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Abstract—The shrinking processor feature size, lower threshold voltage, and increasing clock frequency make modern processors

highly vulnerable to transient faults. Architectural Vulnerability Factor (AVF) reflects the possibility that a transient fault eventually

causes a visible error in the program output, and it indicates a system’s susceptibility to transient faults. Therefore, the awareness of

the AVF, especially at early design stage, is greatly helpful to achieve a trade-off between system performance and reliability.

However, tracking the AVF during program execution is extremely costly, which makes accurate AVF prediction extraordinarily

attractive to computer architects. In this paper, we propose to use Boosted Regression Trees (BRT), a nonparametric tree-based

predictive modeling scheme, to identify the correlation across workloads, execution phases, and processor configurations between a

key processor structure’s AVF and various performance metrics. The proposed method not only makes an accurate prediction but also

quantitatively illustrates individual performance variable’s importance to the AVF. A quantitative comparison between our model and

conventional linear regression is performed in terms of model stability, showing that our model is more stable when the model size

varies. Moreover, to reduce the prediction complexity, we also utilize a technique named Patient Rule Induction Method (PRIM) to

extract some simple selecting rules on important metrics. Applying these rules during runtime can fast identify execution intervals with

a relatively high AVF. A case study that enables PRIM-based ROB redundancy has been performed to demonstrate a possible

application of the trained PRIM rules.

Index Terms—Hardware reliability, modeling and prediction, modeling of computer architecture.

Ç

1 INTRODUCTION

THE electronic noise, which usually comes from large
power supplies, strong radiations, or high-energy

particle strikes [32], may invert the state of a logic device
when the resulted charge has been accumulated to a
sufficient amount. The introduced logic fault is termed as
a soft error or a transient fault [19]. The shrinking trend in
processor feature size, particularly the exponential growth
rate of on-chip transistors, along with lower supply voltage
and increasing clock frequency make modern processors
extremely vulnerable to transient faults. Fortunately, not all
such faults eventually affect the final program outcome. For
example, a bit flip in an empty Reorder Buffer entry will not
cause any effect in the program execution. Based on this
observation, Li et al. [17] defined a structure’s Architectural
Vulnerability Factor (AVF) as the probability that a transient
fault in the structure finally produces a visible error in the
output of a program. At any point of time, a structure’s AVF
can be derived via counting all the important bits that are
required for Architecturally Correct Execution (ACE) in the
structure, and dividing them by the total number of bits of

the structure. Using the ACE analysis method, many
publications (e.g., [19], [12], [13]) have reported a large
masking effect of transient faults at the architectural level,
that is, a key processor structure usually shows an AVF
below 40 percent, but with a large variation over time.

The AVF values provide computer architects with an
indicator, or actually an upper bound, of the system’s
susceptibility to transient faults. Dynamically tracking the
AVF would be greatly helpful to achieve a trade-off between
system performance and reliability. However, tracking a
processor structure’s vulnerability during program execu-
tion is extremely costly. In [19], [12], the authors implemen-
ted a post-commit analysis window which tracks the most
recent 40K committed instructions to determine the exact
type of each instruction, and then used this information
backward to estimate the reliability of various hardware
structures. In this paper, we utilize a similar scheme to
calculate the AVF in the simulator. Besides the analysis
window itself, a large amount of other structures need to be
implemented in the window to maintain the dependencies
among the instructions. The AVF simulation results are
therefore delayed by the size of the window, and the
simulation is significantly slowed down due to the opera-
tions performed in the window. Based on our simulation, the
simulation time is increased to be at least 10 times larger than
that without AVF measurements. These simulation over-
heads, which will result in hardware overheads as well if the
AVF calculation is implemented in real processors, motivate
us to predict, instead of measuring, the instantaneous AVF
values. Moreover, the online prediction scheme bridges the
gap (caused by the post-commit window) between complet-
ing performance simulation and calculating the AVF. In
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other words, with AVF prediction, we are able to quantify
the AVF during program runtime, instead of waiting until
40K more instructions to be committed. This advantage
further enables the processor to respond earlier to vulnerable
situations.

Some mechanisms were already introduced to predict
the AVFs at any point of program execution. By observing a
fuzzy correlation between the hardware AVF and some
common performance metrics, such as IPC, branch predic-
tion rate, cache miss rate, Fu et al. [13] concluded that a
simple performance metric was not a good indicator to the
program reliability behavior. Walcott et al. [27] reexamined
the correlation by extending the variable set to 160 easily
measured time-varying processor metrics. They adopted a
multivariate regression-based statistical model using
22 workloads as a training set to extract a quantitative
relationship between the AVF and a small subset of the
variables, and then applied the obtained predictor to
another 4 workloads. By demonstrating a very accurate
prediction of the reliability behaviors, their work convin-
cingly proved the existence of a correlation between the
AVF and various processor performance metrics. However,
they restricted their model training/test within one config-
uration, and only focused on the first SimPoints [23] of
SPEC2000 suite. It is not clear that the predictor obtained
from one set of phases (i.e., the first SimPoints) will give
accurate estimation for another set of phases (e.g., the
second SimPoints), and most likely the model developed
under one configuration would not work for other config-
urations, which significantly narrows its applicability.

