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Abstract — In recent years, modern graphics processing units 
have been widely adopted in high performance computing areas 
to solve large scale computation problems. The leading GPU 
manufacturers Nvidia and ATI have introduced series of prod-
ucts to the market. While sharing many similar design concepts, 
GPUs from these two manufacturers differ in several aspects on 
processor cores and the memory subsystem. In this paper, we 
conduct a comprehensive study to characterize the architectural 
differences between Nvidia’s Fermi and ATI’s Cypress and 
demonstrate their impact on performance. Our results indicate 
that these two products have diverse advantages that are re-
flected in their performance for different sets of applications. In 
addition, we also compare the energy efficiencies of these two 
platforms since power/energy consumption is a major concern 
in the high performance computing.  
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I.  INTRODUCTION 

With the emergence of extreme scale computing, modern 
graphics processing units (GPUs) have been widely used to 
build powerful supercomputers and data centers. With large 
number of processing cores and high-performance memory 
subsystem, modern GPU is a perfect candidate to facilitate 
high performance computing (HPC). As the leading manufac-
turers in the GPU industry, Nvidia and ATI have introduced 
series of products that are currently used in several preemi-
nent supercomputers. For example, in the Top500 list released 
in Jun. 2011, the world’s second fastest supercomputer 
Tianhe-1A installed in China employs 7168 Nvidia Tesla 
M2050 general purpose GPUs [11]. LOEWE-CSC, which is 
located in Germany and ranked at 22nd in the Top500 list [11], 
includes 768 ATI Radeon HD 5870 GPUs for parallel compu-
tations. 

Although typical Nvidia and ATI GPUs are close to each 
other on several design specifications; they deviate in many 
architecture aspects from processor cores to the memory hie-
rarchy. In this paper, we measure and compare the perfor-
mance and power consumption of two recently released 
GPUs: Nvidia GeForce GTX 580 (Fermi) [7] and ATI Rade-
on HD 5870 (Cypress) [4]. By running a set of representative 
general-purpose GPU (GPGPU) programs, we demonstrate 
the key design difference between the two platforms and illu-
strate their impact on the performance.  

The first architectural deviation between the target GPUs 
is that the ATI product adopts very long instruction word 
(VLIW) processors to carry out computations in a vector-like 
fashion. Typically, in an n-way VLIW processor, up to n data-
independent instructions can be assigned to the slots and be 
executed simultaneously. Obviously, if the n slots can always 

be filled with valid instructions, the VLIW architecture will 
outperform the traditional design. Unfortunately, this is not 
the case in practice because the compiler may fail to find suf-
ficient independent instructions to generate compact VLIW 
instructions. On average, if m out of n slots are filled during 
an execution, we say the achieved packing ratio is m/n. The 
actual performance of a program running on a VLIW proces-
sor largely depends on the packing ratio. On the other hand, 
the Nvidia GPU uses multi-threading execution to execute 
code in a Single-Instruction-Multiple-Thread (SIMT) fashion 
and explores thread-level parallelism to achieve high perfor-
mance.  

The second difference between two GPUs exists in the 
memory subsystem. Both GPUs involve a hierarchical organ-
ization consisting of the L1 cache, L2 cache, and the global 
memory. On the GTX 580 GPU, the L1 cache is configurable 
to different sizes and can be disabled by setting a compiler 
flag. The L1 cache on the HD 5870 is less flexible and can 
only be used to cache image objects and constants. The L2 
caches on both GPUs are shared among all hardware multi-
processor units. All global memory accesses go through the 
L2 in GTX 580, while only image objects and constants use 
the L2 in HD 5870. Given these differences, we will investi-
gate and compare the memory system of the target GPUs. 

Thirdly, power consumption and energy efficiency is be-
coming a major concern in high performance computing 
areas. Due to the large amount of transistors integrated on 
chip, a modern GPU is likely to consume more power than a 
typical CPU. The resultant high power consumption tends to 
generate substantial heat and increase the cost on the system 
cooling, thus mitigating the benefits gained from the perfor-
mance boost. Both Nvidia and ATI are well aware of this 
issue and have introduced effective techniques to trim the 
power budget of their products. For instance, the PowerPlay 
technology [1] is implemented on ATI Radeon graphics 
cards, which significantly drops the GPU idle power. Similar-
ly, Nvidia use the PowerMizer technique [8] to reduce the 
power consumption of its mobile GPUs. In this paper, we 
measure and compare energy efficiencies of these two GPUs 
for further assessment.  

One critical task in comparing diverse architectures is to 
select a common set of benchmarks. Currently, the program-
ming languages used to develop applications for Nvidia and 
ATI GPUs are different. The Compute Unified Device Archi-
tecture (CUDA) language is majorly used by Nvidia GPU 
developers, whereas the ATI community has introduced the 
Accelerated Parallel Processing technology to encourage en-
gineers to focus on the OpenCL standard. To select a com-
mon set of workloads, we employ a statistical clustering tech-



nique to select a group of representative GPU applications 
from the Nvidia and ATI developer’s SDK, and then conduct 
our studies with the chosen programs. According to the expe-
riment results, we can make several interesting observations: 

 For programs that involve significant data dependen-
cy and are difficult to generate compact VLIW bun-
dles, the GTX 580 (Fermi) is more preferable from 
the standpoint of high performance. In contrast, the 
ATI Radeon HD 5870 (Cypress) is a better option to 
run programs where sufficient instructions can be 
found to compact the VLIW slots. 

 The GTX 580 GPU outperforms its competitor on 
double precision computations. The Fermi architec-
ture is delicately optimized to deliver high perfor-
mance in double precision, making it more suitable in 
solving problems with high precision requirement. 

