
CS-16

1

Abstract—As the processor architectures are evolving, it is

very important to develop appropriate benchmarks that are used
to measure their performance. Also, it is very important to de-
sign appropriate compilers that can optimally utilize the new
features of the evolving processors. For this we need to have a
complete insight on the performance characteristics and the im-
pact of compilers on performance characteristics of the bench-
marks. In this paper, we first report performance characteriza-
tion of SPEC CPU2006 suite on Intel Core 2 Duo processor
which represents an emerging popular computing platform. Sec-
ond, we compare the effects of two widely used C++ compilers:
Intel C++ and Microsoft VC++ compilers. Performance charac-
teristics include Instruction per cycle (IPC), run time, cache miss
rate and branch miss rate are measured and reported. Our re-
sults showed that Intel Compiler has better performance than
Microsoft VC++ compilers for a majority of SPEC CPU2006
C/C++ programs running on Intel Core 2 Duo Processor.

Index Terms— SPEC CPU2006, Intel Core 2 Duo, Intel C++
Compiler, Microsoft VC++ Compiler.

 Area of Interests: 5.5 Computer Architecture

I. INTRODUCTION

ITH the evolution of processor architecture over time,
benchmarks that were used to measure the performance

of these processors are not as useful today as they were before
due to their inability to stress the new architectures to their
maximum capacity in terms of clock cycles, cache, main
memory and I/O bandwidth. Hence new and improved
benchmarks need to be developed and used. The SPEC
CPU2006 [9] is one such benchmark that has intensive work-
loads based on real applications and is the successor of the
SPEC CPU2000 benchmark [9]. Also, the need of appropriate
compilers to keep up with those advanced architectures to
maximize the performance has evoked interests in researchers
to understand the impact of compilers on performance charac-
teristics.

Manuscript received Oct. 12, 2007. This work is supported in part by the

Louisiana Board of Regents grants NSF (2006)-Pfund-80 and LEQSF (2006-
09)-RD-A-10, the Louisiana State University and an ORAU Ralph E. Powe
Junior Faculty Enhancement Award.

Tribuvan Kumar Prakash is with Realization Technologies, Inc., San Jose,
CA 95113 USA (email: tribuvan@gmail.com).

Lu Peng, is with the Electrical and Computer Engineering Department,
Louisiana State University, Baton Rouge, LA 70803 USA (phone: 1-225-578-
5535, fax: 1-225-578-5200, email: lpeng@lsu.edu).

This paper presents a detailed analysis of the SPEC
CPU2006 benchmark running on Intel Core 2 duo processor
[4] and emphasizes on its workload characteristics and mem-
ory system behavior. We compare the CPU2006 and
CPU2000 benchmarks with respect to performance bottle-
necks by using the Intel VTune performance analyzer [5] for
the entire program execution. Also, the various performance
aspects of two popularly used C/C++ compilers: Intel C++ 9.1
[3] and Microsoft Visual C++ 2005 [7] are compared.

The Intel C++ compiler 9.1 for Windows provides ad-
vanced optimization features that maximize performance for
applications running on the latest Intel processors, including
Chip Multi-processors (CMP). Key features of Intel C++ 9.1
compiler include multi-threaded application support, multi-
core development support, Microsoft Visual Studio 200X in-
tegration and advanced optimization like Interprocedural Op-
timization (IPO), Profile-guided Optimization (PGO), Auto-
matic Vectorizer and High-Level Optimization (HLO) [3]. On
the other hand, Microsoft Visual C++ 2005 [7] is an integrated
development environment (IDE) product developed by Micro-
soft. It has features such as syntax highlighting, IntelliSense (a
coding auto completion feature) and advanced debugging
functionality. It includes MFC (Microsoft Foundation Classes)
8.0 and support for the C++/CLI language and OpenMP.