In this paper, by employing Boosted Regression Trees
(BRT), a nonparametric tree-based predictive modeling
scheme, we propose a versatile method which accurately
predicts the AVF across different workloads, execution
phases and processor configurations. Initially, a statistical
model is trained with the first SimPoints measured from a set
of workloads under a BRT-based algorithm, and is then
tested by other workloads that are not included in the training
set. The testing results show that the prediction is very
accurate. Within the same configuration, the trained model
also succeeds in predicting the vulnerabilities of the second
SimPoints of all workloads. We then extend our model by
adding the configuration parameters to the training variable
set, and demonstrate a very high accuracy in predicting the
AVF variations under different configurations. Finally, to
make our method easier to be used in practice, we propose
a fast estimation approach which utilizes a Patient Rule
Induction Method (PRIM) to extract some simple selecting
“IF-ELSE” rules on important performance metrics. These
rules can be used to monitor the performance variables
during a program execution and then to efficiently identify
vulnerable intervals experiencing high AVF values.

In summary, the main contributions of this paper are
the following:

. Versatile AVF prediction: Our proposed method
accurately predicts the AVF across different work-
loads, execution phases and processor configurations.

. Model interpretation: The proposed model can
quantify performance metrics’ importance and the
AVF’s dependence on these variables. This provides
computer architects with a scientific view on the
processor AVF variation.

. Model comparison: We also compare the model
stability between BRT and linear regression. We
found that BRT is more stable when the model
size varies.

. Fast AVF estimation: The selecting “IF-ELSE” rules
generated from the PRIM-based algorithm greatly
reduce the prediction complexity. This enables com-
puter architects to efficiently identify highly vulner-
able execution intervals during a program’s runtime.

. A case study: PRIM-based ROB Redundancy. This
case study demonstrates a possible application of
PRIM-based fast AVF estimation. It effectively re-
duces the ROB AVF to a very low level with negligible
performance degradation.

The remainder of this paper is organized as follows:
Section 2 introduces the statistical methods and their
specific algorithms used in this paper. Section 3 describes
our experimental setup. In Section 4, we first illustrate the
influence of a variable on the vulnerabilities and then
demonstrate our model’s applicability across workloads,
phases, and configurations. We also compare the stability of
our proposed method with the conventional linear regres-
sion models. In Section 5, we use PRIM-based scheme to
fast estimate the AVF online by generating some simple
rules on a small set of performance variables. Section 6 lists
the related work, and we finally draw the conclusions in
Section 7. Appendix A illustrates the usefulness of our
method by an ROB reliability throttling technique.

2 BACKGROUND AND METHODOLOGY

We propose to use a nonparametric tree-based predictive
modeling method, named Boosted Regression Trees, to
predict the architectural vulnerability from the processor
performance metrics. BRT is capable of identifying a few
important features from a large number of performance
variables and accurately capturing the correlation between
a processor structure’s AVF and these selected features.
Although the fitted BRT model consists of an ensemble of
(hundreds to thousands of) regression trees, it can be
summarized, interpreted, and visualized similarly to con-
ventional regression models through measuring relative
variable importance and partial dependence functions. For
a fast AVF prediction, we employ another scheme, i.e.,
Patient Rule Induction Method (PRIM), which is able to
identify the “high-vulnerable” intervals based on a few
interpretable “IF-ELSE” rules.

2.1 Boosted Regression Trees

Boosted regression trees, originally proposed by Friedman
[10], is an ensemble technique that aims to improve the
performance of a single model by fitting many models and
combining them for prediction. BRT employs two algo-
rithms, i.e., “regression trees” from Classification And
Regression Tree (CART) [5], and “boosting,” which builds
and combines a collection of models (trees).

CART is a binary recursive partitioning algorithm and
provides an alternative to traditional parametric models for
regression problems. The term “binary” implies that CART
first splits the space into two regions and models the
response by a constant for each region. Then the optimal
variable and the split-point are chosen to achieve the best fit
again on one or both of these regions. Thus, each node can
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be split into two child nodes, in which case the original
node is called a parent node. The term “recursive” refers to
the fact that the binary partitioning process can be applied
over and over again. Thus, each parent node can give rise to
two child nodes and, in turn, each of these child nodes
may themselves be split to generate additional children.
Although CART represents information in a way that is
intuitive and easy to be visualized, it is not usually as
accurate as its competitors.

Boosting is one of the recent enhancements to tree-based
methods that have met with considerable success in predic-
tion accuracy. In boosting, models such as regression trees
are fitted iteratively to the training data, using appropriate
methods to gradually increase emphasis on observations
modeled poorly by the existing collection of trees.

The detailed BRT algorithm used in our paper is described
in Algorithm 1. We consider a problem with n observations
fyi; xig; i ¼ 1; 2; . . . ; n; where xi is a p-dimensional input
vector (i.e., the performance variables) and yi is the response
(i.e., the AVF).

Algorithm 1. BRT-based algorithm used in this paper

1. Initialize f̂0ðxiÞ ¼ �y; where �y is the average for yif g.
2. Repeat for m ¼ 1; 2; . . . ;M:

a) Compute the current residuals

rim ¼ yi � f̂m�1ðxiÞ; i ¼ 1; . . . ; n.

b) Partition the input space into H disjoint regions

fRhmgHh¼1 based on frim;xigni¼1.

c) For each region, compute the constant fit

�hm ¼ arg min�
P

xi2Rhm
ðrim � �Þ2.

d) Update the fitted model

f̂mðxÞ ¼ f̂m�1ðxÞ þ � �
P

h �hmIðx 2 RhmÞ
3. End algorithm.