 Memory transfer speed between the CPU and GPU is 
another important performance metrics which impact 
the kernel initiation and completion. Our results show 
that Nvidia generally has higher transfer speed. Be-
sides the lower frequency of the device memory on 
the ATI HD 5870 GPU [4][7], another reason is that 
the memory copy in CUDA has smaller launch over-
head compared to the ATI OpenCL counterpart.   

 According to our experiments, the ATI Radeon HD 
5870 consumes less power in comparison with the 
GTX 580. If a problem can be solved on these two 
GPUs in similar time, the ATI GPU will be more 
energy efficient. 

The remainder of this paper is organized as follows. In 
section II, we introduce the architecture of these two graphics 
processing units. We describe our experiment methodology 
including the statistical clustering technique in section III. 
After that, we analyze and compare the different characteris-
tics of the target GPUs and their impact on performance and 
energy efficiency by testing the selected benchmarks in sec-
tion IV. We review the related work in section V and finally 
draw our conclusion in section VI.         

II. BACKGROUND    

In this section, we describe the architecture organizations 
of Nvidia GTX 580 and ATI Radeon HD 5870. We also brief-
ly introduce the programming languages that are used on 
these GPUs. A summary of manufacturing parameters of 

these two GPUs along with a description of the host system is 
listed in Table I [4][7].     

A. Fermi Architecture 

Fermi is the latest generation of CUDA-capable GPU ar-
chitecture introduced by Nvidia [13]. Derived from prior fam-
ilies such as G80 and GT200, the Fermi architecture has been 
improved to satisfy the requirements of large scale computing 
problems. The GeForce GTX 580 used in this study is a Fer-
mi-generation GPU [7]. Figure 1(a) illustrates its architectural 
organization [13]. As can be seen, the major component of 
this device is an array of streaming multiprocessors (SMs), 
each of which contains 32 CUDA cores. There are 16 SMs on 
the chip with a total of 512 cores integrated in the GPU. With-
in a CUDA core, there exist a fully pipelined integer ALU 
and a floating point unit (FPU). In addition to these regular 
processor cores, each SM is also equipped with four special 
function units (SFU) which are capable of executing tran-
scendental operations such as sine, cosine, and square root.  

The design of the fast on-chip memory is an important 
feature on the Fermi GPU. In specific, this memory region is 
now configurable to be either 16KB/48KB L1 cache/shared 
memory or vice versa. Such a flexible design provides per-
formance improvement opportunities to programs with differ-
ent resource requirement. Another subtle design is that the L1 
cache can be disabled by setting the corresponding compiler 
flag. By doing that, all global memory requests will be by-
passed to the 768KB L2 cache shared by all SMs directly. 
Note that in the following sections, we may use the term Fer-
mi, GTX 580, and Nvidia GPU interchangeably. 

The CUDA programming language is usually used to de-
velop programs on Nvidia GPUs. A CUDA application 

                                  
(a) GTX 580    (b) Radeon HD 5870        (c) VLIW processor in HD 5870 

Figure 1. Architecture of target GPUs

TABLE I. SYSTEM INFORMATION

GPU information 
Parameter GTX 580 Radeon HD 5870

Technology 40nm 40nm
#Transistors 3.0 billion 2.15 billion

Processor clock 1544 MHz 850 MHz
#Execution units 512 1600

GDDR5 clock rate 2004 MHZ 1200 MHz
GDDR5 bandwidth 192.4 GB/s 153.6 GB/s

Host system information 
CPU Intel Xeon E5530 AMD Opteron 6172

Main memory type PC3-8500 PC3-8500
Memory size 6GB 6GB



launches at least one kernel running on the GPU. To improve 
the parallelism, a typical kernel includes several blocks, each 
of which is further composed of many threads. During a ker-
nel execution, multiple blocks are assigned to an SM accord-
ing to the resource requirement. Each block has multiple 
threads and 32 threads form a warp. A warp is the smallest 
scheduling unit to be run on the hardware function units in an 
SIMT fashion for optimal performance. 

B. Cypress Architecture 

Cypress is the codename of the ATI Radeon HD 5800 se-
ries GPU [12]. The architecture organization is shown in Fig-
ure 1(b). In general, it is composed of 20 Single-Instruction-
Multiple-Data (SIMD) computation engines and the underly-
ing memory hierarchy. Inside an SIMD engine, there are 16 
thread processors (TP) and 32KB local data share. Basically, 
an SIMD engine is similar to a stream multiprocessor (SM) 
on an Nvidia GPU while the local data share is equivalent to 
the shared memory on an SM. Each SIMD also includes a 
texture unit with 8KB L1 cache. 

Unlike the CUDA cores in an SM, a thread processor 
within an SIMD is a five-way VLIW processor. We demon-
strate this in the Figure 1(c) by visualizing the internal archi-
tecture of a thread processor. As shown in the figure, each TP 
includes five processing elements, four of which are ALUs 
while the remaining one is a special function unit. In each 
cycle, data-independent operations assigned to these 
processing elements constitute a VLIW bundle and are simul-
taneously executed. In this paper, we use the term HD 5870, 
Cypress GPU, and ATI GPU to represent the same device. 

For software developers working on ATI GPUs, the Open 
Computing Language (OpenCL) is the most popular pro-
gramming tool. OpenCL is similar to CUDA in many design 
concepts. For example, an OpenCL kernel may include a 
large amount of work-groups which can be decomposed of 
many work-items. This relation is comparable to that between 
CUDA blocks and threads. In addition, 64 work-items consti-
tute a wavefront, similar to a warp in CUDA.  