According to our measurements, CPU2006 benchmarks
have larger input dataset and longer execution time than those
of CPU2000. Our results also show that apart from architec-
tural features, compilers also have high impact on perform-
ance. For some application such as hmmer and h264ref, Intel
C++ shows its superiority in performance over Microsoft
VC++ compiler. In addition, it also shows better microarchi-
tecture performance in L2 cache miss rate and branch miss
rate for most of programs because of its specific optimizations
on Intel Core architecture. However, its larger dynamic in-
struction counts compromises this effect for some floating
programs such as lbm.

The remainder of this paper is organized as follows. Section
II describes the methodology. Section III reports the perform-
ance characterization of SPEC CPU2006 and CPU2000 on
Intel Core 2 Duo processor. Section IV details the comparison
of performance characteristics for Intel C++ 9.1 and Microsoft
Visual C++ 2005 compilers on SPEC CPU2006. Section V
describes the related work. Lastly, section VI gives a brief
conclusion obtained from our analysis.

Performance Characterization of SPEC CPU2006
Benchmarks on Intel Core 2 Duo Processor

Tribuvan Kumar Prakash and Lu Peng, Member, IEEE Computer Society

W

CS-16

2

II. METHODOLOGY
We installed Microsoft Visual C++ 2005 (also known as

VC++ 8) and Intel C++ compiler 9.1 on 32 bit Windows XP
with SP2 operating system running on Intel Core 2 Duo
E6400 processor with 2.13GHz. The specification of Intel
Core 2 Duo machine is shown in table 1.

For performance characterization of SPEC CPU2006
benchmark suite, all the integer and floating point programs
were considered. The details of the applications in the bench-
mark suite can be found in [9]. We also made a comparison
with SPEC CPU2000 C/C++ programs. Microsoft Visual C++
2005 and Intel FORTRAN Compiler 9.1 were used to compile
most of the applications under consideration except for lib-
quantum, xalancbmk, calculix, povray, tonto, wrf and zeusmp
due to compilation problems. Therefore, we compiled these
programs using the Intel C++ 9.1 compiler.

After that, a subset of C/C++ SPEC CPU2006 benchmark
suite was used to analyze the performance characteristics of
the two compilers under consideration. We use the fastest
speed compilation flags for both compilers. For the Microsoft
VC++ compiler, we set “-O2”, while for the Intel C++ com-
piler we set “-fast” which is equal to “-O3 –ipo -xP” [3].

All benchmark applications were analyzed using Intel(R)
VTune(TM) Performance Analyzer 8.0.1. At a given time,
Intel(R) VTune(TM) Performance Analyzer 8.0.1 can measure
only certain definite number of events, depending upon the
configuration; hence, several complete runs were made to
measure all the events. Event based sampling was selected for
monitoring. We measured microarchitecture events such as
L1D cache miss, L2 cache misses, DTLB misses, Instruction
per Cycle (IPC), branch misprediction, etc.

III. CHARACTERIZATION OF SPEC CPU2006 BENCHMARK
Compared with CPU2000 programs, CPU2006 benchmarks

have larger input dataset and longer execution time. Accord-
ing to our measurement, the execution time for CPU2000 pro-
grams ranges from 56-170 seconds while those for CPU2006

benchmarks ranges from 563-1590 seconds on the Intel Core
2 Duo system.

Figure 1(a) and Figure 1(b) depict the Instruction per Cycle
(IPC) of CPU2006 and CPU2000 respectively. The average
IPC for CPU2006 and CPU2000 benchmarks were measured
at 0.97 and 1.1 respectively. From the figures, it can be ob-
served that mcf, omnetpp and lbm have low IPC among
CPU2006 benchmarks, while mcf, art and swim have low IPC
among the CPU2000 benchmarks.

Figure 2(a) and Figure 2(b) represent the instruction retired
profile of CPU2006 and CPU2000 respectively. It is evident
from the figure that a very high percentage of instructions
retired consist of loads and stores. CPU2006 benchmarks like
h264ref, hmmer, bwaves, lesli3d and gemsfdtd have compara-
tively high percentage of loads while gcc, libquantum, mcf,
perlbench, sjeng, xalancbmk and gamess have high percentage
of branch instructions. On the other hand, CPU2000 bench-
marks like gap, parser, vortex, applu, equake, fma3d, mgrid
and swim have comparatively high percentage of loads while
almost all integer programs have high percentage of branch
instructions.