Note that in d) of Step 2, Ið�Þ is an indicator function,
which returns 1 (otherwise 0) if its argument is satisfied. � is
a parameter between 0 and 1, controlling the learning rate
of the procedure. Empirical results (e.g., [10]) have shown
that smaller values of � always lead to better generalization
errors. In this study, we fixed � at 0.01. For simplicity, Fig. 1

illustrates the BRT algorithm when the input space has only
two dimensions. Basically, a regression tree is constructed
by recursively partitioning the input space in each of the
M iterations, and the prediction function is updated by the
parameters calculated in the leaves of the tree.

From a user’s point of view, BRT has the following
advantages: First, BRT is inherently nonparametric and can
handle mixed type of input variables naturally. Unlike other
parametric models, BRT doesn’t need to make any assump-
tions regarding the underlying distribution of the values for
the input variables. For example, BRT can make researchers
to avoid determining whether variables are normally
distributed, and making transformations if they are not.
Second, tree is adept at capturing complex-structured
behaviors. In other words, complex interactions among
predictors are routinely and automatically handled with
relatively few inputs required from the analyst. This is in
contrast to some other multivariate nonlinear modeling
methods, in which extensive inputs from the analyst,
analysis of interim results, and subsequent modifications
of the method are required. Third, tree is insensitive to
outliers. It is unaffected by monotone transformations and
different scales of measurement among inputs.

2.2 Interpretation and Visualization from BRT

Even producing a model with hundreds to thousands of trees,
BRT does not have to be treated like a black box. A BRT model
can be summarized, interpreted and visualized similarly to
conventional regression models. This includes identifying
parameters that are most influential in contributing to the
response’s variation, and visualizing the nature of depen-
dence of the fitted model on these important parameters.

The relative variable importance measures are based on
the number of times a variable is selected for splitting,
weighted by the squared improvement to the model as a
result of each split, and then average over all trees. The
relative influence is scaled so that the sum adds to 100 percent,
with a higher number indicating a stronger influence on the
response.
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Fig. 1. Illustration of the BRT algorithm in 2D input space.



Visualization of fitted functions in a BRT model can be
easily achieved through a partial dependence function,
which shows the effect of a subset of variables on the
response after accounting for the average effects of all other
variables in the model. Given any subset Xs of the input
variables indexed by s � f1; . . . ; pg. The partial dependence
of fðxÞ is defined as

FsðxsÞ ¼ Exns ½fðxÞ�;

where Exns ½��means expectation over the joint distribution of
all the input variables with index not in s. In practice, partial
dependence can be estimated from the training data by

F̂sðxsÞ ¼ ð1=nÞ
Xn

i¼1

f̂ðxs;xinsÞ;

where fxinsgn1 are the data values of xns.

2.3 Patient Rule Induction Method

The objective of PRIM, which was originally proposed by
Friedman and Fisher [11], is to find a set of subregions in the
input space such as performance measures with relatively
high values for the output (the AVF in this paper). The
subregion (or “box”) is described in an interpretable form
involving simple “rules” taking the form B ¼ \pj¼1ðxj 2 sjÞ.
For continuous variables, the subsets sj are represented by
contiguous subintervals sj ¼ ½b�j ; bþj �. Thus, the projection of
a box B on the subspace of real-valued inputs is a hyper-
rectangle. The box construction strategy of PRIM consists of
two phases: 1) patient successive top-down peeling process;
2) bottom-up recursive pasting process.

The top-down peeling begins with the box B that covers
all the data. At each iteration, a small subbox b within the
current box B is removed, which yields the largest output
mean value with the next box B-b. For each real-valued
variable, the two eligible subboxes bj� and bjþ border its
respective lower and upper boundaries of the current box B:
bj� ¼ fx j xj < xj�g and bjþ ¼ fx j xj > xjð1��Þg. Here, Xj�

is the �-quantile of the xj values for data within the current
box. The peeling procedure stops when the support of the
current box B is below a chosen threshold �. Hence, in this
study, � is the proportion of intervals removed in each

peeling process while � is the approximate proportion of
intervals identified as high AVF regions. We fixed � at 0.05
and � at 0.1 in this study.

The pasting algorithm is the inverse of the peeling
procedure. Starting with the peeling solution, the current
box B is iteratively enlarged by pasting onto it a small
subbox that maximizes the output mean in the new (larger)
box. The bottom-up pasting is iteratively applied, succes-
sively enlarging the current box, until the addition of the
next subbox causes the output mean to decrease.

3 EXPERIMENTAL SETUP

We use Sim-SODA [12], a unified simulation framework that
models software reliability of different microarchitecture
structures in a microprocessor system, to measure the AVFs
and a large set of performance metrics. Sim-SODA was
developed based on Sim-alpha [8] that has been validated as
an accurate Alpha 21264 simulator, and has been incorpo-
rated with microarchitecture level AVF calculation methods
for key processor structures. In this work, we use Sim-SODA
to dump the time-varying AVF values for Integer Issue
Queue (IQ) and Reorder Buffer (ROB). We believe that these
two structures produce significant impact on the processor
vulnerability. Without losing generality, our methods can
also be used for other processor components.