III. METHODOLOGY 

A. Experimental Setup 

Our studies are conducted on two separate computers, 
equipped with an Nvidia Geforce GTX 580 and an ATI 
Radeon HD 5870 GPU respectively. The CUDA toolkit ver-
sion 3.2 [5] is installed on the Nvidia system while the ATI 
Stream SDK version 2.1 [3] is used on the ATI computer. 
Both development kits provide visual profilers [1][5] for the 
performance analysis.  

For power analysis, the power consumption of a GPU can 
be decoupled into the idle power Pi_gpu and the runtime power 
Pr_gpu. To estimate the GPU idle power, we first use a 
YOKOGAWA WT210 Digital Power Meter to measure the 
overall system power consumption Pidle_sys when the GPU is 
added on. We then record the power Pidle_sys_ng by removing 
the GPU from the system. No application is running during 
these two measurements; therefore, the difference between 
them (i.e., Pidle_sys – Pidle_sys_ng) denotes the GPU idle power. 
When the GPU is executing a CUDA or OpenCL kernel, we 
measure the system power Prun_sys and calculate the GPU run-
time power as Prun_sys – Pidle_sys. By summing up Pi_gpu and 

Pr_gpu, we obtain the power consumption of the target GPU 
under stress. Note that Pi_gpu is a constant while Pr_gpu is vary-
ing across different measurements. For the sake of high accu-
racy, we measure the power consumption of each program 
multiple times and use their average for the analysis. 

B. Statistical Clustering 

As described in section I, modern GPUs have been deli-
cately designed to better execute large scale computing pro-
grams from different domains. Therefore, we choose the gen-
eral purpose applications from SDKs to carry out our investi-
gation. In total, the Nvidia application suite contains 53 such 
applications while the ATI set including 32 different bench-
marks. Considering that both SDKs include tens of programs, 
it will be fairly time consuming to understand and study each 
of the problems in detail. Previous studies show that it is ef-
fective to use a small set of applications to represent the entire 
benchmark suite, in order to investigate the underlying CPU 
hardware [31]. We believe that this approach can be also ap-
plied to the GPU study. In this work, we employ a statistical 
clustering technique to choose the most representative pro-
grams from the SDKs.  

Cluster analysis is often used to group or segment a col-
lection of objects into subsets or “clusters”, so that the ones 
assigned to the same cluster tend to be closer to each other 
than those in different clusters. Most of the proposed cluster-
ing algorithms are mainly heuristically motivated (e.g., k-
means), while the issue of determining the "optimal" number 
of clusters and choosing a "good" clustering algorithm are not 
yet rigorously solved [20]. Clustering algorithms based on 
probability models offer an alternative to heuristic-based al-
gorithms. Namely, the model-based approach assumes that 
the data are generated by a finite mixture of underlying prob-
ability distribution such as multivariate normal distributions. 
Studies have shown that the finite normal mixture model is a 
powerful tool for many clustering applications [15][16][28].    

In this study, we assume that the data are generated from a 
finite normal mixture model and apply the model-based clus-
tering. In order to select the optimal number of clusters, we 
compute the Bayesian Information Criterion (BIC) [34] given 
the maximized log-likelihood for a model. The BIC is the 
value of the maximized log-likelihood plus a penalty for the 
number of parameters in the model, allowing comparison of 
models with differing parameterizations and/or differing 
numbers of clusters. In general, the larger the value of the 
BIC, the stronger the evidence for the model and number of 
clusters is [21]. This means that the clustering which yields 
the largest BIC value is the optimal. In this paper, model-
based clustering is run by using the mclust, which is contri-
buted by Fraley and Raftery [21]. 

C. Procedure Overview 

Our approach consists of three steps. First, we use the vis-
ual profilers to collect the execution behaviors of all general 
purpose applications included in the SDKs. Some applications 
provide more than one kernel implementations with different 
optimization degrees. For example, the matrix multiplication 
benchmark from the ATI SDK contains three versions: com-
putation without using the local data share, using the local 
data share to store data from one input matrix, and using the 



local data share to store data from both input matrices. Each 
of the three versions can be invoked individually. In this 
work, we treat these kernels as different programs since they 
have distinct execution behaviors on the GPU. Another issue 
is that several benchmarks from two SDKs correspond to the 
same application scenario. For such programs, we explore the 
code and ensure that the Nvidia and ATI implementations 
have identical input and output size. Second, by employing 
the BIC based statistical clustering method, we classify all 
applications into a number of categories according to their 
performance profiles. We then choose a program from each 
cluster for our analysis. For fair comparisons, each selected 
application based on clustering in one SDK is used to find an 
“equivalent” application in the other SDK. We made the best 
effort including minor code modifications to ensure the se-
lected kernels to perform the same tasks when running on 
both systems. Third, we use the selected set of applications to 
compare the architectural differences and energy efficiency of 
two GPUs. 

IV. RESULT ANALYSIS 

A. Benchmark Clustering  

The clustering results for Nvidia and ATI benchmark 
suites are respectively listed in Table II and Table III. As can 
be seen, the optimal number of categories for Nvidia applica-
tions is five. The ATI programs have a larger number of clus-
ters, although this set has even fewer applications than the 
Nvidia suite. Actually, our clustering analysis shows that the 
global optimal cluster number for ATI programs is 31, while 
10 is a suboptimal choice. Considering that the goal of this 
study is to investigate and compare the architectural features 
of two GPUs using a manageable set of representative appli-
cations, we decide to classify all ATI programs into 10 groups 
from a suboptimal classification.  