 Higher percentage of load and store instructions retired or
higher percentage of branches do not necessary indicate the
presence of more bottlenecks. For example, h264ref and perl-
bench have high percentage of load, store and branch instruc-
tions, but they also have comparatively high IPC. Similarly
among CPU2000 benchmarks crafty, parser and perl have
high percentage of load, store and branch instruction and have
better IPC. To get a better understanding of the bottlenecks of

Figure 1(a)

Figure 1(b)

Figure 1(a) IPC of SPEC CPU2006 Benchmarks;
(b) IPC of SPEC CPU2000 Benchmarks

TABLE I
SYSTEM SPECIFICATION

CPU Intel Core 2 Duo E6400 (2 x 2.13GHz)
Technology 65nm
Transistors 291 Millions
Hyperthreading No
Branch Predictor Combined three types of predictors - global,

bi-modal and loop detectors.
L1 Cache Code and Data: 32 KB X 2, 8 way, 64–byte

cache line size, write-back
L2 Cache 2MB shared cache (2MB x 1), 8-way, 64-

byte line size, non-inclusive with L1 cache.
L1 TLB size Instructions: 128 entries

Data: 256 entries
Memory 2GB (1GB x 2) DDR2 533MHz
FSB 1066MHz Data Rate 64-bit
FSB bandwidth 8.5GB/s
HD Interface SATA 375MB/s

CS-16

3

these benchmarks, L1 data cache misses per 1000 instructions,
L2 cache misses per 1000 instructions and branch mispredic-
tion per 1000 instructions were measured and analyzed.

Figure 3(a) and 3(b) indicates the L1 cache misses per 1000
instructions of CPU2006 and CPU2000 benchmarks. The re-
sults show that there is no significant improvement in
CPU2006 than CPU2000 with respect to stressing the L1
cache. The average L1D cache misses per 1000 instructions
for cpu2006 and cpu2000 benchmark set under consideration
was found to be 22.5 and 27 respectively. The mcf benchmark
has highest L1 cache misses per 1000 instructions in both
CPU2000 and CPU2006 benchmarks. This is one of the sig-
nificant reasons for its low IPC.

Mcf is a memory intensive integer benchmark written in C
language. Code analysis using Intel(R) VTune(TM) Perform-
ance Analyzer 8.0.1 shows that the key functions responsible
for stressing the various processor units are primal_bea_mpp
and refresh_potential. Primal_bea_mpp (72.6%) and re-
fresh_potential (12.8%) together are responsible for 85% of
the overall L1 data cache miss events.

A code sample of primal_bea_mpp function is shown in
Figure 4. The function traverses an array of pointer (denoted
by arc_t) to a set of structures. For each structure traversed, it
optimizes the routines used for massive communication. In the
code under consideration, pointer chasing in line 6 is respon-
sible for more than 50% of overall L1D cache misses for the
whole program. Similar result for mcf in CPU2000 was also
found in previous work [11]. Apart from mcf, lbm have com-
paratively significant L1 cache misses rate in CPU2006 and
mcf, art and swim have comparatively significant L1 cache

misses rate in CPU2000.
We also measured L1 DTLB misses for SPEC CPU2006.

Only a few programs have L1 DTLB miss rates equal to or
larger than 1%. They are astar (1%), mcf (6%), omnetpp (1%)
and cactusADM (2%). Some programs have very small L1
DTLB miss rate, for example, the miss rates for hammer and
gromacs are 3.3*10-5 and 6.2*10-5 respectively.

Figure 5(a) and 5(b) represent the L2 cache misses per 1000
instructions of CPU2006 and CPU2000 SPEC benchmarks
respectively. The average L2 cache misses per 1000 instruc-
tions for CPU2006 and CPU2000 benchmarks under consid-
eration was found to be 4.1 and 2.6 respectively. Lbm has the
highest L2 cache misses which attributes for its low IPC. Lbm
(Lattice Boltzmann Method) is a floating point based bench-
mark written in C language. It is used in the field of fluid dy-
namics to simulate the behavior of fluids in 3D. Lbm has two
steps of accessing memory, namely I) streaming step, in which
values are derived from neighboring cells and ii) linear mem-
ory access to read the cell values (collide-stream) and write
the values to the cell (stream-collide) [9].