Table 1 shows the Alpha-21264-like baseline machine
configuration, which will remain unchanged in Section 4.1.
In Section 4.2, several key parameters will be tuned to
generate 15 different configurations. For the experiments,
all the benchmarks except one from the SPEC CINT 2000
suite are evaluated. The only exception is gzip whose
simulation cannot be finished in a reasonable time in Sim-
SODA. The floating point benchmarks of SPEC 2000 suite
are not included in our experiments because Sim-alpha
cannot accurately model Alpha 21264 floating point pipe-
line (thus, Sim-SODA does not support AVF measurements
for FP workloads). In order to perform a sufficient model
training/test, we provide each benchmark with different
inputs, if possible, and the total 19 workloads are listed in
Table 2 in which the training set includes the white columns
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and the test set consists of the gray columns. Note that the

training and test sets are disjoint.
Each workload is run for two 100-Million Instruction

SimPoints [1]. Table 2 also gives the number of instructions

(unit: 100M) fast-forwarded to reach the SimPoints that we

are interested in. In this paper, we term each SimPoint (i.e.,

the execution of 100M instructions) as a “phase,” and each

500K instructions within a SimPoint as an “interval.” In

other words, for each workload, we simulate two phases,

each containing 200 intervals. The granularity of dumping

the AVFs and performance metrics is “interval,” that is, the

system records the AVF values (of IQ and ROB) and the

values of 217 performance variables after the execution of

every interval. We don’t list all the variables due to the page

limit; instead, the following sections will analyze the most

important ones. Table 3 explains the abbreviation of

variable names.

4 VERSATILE AVF PREDICTION

Generally, we believe that the AVF value of a key processor

structure is a complex function of a large set of processor

performance metrics. The exact form of the function may

vary in different execution stages or different configura-

tions. Nevertheless, our proposed method (i.e., BRT) is

capable of identifying important features from a large set of

performance variables and accurately predicting the vulner-

abilities across workloads, execution phases, and different

configurations. We show the AVF prediction in this section.

4.1 Prediction within the Same Processor
Configuration

This section discusses the model training and test under our
baseline setting (Table 1) to demonstrate that BRT accu-
rately predicts the vulnerabilities of other workloads and
future execution phases. Specifically, 15 phase files (work-
loads in the white columns in Table 2) are used to train a
BRT model, which is then applied to other 4þ 19 phase files
(phase 1 of 4 workloads and phase 2 of all workloads, as
shown in the gray columns in Table 2).

We first apply Algorithm 1 (described in Section 2.1)
using all 217 performance variables. Recall that in each
iteration, some variables are selected in b) of Step 2 in
Algorithm 1 as important features to partition the input
space into H disjoint regions. We term variable importance
as the average number of times (weighted by the contribu-
tion to the squared improvement made by the corresponding
variable) a variable is selected in this step. The 10 most
influential variables are listed in Fig. 2. Note that the values
shown have been scaled to a sum of 100 percent, with a
higher percentage indicating a stronger influence on the
AVF. As can be seen, the number of valid entries
(cumulative count, average count) and the cumulative la-
tency that the committed instructions spent in the structure
significantly contribute to the vulnerability of the structure.
In addition, states of some other microarchitecture compo-
nents (e.g., Ready Queue, Load/Store Queue, Register File)
also strongly affects the vulnerabilities of the IQ and ROB
structures.

After identifying the 10 most important performance
metrics, we refit the BRT model by only using the 10 selected
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variables. This effectively reduces the number of dimen-
sions of the input space from 217 to only 10, thus
significantly reducing the model complexity. The prediction
results of the workloads in the test set are shown in Fig. 3.
Note that in this paper, all the AVF values are shown in the
range of 0-100 (rather than 0-1). For the four workloads
(phase 1) on the left, the mean absolute errors (MAEs) for IQ
and ROB AVFs are 0.93 and 0.55, respectively, validating
the ability of our model to accurately predict the AVF
variation on different workloads. Furthermore, the MAEs
for the second phases of all 19 workloads are almost all
below 4 with only two exceptions mcf and vpr whose IQ
errors reach about 8. The small average MAEs (2.23 for IQ
and 1.16 for ROB) of the phase 2 files indicate that the cross-
phase correlation between the vulnerability and perfor-
mance metrics can be captured by our model.

For comparison purpose, we also present the relative
error for each phase in Fig. 4. As can be seen, most
workloads in the test set are predicted with a relative error
lower than 10 percent. Only mcf is an outlier that suffers
from significant relative errors. From the simulation result,
we found that its data L1 (DL1) cache miss rate is only
0.0095 in the first SimPoint, while this miss rate is 0.2877 in
the second SimPoint. Therefore, the training data from mcf
does not represent its typical memory-intensive behaviors.

We believe that this is the reason why mcf shows high

relative errors in the prediction.
Generally, we believe that relative error is not a good

metric to report the predictive performance in this work. If

we intended to look at the average AVF value throughout

the entire phase (instead of a variation consisting of many

intervals), relative error might be a good choice. However,

our work addresses the instantaneous AVF curve that

consists of hundreds of measured points within a phase,

and some of them are very close to zero. The relative error

could reach a very high value even by a small absolute

error. For example, if the true AVF measure is 1 and the

predicted AVF is 2, although the absolute error is only 1,

the relative error is 100 percent. This kind of “outliers,”

though only a few, strongly affects the average of relative

error, but does not reasonably reflect the predictive power

of the model. Therefore, we will mainly focus on analyzing

the mean absolute error of the AVF in this paper.
Empirical Cumulative Density Function (CDF) is another

way to report the prediction performance. From Fig. 5, we

see that over 90 percent of the intervals are predicted below

absolute errors of 4.5 and 2.2 for the IQ and ROB AVFs,

respectively.
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4.2 Prediction across Different Processor
Configurations