The common set of applications used for this work should 
cover all clusters from both benchmark suites. To achieve this 
goal, we select 10 programs including BinomialOptions, 
BlackScholes, EigenValue, FastWalshTransform, FloydWar-
shall, Histogram, Matrixmul_2_smem, Matrixmul_no_smem, 
MontecarloDP, and RadixSort. By doing this, all the 5 clus-
ters in the Nvidia SDK and the 10 clusters in the ATI SDK 
application set are fully covered. Note that the Nvidia bench-
mark suite does not provide CUDA implementations for ap-

plications including FloydWarshall, Matrixmul_no_smem, 
and MontecarloDP; so we need to implement them manually. 
A brief description of these 10 applications is given in Table 
IV. 

For each benchmark suite, we validate the effectiveness of 
clustering by comparing the average of selected programs and 
that of all applications for important metrics. The metrics 
used for validations on two GPUs are slightly different. For 
the execution rate, we employ the widely used millions of 
instructions per second (MIPS) as the criteria for each set 
individually. For the Nvidia applications, we also compare the 
SM occupancy, which is defined as the ratio of actual resident 
warps on an SM to the maximal allowable warps on a stream-
ing multiprocessor. This metric can reflect the overall paral-
lelism of an execution and is fairly important in the general 
purpose GPU computing. For the ATI programs, we choose 
the ALUBusy and ALUPacking as additional validation me-
trics. This is because that in the VLIW architecture, the pack-
ing ratio is one of the dominant factors that determine the 
throughput. Moreover, the ALUBusy indicates the average 
ALU activity during an execution, which is also critical to the 
overall performance.  

TABLE II.        CLUSTERING RESULT FOR NVIDIA BENCHMARKS 

 Benchmarks 

Cluster 1 

clock, convolutionSeparable, DwtHarr, FastWalshTrans-
form, ptxjit, ScalarProd, SimpleAtomicsIntrincs, SimpleZero-

Copy, Transpose_coarsegrain, Transpose_coalesed, Trans-
pose_diagonal, Transpose_finegrain, Transpose_optimized, 
Transpose_sharedmemory, Transpose_simplecopy, Vecto-

rAdd, BinomialOption, QuasiRandomGenerator, Scan, Reduc-
tion_k0, Reduction_k1, Reduction_k2, Reduction_k3

Cluster 2 ConjugateGradient, FDTD3D, Histogram, SimpleCUFFT, 
RadixSort 

Cluster 3 

ConvolutionFFT2D_builtin, ConvolutionFFT2D_custom, 
ConvolutionFFT2d_optimized, dxtc, SortingNetworks, Trans-

pose_naive, BlackScholes, Reduction_k4, Reduction_k5, 
Reduction_k6 

Cluster 4 

EstimatePiInlineP, EstimatePiInlineQ, EstimatePiP, Estimate-
PiQ, MatrixMul_2_smem, MatrixMulDrv, MatrixDylinkJIT, 
MonteCarlo, SimpleVoteIntrincs, SingleAsianOptionP, 
threadFenceReduction, dct8×8, MersenneTwister 

Cluster 5 EigenValue, Mergesort 

TABLE III.       CLUSTERING RESULT FOR ATI BENCHMARKS 

Benchmarks 

Cluster 1 AESEncryptDecrypt, BlackScholes, DwtHarr, Monte-
CarloAsian, MersenneTwister, LDSBandwidth,

Cluster 2 HistogramAtomics, MatrixMulImage, Matrix-
Mul_no_smem, ConstantBandwidth, ImageBandwidth 

Cluster 3 BinomialOption
Cluster 4 BitonicSort, FastWalshTransform

Cluster 5 
BinarySearch, DCT, FFT, Histogram, MatrixTranspose, 

PrefixSum, Reduction, SimpleConvolution, QuasiRandomSe-
quence, ScanLargeArray 

Cluster 6 EigenValue 
Cluster 7 FloydWarshall
Cluster 8 MatrixMul_1_smem, MatrixMul_2_smem
Cluster 9 MonteCarloAsianDP, GlobalMemoryBandwidth
Cluster 10 RadixSort 

 
(a) Nvidia         (b) ATI 

Figure 2. Validation results of benchmark clustering 
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TABLE IV.       OVERLAPPED APPLICATIONS 

Workload Description 
BinomialOption Binomial option pricing for European options 

BlackScholes Option pricing with the Black-Scholes model 

EigenValue 
Eigenvalue calculation of a tridiagonal symmetric 

matrix 
FastWalsh Hadamard ordered Fast Walsh Transform 

FloydWarshall Shortest path searching in a graph 
Histogram Calculation of pixel intensities distribution of an image 

Matmul_2_smem 
Matrix multiplication, using the shared memory to 

store data from both input matrices 
Matmul_no_smem Matrix multiplication, without using shared memory 

MonteCarloDP 
Monte Carlo simulation for Asian Option, using double 

precision 
RadixSort Radix-based sorting 



The validation results are demonstrated in Figure 2. As 
observed, the average occupancy and MIPS for all Nvidia 
applications can be well approximated by the selected pro-
grams. For the ATI programs set, both ALUBusy and ALU-
Packing can be estimated reasonably well; however, we no-
tice that the metric MIPS leads to around 30% discrepancy 
when using the subset of programs. As we described pre-
viously, the global optimal cluster number for the ATI pro-
grams is 31, meaning that almost each application stands as 
an individual cluster. This indicates that the execution pat-
terns of ATI programs are not sufficiently close to each other 
compared to the Nvidia programs. As a consequence, the cho-
sen 10 programs are not able to accurately represent the cha-
racteristics of all applications. Nevertheless, considering that 
the number of applications has been largely reduced, we be-
lieve that the validation result is still acceptable to reduce the 
benchmarking efforts. In general, the validation results indi-
cate that our benchmark clustering is reasonable and the se-
lected programs are representative of the entire suite.   

