel Architectures and Compilation (PACT). 201–212. https:
//doi.org/10.1145/2628071.2628076

https://doi.org/10.1145/2155620.2155655
https://doi.org/10.1145/2155620.2155655
https://doi.org/10.1109/ISCA.1993.698569
https://doi.org/10.1109/ICPP.2014.55
https://doi.org/10.1109/ISCA.2016.27
http://dl.acm.org/citation.cfm?id=313559.313605
http://dl.acm.org/citation.cfm?id=313559.313605
http://quid.hpl.hp.com:9081/cacti/
https://doi.org/10.1145/2541940.2541952
https://doi.org/10.1145/2693260
https://doi.org/10.1145/2693260
https://doi.org/10.1109/IISWC.2008.4636089
https://doi.org/10.1109/ICPADS.2012.18
https://doi.org/10.1109/ICPADS.2012.18
https://doi.org/10.1109/PACT.2011.41
https://doi.org/10.1109/MICRO.2010.20
https://doi.org/10.1109/MICRO.2010.20
https://doi.org/10.1109/HPCA.2012.6168950
https://doi.org/10.1145/2540708.2540725
https://doi.org/10.1145/1378533.1378583
https://doi.org/10.1145/1378533.1378583
https://doi.org/10.1145/1669112.1669132
https://doi.org/10.1145/1669112.1669132
https://doi.org/10.1145/1815961.1815986
https://doi.org/10.1145/2544137.2544139
https://doi.org/10.1145/2628071.2628076
https://doi.org/10.1145/2628071.2628076

	Abstract
	1 Introduction
	2 Background
	2.1 Transactional Memory and Snapshot Isolation

	3 Versioned Memory Subsystem
	4 Resolving Write Skew Anomaly
	4.1 Detecting Dependency Loops Using Post-Dating
	4.2 Making Post-Dating Scalable
	4.3 Overhead

	5 Interaction with existing GPU HTM
	6 Experiment Setup
	7 Results
	7.1 Speedup Analysis
	7.2 Dependency Loop Detection
	7.3 Sensitivity to Number of Versions and Postdating Delta

	8 Related Works
	9 Conclusion
	10 Acknowledgements
	References