The previous section demonstrates a correlation between the
AVFs and a small set of performance metrics across work-
loads and phases but within a specified processor config-
uration. In this section, we further extend our methodology
to address the cross-configuration situation. Applying the
well-trained cross-configuration predictive model on differ-
ent existing configurations enables calculating the AVF
without implementing the various hardware required to
calculate the AVF in each configuration. As mentioned in
Section 1, an analysis window is implemented to store 40K
instructions after their commit stage. In order to detect the
instruction type which will be used in calculating the AVF,
we also need to maintain the instruction dependencies in the
window by implementing a large amount of additional
structures. Besides, a lot of state bits and control logics are
expected in the AVF calculation. Therefore, if we have a
cross-configuration predictive model, we can accurately
quantify the AVF behaviors on various hardware platforms
without actually implementing the AVF calculation designs
in hardware, thereby saving large hardware overheads.

Specifically, we tune the four parameters listed in Table 4
to generate 15 different configurations because these
parameters are believed to be dominant in producing the
vulnerabilities of IQ and ROB. Note that cfg1 is the baseline

setting described in Table 1. We still employ the BRT
methodology to perform the prediction in this case.
However, in order to characterize the change in configura-
tion, we also include the tuned parameters in the perfor-
mance metrics set as additional variables. Two randomly
selected workloads, each also containing two phases, are
simulated under each configuration. The training set
consists of the phases under cfg1 to cfg12 (48 phase files in
total), while the test set is composed of the other three
configurations (12 phase files).

Similar to the within-configuration study, we first apply
BRT using all 217þ 4 input variables, and select the most
important 10 features. After that, we refit the BRT model
with the 10 metrics. The relative variable influences for this
case are quantified in Fig. 6. Interestingly, the structure’s
occupant rate becomes the most important variable to its
AVF. We also observe that two configuration parameters
(issue q size; rob size) appear in the lists, indicating that
chaning configuration does have some effect in producing
the AVF. As can be seen, the variable importance distribu-
tion (percentage and ranking) shown in Fig. 6 is quite
different from those depicted in Fig. 2. This happens due to
the multicollinearity problem in multiple regression models
[20]. When many correlated input variables exist, the
estimate of variable coefficients and their importance can
be unstable since the effect from one variable may be
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Fig. 4. Prediction relative error.

Fig. 5. Empirical CDF on absolute errors in the within-configuration study.



disguised by its correlated variable(s). For example,
rob average count and rob occupant rate are two highly
corrected variables, but show completely different influ-
ences to the response in Figs. 2 and 6.

As for the prediction performance illustrated in Fig. 7,
only one workload (bzip2 under cfg13) is predicted with
mean absolute errors of AVFs above 3, and the other five
workloads in test show very high prediction accuracies in
both IQ and ROB AVFs. Specifically, the overall MAEs of all
the six workloads in the test set are 2.91 for IQ AVF (Phase 1),
2.0 for IQ AVF (Phase 2), 1.17 for ROB AVF (Phase 1), and
1.56 for ROB AVF (Phase 2). Note that the six workloads are
simulated under three different configurations which also
differ from the configurations in the training set. Hence, the
accurate prediction results validate that our model is capable
of predicting vulnerability behaviors across configurations.
In addition, Fig. 8 shows that over 90 percent of the intervals
are predicted below absolute errors of 4.6 and 2.1 for IQ and
ROB AVFs, respectively.

4.3 AVF Behavior Analysis and Model Interpretation

Fig. 9 provides another approach to compare the predicted
and measured IQ AVF curves for two workloads gcc.inte-

grate and crafty, which are randomly selected as an example.
Although the measured AVF behavior shows extremely
strong variation over time, our prediction method is able to
faithfully capture this behavior and therefore confirms the
high accuracy of BRT-based prediction.

In addition, one can refer to Figs. 10 and 11 for the partial
dependence plots of the AVFs on the most important
variables. As described in Section 2.2, Partial Dependence
Function summarizes the effect of a subset of variables on
the response (i.e., the AVF) after accounting for the average
effect of other variables in the model. Therefore, partial
dependence of the AVF provides computer architects with
visible interactions between important performance metrics,
and also implies the vulnerability trends and bottlenecks.

Specifically, Fig. 10 illustrates how the two most important
variables contribute to the IQ AVF in the within-configura-
tion study. The data are plotted into a contour map, which
shows two hills in which variation of the parameters results
in significant changes of the AVF, and one plateau in which
the AVF is insensitive to the variables’ changes. As can be
seen, when the issue q cumulative latency (the Y-axis) is less
than 5:8eþ 06, increasing this latency boosts the AVF from 18
to 24. In addition, when the ready q cumulative count (the

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. XX, XXXXXXX 2010

TABLE 4
Configurations Used in Section 4.2
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X-axis) is less than 350K, decreasing the cumulative Ready
Queue count leads to a further AVF increase from 26 to 36. A
larger cumulative IQ latency means that the ACE instructions
were kept for a longer time in the IQ. A lower Ready Queue
count indicates a worse congestion in the IQ where the issued
instructions wait for their operands to be ready. Both of the
two cases contribute to a higher vulnerability of the IQ. The
gray area in this figure represents a plateau where variations
of the two metrics rarely affect the AVF. In this case, other
processor variables should be considered. In [15], the authors
also used a nonparametric model and contour maps to
analyze the roughness and bottlenecks of processor design
topologies.