B. Overall Execution Time Comparison 

In general purpose GPU computing realm, the CPU side is 
usually referred as the host while the GPU is termed as the 
device. Previous studies have demonstrated that the data 
transfer between the host and the device costs even more time 
than the GPU computation does in some problems [23]. Giv-
en this consideration, we collect the time spent on different 
stages during execution and demonstrate the overall break-
down in Figure 3. As shown in the figure, the execution of 
each application is decoupled into three stages: memory copy 
from the host to device (mem_H2D), kernel execution (ker-
nel), and the data transfer from the device back to the host 
(mem_D2H). Obviously, the selected applications have dis-
tinct characteristics on the execution time distribution. For 

applications such as Histogram, the time spent on communi-
cation between the CPU and the GPU dominates the total 
execution. On the contrary, the GPU computation takes most 
portion of the time in benchmarks including EigenValue. 
Several interesting findings can be observed from the figure. 

First, for all 10 applications, the Nvidia computer system 
outperforms the ATI competitor from the standpoint of host-
to-device data transfer. In addition, the time spent on the 
memory copy from the GPU to the CPU is also shorter on the 
Nvidia machine, except for BlackScholes. This indicates that 
the Nvidia system is able to transfer data more efficiently than 
the ATI computer. To further understand this issue, we con-
duct a group of experiments to test the memory transfer per-
formance on both computer systems. Figure 4(a) illustrates 
the communication time when copying different sizes of data 
from the host to the device. Similarly, the time for mem_D2H 
is shown in Figure 4(b). In general, the results support our 
inference. However, when copying a large amount of data 
from the GPU to the CPU, ATI performs better.  

In a CUDA application, the API cudamemcpy is called for 
data communication, whereas an OpenCL program uses the 
CLEnqueueWritebuffer function to transfer data to the GPU 
and then invokes the CLEnqueuReadbuffer routine to copy 
the computation result back to the host side. As can be ob-
served, the cudamemcpy takes fairly short time (i.e., tens of 
microseconds) when the data size is small (e.g., < 1024KB); 
in contrast, the OpenCL API needs at least 1 millisecond (i.e., 
1000 µs) regardless of the data size. Note that in both sys-
tems, the time hardly changes when the data size varies be-
tween 64KB and 1024KB. It is thereby reasonable to infer 
that the time should be majorly taken by the configuration 
overhead such as source and destination setup in this case. 
Therefore, the gap demonstrates that the OpenCL API for 
memory copies has a larger launch overhead than the corres-

 
Figure 3. Execution time breakdown of selected applications 
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Figure 4. Memory transfer performance comparison 
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ponding CUDA routine. On the other hand, the OpenCL func-
tion CLEnqueueReadbuffer takes shorter transfer time when 
the data size is relatively large. This indicates that the ATI 
OpenCL implementation has specific advantages on transfer-
ring large chunk of data from the GPU to the CPU. The 
BlackScholes benchmark has the largest size of data that need 
to be read back to the host side, making the ATI system to be 
a faster device. 

The kernel execution on the GPU is always considered as 
the most important part in studying GPU performance. In 
these 10 pairs of applications, seven of them run faster on the 
Nvidia GPU, while ATI performing better on Blackscholes, 
MatMul_2_smem, and MatMul_no_smem benchmarks. The 
kernel computation time of EigenValue, FloydWarshall, and 
RadixSort on Radeon HD 5870 is substantially longer than 
those on GTX 580. Table V lists the ALUBusy rate and pack-
ing ratios of these ten programs when executed on the HD 
5870. As shown in the table, the three programs running fast-
er on the ATI GPU have a common point that the VLIW 
packing ratio is fairly high (highlighted in light gray). Recall 
that Radeon HD 5870 includes 320 five-way VLIW proces-
sors working at 850MHz. Therefore, provided that the pack-
ing ratio is α, the theoretical peak performance can be calcu-
lated as [4]: 320 × 5 × α × 850MHz × 2 = 2.72 α TFLOPS. 
Note that in this equation, the factor 2 is included because that 
the fused multiply-add (FMA) operation, which includes two 
floating point operations, is usually used while deriving peak 
throughput of a GPU in convention. Similarly, the maximal 
performance of the GTX 580 GPU is 512×1544MHz×2 = 
1.581 TFLOPS. In comparison, the packing ratio α should be 
no less than 58% (i.e., 1.581/2.72) to make the ATI GPU run 
faster. Since the packing ratios of BlackScholes, Mat-
mul_2_smem, and Matmul_no_smem are all greater than this 
threshold, these programs run faster. On the other aspect, Ei-
genvalue, FloydWarshall, and RadixSort have fairly low 
packing ratios; even worse, their ALUBusy rate are low during 
the execution (highlighted in dark grey). These two factors 
result in the poor performance of these three programs. 

The third point that deserves detailed analysis is the 
double precision performance because of its importance in 
solving HPC problems. We use the MonteCarloDP applica-
tion from financial engineering to compare the double preci-
sion computing capability of these two GPUs. This bench-
mark approximately achieves 70% packing ratio and 50% 
ALU utilization when running on the ATI GPU, which are 
adequately high for outstanding performance. However, its 
kernel execution time is remarkably longer compared to that 

on the Nvidia GPU. Unlike native benchmarks selected from 
the SDK, the CUDA version of MonteCarloDP is directly 
transformed from the OpenCL implementation. This indi-
cates that the two programs are identical on both the algo-
rithm design and the implementation details. We can con-
clude that the performance gap is from the hardware differ-
ence. Each SM on the GTX 580 is able to execute up to 16 
double precision FMA operations per clock [13] with a peak 
throughput of 16×16×1544MHz×2 = 790.5 GFLOPS. In the 
Radeon HD 5870, however, the four ALUs within a VLIW 
processor cooperate to perform a double precision FMA per 
clock. Therefore, the maximal processing power is no more 
than 320×1×850MHz×2 = 544 GFLOPS. Obviously, the 
GTX 580 is more preferable for double precision computa-
tions.   