 Code analysis reveals that LBM_performStreamCollide
function used to write the values to the cell is responsible for
99.98% of the overall L2 cache miss events. A code sample of
the same function is shown in Figure 6(a). A macro
“TEST_FLAG_SWEEP” is responsible for 21% of overall L2
cache misses. The definition of TEST_FLAG_SWEEP is
shown in Figure 6(b). The pointer *MAGIC_CAST dynami-
cally accesses memory accesses over 400MB of data which is
much larger than the available L2 cache size (2MB), resulting
in very high L2 cache misses. Hence it can be concluded that

Figure 2(a) Figure 3(a)

CPU2000 Instruction Profile

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

BZ
IP

CR
A

FT
Y

G
A

P

G
CC

G
ZI

P

M
CF

PA
RS

ER

PE
RL

TW
O

LF

V
O

RT
EX V
PR

A
M

M
P

A
PP

LU A
RT

EQ
U

A
K

E

FA
CE

RE
C

FM
A

3D

G
A

LG
EL

LU
CA

S

M
ES

A

M
G

RI
D

SI
X

TR
A

K

SW
IM

W
U

PW
IS

E

%

load store
branch other

Figure 2(b)
Figure2 (a) Instruction Profile of SPEC CPU2006 Benchmark;

(b) Instruction Profile of SPEC CPU2000 Benchmark

Figure 3(b)
Figure 3 (a) L1 D Cache Misses Per 1000 Instruction of SPEC CPU2006

Benchmarks; (b) L1 D Cache Misses Per 1000 Instruction of SPEC
CPU2000 Benchmarks

CS-16

4

lbm has very large data footprint which results in high stress
on L2 cache. For mcf, Primal_bea_mpp (33.4%) and re-
fresh_poten-tial (20.2%) are two major functions resulting in
L2 cache misses. Intensive pointer chasing is responsible for
this.

Figure 7(a) and 7(b) represents the branch mispredicted per
1000 instructions of CPU2006 and CPU2000 SPEC bench-
marks. CPU2006 benchmarks have comparatively higher
branch misprediction than CPU2000 benchmark and almost
all floating point benchmarks under consideration have negli-
gible branch misprediction comparatively. The average branch
mispredicted per 1000 instructions for CPU2006 and
CPU2000 integer benchmarks were measured as 4.2 and 4.0
respectively and the average branch misprediction per 1000
instructions for CPU2006 and CPU2000 floating point

benchmarks were measured as 0.38 and 0.08 respectively.
Thus from the results analyzed so far we can conclude that

the cpu2006 benchmarks have larger data sets and requires
longer execution time than its predecessor CPU2000 bench-
marks.

IV. MICROSOFT VC++ VS. INTEL C++
In this section, we compared compiler effects on SPEC

CPU2006. We first compared static code size and dynamic
instruction counts. Table 2 lists static code size of binaries
generated by both compilers. In general, we observed that
Intel C++ binaries are larger than those generated by the Mi-
crosoft VC++ compiler. Figure 8 shows the profile of Instruc-
tion Retired comparison between Microsoft VC++ and Intel
C++. The vertical axis represents the absolute number of in-

Figure 4 Code Sample of MCF

Figure 6 Code Sample of LBM

Figure 5(a)

Figure 7(a)

Figure 5(b)

Figure 5(a) L2 Cache Misses Per 1000 Instructions of SPEC CPU2006
Benchmarks; (b) L2 Cache Misses Per 1000 Instruction of SPEC CPU2000

Benchmarks

Figure 7(b)

Figure 7(a) Branch Misprediction Per 1000 Instruction of SPEC CPU2006
Benchmarks; (b) Branch Misprediction Per 1000 Instruction of SPEC

CPU2000 Benchmarks

CS-16

5

structions brake down by types. A few observations can be
made:

(1) For 9 out of 15 programs, dynamic instructions retired
for Intel C++ binaries are smaller than those generated by the
Microsoft VC++ compiler though the former have larger static
code size.