The proposed model can also quantify the AVF’s partial
dependence to one very important variable. The contribu-
tion of the ROB average count to the ROB AVF is shown in
Fig. 11. We can observe that the increase of the ROB average

count results in the increase of the ROB AVF. This can be
easily explained as the proportion of the valid ROB entries
approximately characterizes the vulnerability of the ROB.
The vulnerability saturates at around 23 when the ROB
average count exceeds 48, in which case the ROB average
count is no longer a driving factor to the AVF and other
variables should be considered.

4.4 A Comparison between BRT and Linear
Regression

In this section, we make a quantitative comparison between
our suggested BRT method and classical linear regression
approach. For linear regression, we followed Walcott et al.’s
approach in [27]. Their proposed practical linear procedure
started from including the single variable with the largest
correlation into the model. Then by considering all the
remaining variables (omitting the selected one) in turn, they
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Fig. 8. Empirical CDF on absolute errors in the cross-configuration study.

Fig. 9. Measured and predicted IQ AVF curves for gcc.integrate and crafty in the within-configuration study.

Fig. 7. Prediction results on different configurations.



selected the one that achieves the best bivariate linear
regression approximation involving the previously selected
variables. The procedure continues until all variables are
included in the model.

Fig. 12 illustrates the comparison. Here, we only consider
the IQ AVF prediction for the within-configuration case. The
left panel shows the R-squares on the training and test sets
with different number of variables included in the model in
the linear regression approach and our BRT method. We see
that although the R-squares increase monotonically on the
training set for both linear regression and BRT, the test
R-squares do not. Particularly in linear regression, the test
R-square goes below zero when five to eight variables are
included in the model. Therefore, the test R-square in BRT is
more stable than linear regression. This is also exemplified
in the right panel of Fig. 12, which shows the coefficient
solution paths along the model size in linear regression.
Notice that for “X3,” its estimated coefficient begins with a
negative value at model size 3, shrinks towards zero at
model size 4 & 5, changes to positive at model size 6 & 7,
and goes below zero again for model size 8-10.

The instability issue in model fitting and estimation has
been well studied in [6], where it pointed out that neural
nets, classification and regression trees, and subset selec-
tion in linear regression were unstable. Instability refers to
the situation that a small change in input data set (i.e.,
include/exclude one workload or phase) or model setting
(such as model size) can result in a large change in the
fitted model (i.e., estimate of model coefficient and fitted
value). As demonstrated previously, linear regression
suffers from such instability issues. One common approach
to alleviate instability problem is model averaging. As we
mentioned earlier, regression trees are the building blocks
for BRT. Although they are highly greedy and instable
optimization methods, BRT averages a large number of
regression trees with a tiny equal weight vðv ¼ 0:01Þ on
each tree. This stabilizes the estimate from BRT and
achieves better prediction performance than a single
regression tree. Fig. 13 shows the R-square curves for
training and test sets with � equals to 0.01 and 1 in the
BRT model. The benefit of using small value of � is
evident. With smaller value of �, the test R-square curve
reaches a higher value and stays there for many iterations.
In other words, our BRT model has successfully stabilized
the prediction.

In addition, BRT is a more flexible modeling scheme than
linear regression. For example, it considers nonlinear
relationship between the AVF measure and input variables,
and also addresses complex interactions among input
variables. If we consider the nonlinearity and interactions
in the linear regression model, we have to specify each term
carefully and do the model checking before we got the final
model. Our method also has model interpretation (see
Section 4.3) which helps us visually analyze the vulner-
ability trends and bottlenecks. This cannot be done by a
linear regression model.

5 FAST AVF ESTIMATION

In practice, a simpler AVF prediction mechanism is easier to
be adopted. In order to reduce the model complexity, we
further propose to use a PRIM-based technique described in
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Fig. 11. Partial dependence of the ROB AVF on the most important
variable in the within-configuration study.

Fig. 10. Partial dependence of the IQ AVF on the two most important variables in the within-configuration study.



Section 2.3 to summarize some simple and interpretable
“IF-ELSE” rules that can be applied on some important
performance variables during runtime to quickly identify
the intervals with high AVF values. Due to the page limit,
we demonstrate the effectiveness of this method by only
illustrating the ROB AVF prediction results within the
baseline configuration, but other AVF predictions can also
be applied.

The results of fast ROB AVF estimation in the within-
configuration study are shown in Fig. 14. We intend to find
the top �10 percent of the intervals in terms of the
vulnerability level. Note that we denote a high vulnerable
interval as a black “o” while an interval with a low
vulnerability as a gray “þ” in this figure. The training and
test sets are the same as those in Section 4.1, that is, the
training set shown in the left part of Fig. 14 contains
3,000 intervals (white columns in Table 2), while the test set
contains 4,600 intervals from the benchmarks and phases
listed in gray columns of Table 2. The rules extracted from
the training data can be described as:

IF ((rob_average_count > 18.668504)

AND (rob cumulative_latency > 6920604)

AND (cumulative_slip_latency > 12009627)

AND (load_q_writes_count < 204513))

THEN {

The interval is declared to have a high ROB-AVF value

}

One can refer to Table 3 for the explanation of variable
names. The only one here that was not listed in Table 3
indicates the cumulative latency that the committed instruc-
tions spent in passing the whole pipeline. From the testing
results shown in the right part of Fig. 14, we can see that
applying these simple rules to the test set makes an accurate
AVF estimation, i.e., the AVF of current interval is high or
not. The derived rules can be explained from architectural
wise: the valid ROB entries and the cumulative latency to go
through it perform the estimation in the first place. Longer
cumulative slip latency reflects a lower instruction proces-
sing speed of the whole pipeline, and infrequent writes to the
Load Queue also make the vulnerable instructions stay long
in the pipeline. Hence, all the identified rules show strong
significance in estimating the architectural vulnerability.