C. Parallelism 

Execution parallelism stands as the heart of general pur-
pose GPU computing. A typical GPGPU application usually 
launches a large amount of warps/wavefronts to hide long 
latencies encountered during the execution. In this section, we 
will investigate that how execution parallelism impacts the 
overall performance on these two GPUs. 

We first observe the performance variations for changing 
the thread block size in Nvidia programs (work-group size for 
ATI programs). When the block size is changed, the number 
of blocks/work-groups resided on an SM/SIMD may vary 
accordingly. This in turn changes the execution parallelism. 
Clearly, the parallelism will be greatly reduced if there are too 
few warps/wavefronts on an SM or SIMD. In this case, the 
performance is likely to be degraded. Figure 5 shows the 
normalized execution time of selected benchmarks when the 
block size is set to 64, 128, and 256 respectively. Note that 
only a fraction of 10 applications are tested. The reason is that 
the group size is tightly fixed in the program implementation 
for some benchmarks. As a result, changing the configuration 
will violate the correctness of these applications. Therefore, 
we do not include such programs in this experiment.  

As shown in Figure 5 (a), on the Nvidia platform, the ex-
ecution time tends to become shorter when the block size is 
enlarged since the occupancy keeps rising in this circums-
tance except for BinomialOption and Matmul_no_smem, 
where the performance gets slightly worse if the block size is 
increased from 128 to 256. This is due to the fact that the 
number of global memory accesses is significantly increased 
when the group size becomes larger. In this case improving 
parallelism may degrade the overall performance. The other 
exception is that the performance of MonteCarloDP is hardly 
changed regardless of the thread block size. This is because 
that each thread of the kernel requires substantial registers, 
resulting in extremely few resident warps on an SM due to the 
resource constraint. Actually, the occupancy remains fairly 
low regardless of the block size while executing MonteCar-
loDP. Figure 5(b) demonstrates that the performance of these 
applications do not change much with varying work-group 
sizes on the ATI GPU. As described previously, the ATI GPU 
adopts the VLIW architecture; therefore, other factors includ-
ing the ALU packing ratio are also playing significant roles in 
determining the execution performance.  

TABLE V.           EXECUTION INFORMATION ON THE ATI GPU 

Workload ALUBusy (%) Packing ratio (%) 
BinomialOption 62.51 31.1 

Blackscholes 58.58 95.75 
Eigenvalue 18.32 54.44 
Fastwalsh 56.94 30.83 

FloydWarshall 20.35 32.3 
Histogram 21.03 33.5 

Matmul_2_smem 54.4 81.04 
Matmul_no_smem  15.4  73.5 

MonteCarloDP 49.29 71.9 
Radixsort 3.12 30.9 



Next, our second study concentrates on the impact of 
working size. The working size denotes the number of output 
elements calculated by each thread/work-item. By setting the 
working size to different values, it is conveniently to adjust 
the packing ratio on the ATI GPU. While executing on the 
Nvidia GPU, an appropriate working size can lead to efficient 
usage of the data fetched from the global memory and reduce 
the unnecessary memory accesses. This may improve the 
overall performance. In order to simplify the packing ratio 
tuning, we choose the Matmul_no_smem benchmark to con-
duct the study. Figure 6 illustrates the change of performance 
when the working size increases from 1 to 8 on both GPUs. 
As can be observed, the HD 5870 GPU greatly benefits from 
larger working sizes while the Nvidia GPU is not notably 
impacted by the variation of working sizes.  

To further understand this issue, we record the occupancy 
and ALU packing ratio corresponding to each working size 
and show them in Figure 7. Both occupancies on two GPUs 
are reducing with the increase of working sizes. This is due to 
the resources constraint on an SM/SIMD. As each thread 
computes more elements, the number of registers which are 
allocated to store intermediate variables is inevitably in-
creased. Therefore, fewer threads are allowed to reside on the 
same SM, resulting in a decreased occupancy. On the GTX 
580 GPU, such decreased parallelism counteracts the advan-
tage of improving efficiencies of single threads, making the 
overall performance slightly changed. However on the ATI 
GPU, since the calculation of each matrix element is indepen-
dent, the compiler is able to assign the extra computations to 
the unoccupied slots within a VLIW processor, thus increas-
ing the packing ratio. When the working size varies within a 
reasonable range, the high packing ratio is the dominant fac-
tor to the performance. Consequently, the HD 5870 GPU 
shows a performance boost when working size increases. 

Putting all of these together, we can conclude that the ex-
traction of the optimal parallelism on two GPUs follows dif-
ferent patterns. On Nvidia GPU, we shall aim at increasing 
the SM occupancy in general, while paying attention to other 
factors such as the resource usage and memory access beha-
vior. On the ATI GPU, improving the VLIW packing ratio is 
of great importance for higher performance.      