(2) The percentage of load and store instructions is lower in
most cases for binaries generated from Intel C++ compiler
compared to that of Microsoft VC++ binaries. Hence, Intel
C++ compiler reduces the number of memory accesses com-
paratively.

(3) The percentage of branch instructions is closely same
for both Intel C++ and Microsoft VC++ binaries. Other in-
structions consist of various integer and floating point instruc-
tions which on an average comprise for approximately 37%
and 32% of the overall instructions, for Intel C++ binaries and
Microsoft C++ binaries respectively.

We then compared the normalized runtime for Intel C++
and Microsoft VC++ compilers running SPEC CPU2006
benchmarks. For normalization, the runtime of Microsoft
VC++ was considered to be the base runtime. Figure 9 shows
the normalized runtime for Intel C++ and Microsoft VC++
compilers. From the figure, it is evident that the runtime for
most of the applications are very close. However, for applica-

tions hmmer and h264ref there is a drastic decrease in runtime
while running with Intel C++ compiler. Microsoft VC++
shows improvement in runtime for floating programs lbm,
soplex and sphinx3.

To better understand the performance impact of compilers,
we compared various performance matrics. We analyzed the
L1D cache misses per 1000 instructions, L2 cache misses per
1000 instructions and branch misprediction per 1000 instruc-
tions for binaries generated by the Intel C++ and Microsoft
VC++ compiler. Figure 10 shows the comparison of L1D
cache misses per 1000 instructions. From this figure, the total
number of L1D cache misses rate is almost the same for both
compliers except for sphinx3 and soplex. The L1 data cache
rate gap between Intel C++ and Microsoft VC++ is responsi-
ble for the execution time difference for these two programs.

Figure 11 shows the comparison of L2 cache misses per
1000 instructions for both compilers. The figure shows that
there was considerable improvement in L2 cache misses rate
for memory intensive applications such as mcf, lbm, perlbench
and soplex in the case of Intel C++ compiler compared to that
of Microsoft VC++ compiler. From this figure, we can con-
clude that Intel C++ compiler, which utilizes more features of
Intel Core 2 Duo processor, has better memory performance
than that of Microsoft VC++.

Figure 12 shows the branch misprediction rate. From this
figure, it can be observed that astar, h264ref, hmmer and om-
netpp show improvement in branch misprediction rate when
running with Intel C++ compiler compared to that with Mi-
crosoft VC++ compiler. Other programs show similar behav-
iors.

In general, we find that Intel C++ compiler shows superior
performance for hammer and h264ref. In addition, it also
shows better microarchitecture performance in L2 cache miss
rate and branch miss rate for most of programs. However, its
larger dynamic instruction counts compromises this effect for
some floating programs such as lbm.

V. RELATED WORK
Researchers in computer architecture area show strong in-

terests in performance characterization of CPU2006. Sarah et
al [1] reported the performance characterization of SPEC

Figure 8. CPU2006 Instruction Retired Profile (VC vs. ICC)

TABLE II
STATIC CODE SIZE (IN BYTES) OF BINARIES GENERATED BY

MICROSOFT VC++ AND INTEL C++
Name / Bytes VC++ IC++

ASTAR 126976 163840
BZIP2 122880 163840
GCC 2744320 3788800

GOBMK 3190784 3792896
H264REF 552960 1294336
HMMER 237568 323584

MCF 90112 106496
OMNETPP 724992 1286144

PERLBENCH 978944 1536000
SJENG 188416 266240
LBM 102400 102400
MILC 180224 323584

NAMD 356352 561152
SOPLEX 409600 1093632
SPHINX3 262144 393216

CS-16

6

CPU2006 and analyzed the impact of “Macro fusion” and
“Micro-op fusion” of the Woodcrest processor. These results
parallel our own upon which this paper is based. Ye et al [10]
compared CPU2006 integer benchmark binaries in 64-bit and
32-bit formats on an x86-64 architecture based processor.