6 RELATED WORK

Mukherjee et al. [18] compared the advantages and
disadvantages of three different RMT techniques: 1)
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Fig. 12. R-squares on training and test sets over model size in linear regression and BRT methods (Left), and the scaled coefficients for the first 10
selected variables in linear regression (Right).

Fig. 13. R-square curves for the training and test sets with different learning rate � in BRT.



Lockstepping, a cycle-by-cycle synchronization that has
long been used on commercial fault-tolerant systems; 2)
Simultaneous and Redundantly Threading (SRT), which
was first discussed in [21], utilizes the dynamic resource
sharing from SMT processors to reduce performance
degradation due to redundancy; and 3) Chip-Level Re-
dundant Threading (CRT), which extends SRT to CMP
environment, explores significant performance benefit on
multithreaded workloads. Vijaykumar et al. [26] and Gomaa
et al. [14] proposed the recovery schemes for SRT and CRT,
respectively. Prior to these schemes, Rotenberg [23] and
Austin [2] at first proposed different transient fault detection
architectures.

The concept of AVF was originally termed in [19], and
Austin [2] extended it to address-based processor structures.
There are two main approaches to calculate the AVF values:
ACE analysis and Statistical Fault Injection (SFI). The former
provides a (tight, if the underlying system is appropriately
modeled [4]) lower bound on the reliability level of various
processor structures, and has been adopted in many research
works on performance models. Fu et al. [13] quantitatively
characterized vulnerability phase behavior of four micro-
architecture structures based on a system framework
proposed in [12], which is also the simulator used in this
paper. Zhang et al. [31] performed a similar analysis on SMT
architectures. Soundararajan et al. [25] described a simple
infrastructure to estimate an upper bound of the ROB AVF,
and also proposed two mechanisms (Dispatch Throttling
and Selective Redundancy) to restrict the vulnerability to
any limit.

Alternatively, SFI randomly (or statistically) injects into
program execution a set of faults, each being independently
analyzed and determined to see a visible error of the
outcome. The AVF is the ratio of the number of trials that
eventually raise an error to the total number of trials
performed. Wang et al. [29] implemented a latch-accurate
Verilog model to simulate an Alpha processor, while
Li et al. [17] incorporated a similar probabilistic model of
error generation and propagation into an architecture-level
tool. Wang et al. [28] compared ACE analysis to their fault-
injection IVM, and claimed that ACE analysis was highly

conservative by identifying two sources of its conservatism
(lack of system detail and single-pass simulation). However,
a recent publication [4] refuted their claim by stating that a
small amount of additional details can result in a much
tighter AVF bound and quantifying the small effect of Y-bits
on system simulation.

Besides [13], [27], some other works also addressed the
problem of AVF prediction at runtime. Cho et al. [7]
examined workload dynamics in a design space of micro-
architecture configurations. For each workload, they trained
a set of neural networks with series of wavelet coefficients
decomposed from AVF behaviors under different config-
urations, predicted the wavelet coefficients of any other
configuration, and reconstructed the AVF curve (of the
target configuration) from the predicted coefficients. Their
work is completely different from ours in this paper
because they required a separate (or different) set of neural
networks for each workload while our model has been
demonstrated to be validated across workloads, phases and
configurations. Very recently, Li et al. [16] developed an
algorithm to estimate processor structures’ vulnerability
online using a modified error injection and propagation
scheme from their previous work [17]. Their method does
not need any offline simulation (except some experimental
experience to determine key parameters) but requires
hardware modification of the processor to support error
propagation and detection rules. In [9], we proposed the
versatile AVF prediction method across different work-
loads, execution phases, and processor configurations, and
fast estimation to identify intervals with high AVF values.
This paper extends [9] by adding a stability comparison
between the proposed BRT method and the conventional
linear regression model and an application of the usage of
the PRIM-based AVF estimation.

7 CONCLUSIONS

In this paper, we have proposed to use Boosted Regression
Trees, a nonparametric tree-based predictive modeling
scheme, to identify the correlation (across different work-
loads, execution phases, and processor configurations)
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Fig. 14. Fast estimation of the ROB AVF in the within-configuration study.



between a key processor structure’s AVF and various

performance metrics. Experimental results showed that

our model can accurately predict the AVF in the above

situations. In addition, the proposed model provides valid

interpretation tools for computer architects to quantify

important variables and the AVF’s dependence on them. A

quantitative comparison between the BRT model and linear

regression demonstrates that our scheme is more stable and

has many advantages. Finally, to reduce the prediction

complexity, we also utilize another technique named Patient

Rule Induction Method to extract some simple selecting

rules to monitor a few important metrics, which can be used

to quickly identify the execution intervals with a relatively

high AVF. The case study performed in the paper also

justifies the applicability of our fast AVF estimation scheme.