D. Cache Hierarchy 

In general purpose GPU programming, long latency 
events including global memory accesses can be hidden by 
switching among the available warps or wavefronts on an SM 
or SIMD. However, due to limited available warps and wave-
fronts, frequently global memory accesses tend to be the bot-
tleneck for many GPU applications, especially when the pa-
rallelisms are not sufficiently high. Therefore, similar to CPU 
design, both Nvidia and ATI GPUs employ a cache hierarchy 
to shorten memory latency. In this section, we will investigate 
the architectural features of caches on these two GPUs.   

We first focus on the GTX 580 GPU with new designs of 
on-chip fast memory. Our study starts from the performance 
comparison of selected benchmarks with the L1 cache 
enabled or disabled. The results are shown in Figure 8. As can 
be observed, eight out of ten applications show little impact 
on the inclusion of the L1 cache, except for FloydWarshall 
and Matrixmul_ no_smem. This indicates that those eight ap-
plications are running with superb parallelism, thus long la-
tencies due to global memory operations can be hidden. On 
the contrary, the execution of FloydWarshall suffers from 
memory access latencies, therefore, the L1 cache is able to 
capture data locality and effectively improve the performance. 
The result of MatrixMul_no_smem is surprising since the 
execution time is getting even longer when the L1 cache is 
enabled. We thereby conduct a case study based on this 
benchmark to reveal the underlying reasons.  

 
(a) Nvidia benchmarks 

 
(b) ATI benchmarks 

Figure 5. Performance variation with changing the block size 
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Figure 6. Performance variation with changing the working size
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Figure 7. Occupancy and VLIW packing variations with changing the 

working size 
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In MatrixMul_no_smem, each thread is responsible for 
calculating four adjacent elements in a column of the output 
matrix. This is illustrated in Figure 9 (labeled as vertical in 
Matrix C). When a thread is calculating the first element, it 
will load a block of consecutive data from the corresponding 
line in matrix A. According to [6], the L1 cache line size in 
the GTX 580 is 128 bytes, while the L2 cache line size is 
32B. Therefore, when an L1 cache miss is encountered, a 
128B segment transaction will be always issued. As the 
thread continues to calculate the second element, a global 
memory read request is issued again to load the data from the 
following line in matrix A. Note that all threads within the 
same SM shares the L1 cache. This implies that a previously 
cached block might be evicted in order to accommodate the 
new fetched data requested by a more recent L1 miss. In this 
program, the memory access pattern is quite scattered. Only a 
small fraction of the 128-byte cached data is utilized and the 
resultant global memory transactions tend to waste the memo-
ry bandwidth. However, when the L1 cache is disabled, all 
global memory requests directly go through the L2 cache 
which issues 32 byte transactions. Therefore, the global 
memory bandwidth is more efficiently used, leading to better 
performance.     

Based on this analysis, we modify the kernel and make 
each thread calculate four adjacent elements in the same line 
of matrix C (labeled as horizontal in Figure 9) for better reuse 
of L1 cache data. To validate these two cases (i.e., vertical 
and horizontal), we carry out a group of experiments by set-
ting the input matrix to different sizes. The result is demon-
strated in Figure 10. As we expect, in the horizontal imple-
mentation, the computation throughput is much higher when 
the L1 cache is enabled. In contrast, disabling the L1 cache 
can yield better performance for the vertical program. 

The caches involved in the Radeon HD 5870 GPU have 
different design specifications from that on the Nvidia GPU. 
In specific, both the L1 and L2 caches on the HD 5870 are 
only able to store images and read-only constants. Many data 
structures used in GPGPU application kernels such as float 
type arrays are uncacheable. In the OpenCL programming, 
this can be worked around by defining the target structures as 
image objects and use the corresponding routines for data 
accesses. In order to understand the effect of the caches on the 
HD 5870, we compare the performance of two matrix multip-
lication programs, one of which is designed to use the caches. 
In Figure 11, the curve labeled by “image object” corresponds 
to the version using caches. Note that these two programs are 
built on identical algorithms and neither of them uses the lo-
cal data share; hence the performance gap comes directly 

from caches. Obviously, when setting the data array type to 
image object, the performance is boosted tremendously.  

In summary, there are several architectural differences be-
tween the caches on the GTX 580 and Radeon HD 5870 
GPUs. While programming cache-sensitive applications on 
Fermi GPUs, the data access patterns and kernel workflows 
should be carefully designed, in order to effectively and effi-
ciently use the L1 cache. The caches on the HD 5870 are less 
flexible compared to that on the GTX 580. To take the advan-
tage of caches on the ATI GPU, cacheable data structures 
such as image objects should be appropriately used in the 
programs. 

E. Energy Efficiency 

As power-consuming GPUs are widely used in supercom-
puters, high energy efficiency is becoming an increasingly 
important design goal. As we described in section I, both 
Nvidia and ATI pay substantial attention to trimming the 
power budget of their products while improving the perfor-
mance. Therefore, evaluating energy efficiencies of the target 
GPUs is of great importance. 

Figure 12 shows the power consumptions of selected 
benchmarks running on two GPUs. Obviously, the Fermi 

 
Figure 8. Execution time on GTX 580 when the L1 is enabled/disabled 
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Figure 9. Two versions of Matrix multiplication implementations 

 
(a) Horizontal        (b) Vertical 

Figure 10. Performance comparison of two versions of matrix multipli-
cations executed on GTX 580 
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Figure 11. Performance of matrix multiplication on HD 5870 

0

100

200

300

400

500

600

256 512 1024 2048 4096

G
FL
O
P
S

matrix size

array_object

image_object



GPU consumes more power than the ATI counterpart. Recall 
the manufacture parameters listed in Table I. The GTX 580 
integrates more transistors and its processor cores are running 
on a higher frequency compared to the HD 5870. Therefore, 
the Nvidia GPU tends to consume more power during pro-
gram execution. The energy consumption of these bench-
marks is shown in Figure 13. We observe four of those se-
lected applications consume less energy on the ATI GPU. 
Because of the relative low power consumption, the HD 5870 
consumes less energy to solve a problem when its execution 
time is not significantly longer than that on the GTX 580. 