The effect of compilers and compiler optimizations on ap-
plication performance has been studied and analyzed for a
long time. Gurumani and Milenkovic studied the execution
characteristics of Visual C++ 6.0 and Intel C++ on Pentium 4
processor using SPEC CPU2000 benchmark suite in [2]. They
concluded that Intel C++ compilers performed better for
graphics and visualization applications.

Compared with software simulation, using Intel VTune per-
formance analyzer and performance counters in real proces-
sors is a fast and feasible way to characterizing emerging
workloads. There are a few recent works analyzing Bioinfor-
matics and Data Mining workload [6][8] by performance
counters and VTune analyzer.

VI. CONCLUSION
In this paper, we analyzed the emerging CPU2006 on Intel

Core 2 Duo processor. According to our measurements,
CPU2006 benchmarks have larger input dataset and longer
execution time than those of CPU2000. Our results also show
that apart from architectural features, compilers also have high
impact on performance. For some application such as hammer
and h264ref, Intel C++ shows its superiority in performance
over Microsoft VC++ compiler. In addition, it also shows bet-
ter performance in L2 cache miss rate and branch miss rate for
most of programs because of its specific optimizations on Intel
Core architecture. However, its larger dynamic instruction

counts compromises this effect for some floating programs
such as lbm.

REFERENCES
[1] S. Bird, A. Phansalkar, L K. John, A. Mericas and and R. Indukuru,

“Performance Characterization of SPEC CPU Benchmarks on Intel's
Core Microarchitecture based processor”, in Proceedings of 2007 SPEC
Benchmark Workshop, Jan 2007.

[2] S. T. Gurumani and A. Milenkovic, “Execution Characteristics of SPEC
CPU2000 Benchmarks:Intel C++ vs. Microsoft VC++”, in Proceedings
of the 42nd ACM annual southeast regional conference, 2004.

[3] Intel, Intel C++ Compiler 9.1 for Windows,
http://cache.www.intel.com/cd/00/00/28/48/284831_284831.pdf

[4] Intel, Announcing Intel Core 2 Processor Family Brand,
http://www.intel.com/products/processor/core2/index.htm

[5] Intel, Intel VTune Performance Analyzer, http://www.intel.com/cd
/software/products/asmona/eng/vtune/239144.htm

[6] Y. Li, T. Li, T. Kahveci, and J. Fortes. Workload characterization of
bioinformatic applications. In Proceedings of IEEE International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Tele-
communication Systems (MASCOTS), 2005.

[7] Microsoft, 32-bit Optimizations and Command-Line Switches,
http://msdn.microsoft.com/vstudio/tour/vs2005_guided_tour/VS2005pro
/Framework/CPlus32BitOptimization.htm

[8] B. Ozisikyilmaz, R. Narayanan, J. Zambreno, G. Memik, A. Choudhary,
An Architectural Characterization Study of Data Mining and Bioinfor-
matics Workloads, in Proceedings of IEEE International Symposium on
Workload Characterization, Oct. 2006.

[9] SPEC, SPEC CPU2000 and CPU2006, http://www.spec.org/
[10] D.Ye, J. Ray, C. Harle and D. Kaeli, Performance Characterization of

SPEC CPU2006 Integer Benchmarks on x86-64 Architecture, in Pro-
ceedings of IEEE International Symposium on Workload Characteriza-
tion, Oct. 2006.

[11] H. Zhou and T. M. Conte, “Enhancing memory level parallelism via
recovery-free value prediction,” Proceedings of the 17th annual interna-
tional conference on Supercomputing (ICS), Jun. 2003.

Figure 9. Runtime Comparison

Figure 10. Comparison of L1D Cache Miss Per 1000 Instructions

Figure 11. Comparison of L2 Cache Miss Per 1000 Instructions

Figure 12. Comparison of Branch Mis-prediction Per 1000 Instruction

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