APPENDIX A

CASE STUDY: PRIM-BASED ROB REDUNDANCY

This section describes a possible application of the PRIM-

based scheme introduced in Section 5 to efficiently bind the

ROB AVF value under a system-affordable low level. While

most intervals shown in Fig. 14 demonstrate a very good

invulnerability to transient faults in the ROB, some of them

(around 10 percent in the entire workload space) do have a

relatively high ROB AVF that may result in a failure in

system reliability requirements. However, as can be seen in

the figure, our PRIM-based model is able to effectively

identify such vulnerable intervals, in which we can

essentially partition the ROB into two identical halves that

execute the same instruction flows, generating necessary

redundancy to detect possible ROB transient faults. Similar

studies can be found in [27], [25], but ours does not bound

the AVF below some prespecified threshold; instead, we

systematically analyze the vulnerability distribution in the

entire workload space, and generate some simple rules that

select the intervals of interest, i.e., the vulnerable intervals

showing a high AVF. As a proper extension of Section 5, this

section mainly focuses on reducing the ROB AVF in the

within-configuration study, but the approach can be easily

applied to the cross-configuration situation or other

structures, e.g., the IQ.

A.1 PRIM-Based ROB Redundancy Approach

The basic idea of our approach is that whenever the

program execution finishes an interval whose measured

performance metrics conform to the trained PRIM rules (i.e.,

the interval is declared to be vulnerable in the ROB), we

partition the ROB into two identical halves, both running

the same instruction flows from the next interval. This is

defined to be in a redundant mode, during which the ROB

AVF is effectively reduced to zero due to the generated

redundancy. After a fixed number of intervals, the ROB will

switch back to a normal mode which recombines the two

parts into the original buffer, and start checking the metrics

again. In the following detailed algorithm, redundancy flag

records how many intervals remain in the redundant mode

to reach the next normal mode interval.

Algorithm 2. PRIM-based ROB redundancy.
At the beginning of each interval:

IF ((redundancy flag ¼ 0) AND

(ROB in the redundant mode))

THEN {

ROB switches to the normal mode

}

At the end of each interval:

IF ((redundancy flag ¼ 0) AND

(current measured metrics conform to the PRIM

rules))

THEN {

ROB switches to the redundant mode

set redundancy flag to n

}

IF (redundancy flag > 0)

THEN {
decrement redundancy flag by 1

}

To switch the ROB from the normal mode to the
redundant mode, we need to properly process the valid
instructions that still remain in the ROB such that the
execution correctness is maintained. This can be done via
Fetch Throttling, which is similar to Dispatch Throttling
described in [25]. When a vulnerable interval is detected,
we temporarily stop fetching instructions until the whole
pipeline is drained and the ROB finishes the mode switch-
ing. After that the pipeline resumes instruction fetching,
and every instruction will be placed in both ROB partitions
to generate the redundancy, which endows the ROB with
the ability to detect possible transient faults.

When the ROB is in the redundant mode, the effective
ROB size reduces to a half of the original size and the PRIM
rules that were derived in the normal mode become
improper. Therefore, we do not follow those selecting rules
under the redundant mode, but simply switch the ROB
back to the normal mode after n intervals. In this study, we
fix n at 10. Note that this scheme may potentially disable
the ROB redundancy even when its AVF of current interval
turns out to be high (but will re-enable the redundancy
immediately after current interval if this happens), result-
ing in some “outliers” escaping from our bounding effect.
This is considered to be negligible since such outliers rarely
present in our 200-interval workload executions.

A.2 Performance Degradation Analysis

Our PRIM-based ROB redundancy may suffer from perfor-
mance degradation mainly due to two reasons. One is that
the effective ROB size is reduced to half in the intervals
under the redundant mode, and the other is that we need to
throttle fetching instructions to drain the pipeline when the
normal-to-redundant mode switching happens. We analyze
the performance degradation in this section to demonstrate
that our redundancy scheme sacrifices only a negligible
amount of performance to provide significant increase in
reliability.

The average IPC degradation after applying our ROB
redundancy scheme in within-configuration study is
1.9 percent for the 23 workloads in the test set shown in
Table 2. Actually, there are only 3 of them showing a
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relatively significant IPC decrease, while the rest 20 retain
their performance very well. For analysis purpose, we only
present two typical examples here: one is from the former
group that suffers from performance degradation, and the
other is from the latter ones that retain the IPCs.

gcc.scilab (phase 2), whose IPC decreases by 9.3 percent
when enabling the redundancy scheme, is one of the three
workloads that suffer from a noticeable IPC degradation.
Fig. 15 shows its IPC variation before and after applying
PRIM-based ROB redundancy. An apparent two-step curve
can be seen from the figure: the IPC retains well in the first
step but nearly decreases by a constant amount in the second
step. One can refer to Fig. 17 for an easy explanation: the ROB
occupant rate (for gcc.scilab) hangs around 50 percent in the
first step but reaches 80 percent in the second step, where the

system would be short of the ROB entries if the ROB size is
cut to half. In contrast, bzip2 (phase 2) only presents a
0.2 percent decrease in the IPC, whose variation is depicted in
Fig. 16. Note that the two curves are highly overlapped with
only a few points in the middle showing slight difference.
Fig. 17 also gives the ROB occupant rate for bzip2, and it’s not
surprised to see a well-retained IPC in this workload since its
ROB occupancy persistently stays below 50 percent.
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Fig. 15. IPC variation for gcc.scilab in phase 2 of both schemes: without ROB redundancy and with PRIM-based ROB redundancy.

Fig. 16. IPC variation for bzip in phase 2 of both schemes: without ROB redundancy and with PRIM-based ROB redundancy.

Fig. 17. ROB occupant rate for gcc.scilab in phase 2 and bzip2 in phase 2.
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