The energy efficiency can be interpreted by the metric 
Energy-delay product (EDP). We demonstrate the normalized 
EDP for these applications in Figure 14. As shown in the fig-
ure, the HD 5870 GPU wins on four of them: BlackScholes, 
Histogram, MatrixMul_2sm, and MatrixMul_nsm. Note that 
three benchmarks from these four contain efficient OpenCL 
kernels with fairly high VLIW packing ratios. This indicates 
that the VLIW packing is also critical to the energy efficiency 
of the HD 5870 GPU. In case where a compact packing is 
easy to explore, the Radeon HD 5870 is more preferable from 
the standpoint of high energy efficiency. In general, we can 
summarize a principle that the ATI GPU can deliver better 
energy efficiency when the program can perfectly fit the 
VLIW processors; otherwise the GTX 580 card is more pre-
ferable.         

V. RELATED WORK 

In recent years, several researchers have authored out-
standing studies on modern GPU architecture. On the perfor-
mance analysis aspect, Hong et al. [25] introduce an analyti-
cal model with memory-level and thread-level parallelism 
awareness to investigate the GPU performance. In [36], Wong 
et al. explore the internal architecture of a widely used Nvidia 

GPU using a set of micro-benchmarks. More recently, Zhang 
and Owens [37] use a similar micro-benchmark based ap-
proach to quantitatively analyze the GPU performance. Stu-
dies on typical ATI GPUs are even fewer. Taylor and Li [35] 
develop a micro-benchmark suite for ATI GPUs. By running 
the micro-benchmarks on different series of ATI products, 
they discover the major performance bottlenecks on those 
devices. In [38], Zhang et al. adopt a statistical approach to 
investigate characteristics of the VLIW structure in ATI Cy-
press GPU. 

Literature on the GPU power/energy analysis can also be 
found in prior studies. Hong and Kim [26] propose an inte-
grated GPU power and performance analysis model which 
can be applied without performance measurements. Zhang 
[38] and Chen [17] use similar strategies to statistically corre-
late the GPU power consumption and its execution behaviors. 
The established model is able to identify important factors to 
the GPU power consumption, while providing accurate pre-
diction for the runtime power from observed execution 
events. Huang et al. [27] evaluate the performance, energy 
consumption and energy efficiency of commercial GPUs run-
ning scientific computing benchmarks. They demonstrate that 
the energy consumption of a hybrid CPU+GPU environment 
is significantly less than that of traditional CPU implementa-
tions. In [33], Rofouei et al. draw a similar conclusion that a 
GPU is more energy efficient compared to a CPU when the 
performance improvement is above a certain bound. Ren et al. 
[32] consider even more complicated scenarios in their study. 
The authors implement different versions of matrix multipli-
cation kernels, running them on different platforms (i.e., CPU, 
CPU+GPU, CPU+GPUs) and comparing the respective per-
formance and energy consumptions. Their experiment results 
show that when the CPU is given an appropriate share of 
workload, the best energy efficiency can be delivered.  

Efforts are also made to evaluate comparable architectures 
in Prior works. Peng et al. [29][30] analyze the memory hie-
rarchy of early dual-core processors from Intel and AMD and 
demonstrate their respective characteristics. In [24], Hacken-
berg et al. conduct a comprehensive investigation on the 
cache structures on advanced quad-core multiprocessors. In 
recent years, comparison between general purpose GPUs is 
becoming a promising topic. Danalis et al. [18] introduce a 
heterogeneous computing benchmark suite and investigate the 
Nvidia GT200 and G80 series GPU, ATI Evergreen GPUs, 
and recent multicore CPUs from Intel and AMD by running 
the developed benchmarks. In [19], Du et al. compare the 
performance between an Nvidia Tesla C2050 and an ATI HD 

 
Figure 12. Power consumption comparison of two GPUs 
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Figure 13. Energy consumption comparison of two GPUs 
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Figure 14. Energy efficiency comparison of two GPUs 
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5870. However, their work emphasizes more on the compari-
son between OpenCL and CUDA as programming tools. Re-
cently, Ahmed and Haridy [14] conduct a similar study by 
using an FFT benchmark to compare the performance of an 
Nvidia GTX 480 and an ATI HD 5870. However, power and 
energy issues are not considered in their work. 

On the other hand, benchmark clustering has been proved 
to be useful for computer architecture study. Phansalkar et al. 
[31] demonstrate that the widely used SPEC CPU benchmark 
suite can be classified into a number of clusters based on the 
program characteristics. In [22], Goswami et al. collect a 
large amount of CUDA applications and show that they can 
also be grouped into a few subsets according to their execu-
tion behaviors.   

Our work adopts the benchmark clustering approach. We 
believe that the applications in the SDKs provide the most 
typical GPU programming patterns that reflect the characte-
ristics of these two devices. Therefore, we can extract and 
compare the important architectural features by running the 
selected applications.   

VI. CONCLUSION 

In this paper, we use a systematic approach to compare 
two recent GPUs from Nvidia and ATI. While sharing many 
similar design concepts, Nvidia and ATI GPUs differ in sev-
eral aspects from processor cores to the memory subsystem. 
Therefore, we conduct a comprehensive study to investigate 
their architectural characteristics by running a set of repre-
sentative applications. Our study shows that these two prod-
ucts have distinct advantages and favor different applications 
for better performance and energy efficiency.  
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