Symbolic Cache: Fast Memory Access Based on Program
Syntax Correlation of Loads and Stores

Qianrong Ma

Jih-Kwon Peir

Konrad Lai

Lu Peng

Server Globalization Tech.
Oracle Corporation
qianrong.ma@oracle.com

Abstract

An increasing cache latency in next-generation pro-
cessors incurs profound performance impacts in spite
of advanced out-of-order execution techniques. One
way to circumuvent this cache latency problem is to pre-
dict load values at the onset of pipeline execution by
exploiting either the load value locality or the address
correlation of stores and loads. In this paper, we de-
scribe a new load value speculation mechanism based
on the program syntaz correlation of stores and loads.
We establish a Symbolic Cache, which is accessed by
the content of memory load and store instructions in
early pipeline stages to achieve a zero-cycle load. Per-
formance evaluation using SPEC95 and SPEC2000 in-
teger programs with SimpleScalar tools shows that the
symbolic cache provides higher accuracy than both the
memory renaming and the value prediction scheme, es-
pecially when hardware resources are limited.

1 Introduction

Today’s high-performance processor pipeline permits
overlapping instruction execution to achieve more
than one Instruction Per Cycle (IPC) average execu-
tion rate. The available Instruction-Level Parallelism
(ILP) constrains this parallel execution because depen-
dent instructions must wait for the data produced by
the source instructions. The severity in terms of exe-
cution delays depends primarily on the speed that the
producer instruction can generate the needed data.
Memory load latency presents a classical pipeline
bottleneck even when the data is located in the first-
level cache. This is because the load data is not
ready until late stages of the pipeline while the de-
pendent instruction normally requires the data at an
earlier stage. This load-to-use delay exacerbates in re-

0-7695-1200-3/01$10.00 © 2001 IEEE

CISE Department
University of Florida
{peir,lpeng}Qcise.ufl.edu

Microprocessor Research Lab
Intel Corporation
konrad.lai@intel.com

cent high-performance microprocessors in which multi-
cycle, first-level caches become the norm [10, 13, 12,
8, 7]. As the cache size, clock frequency and complex-
ity of microarchitecture continue to increase in next-
generation processors, it is estimated that the first-
level cache accesses may consume two to five cycles [1].
This increasing load latency from caches will further
lengthen the load-to-use delay and will have profound
performance impact in spite of advanced out-of-order
execution techniques [1, 2].

In Figure 1, a conceptual out-of-order execution
pipeline is partitioned into two phases. First, an in-
struction is fetched, decoded, renamed, and issued
through the front-end of pipeline stages. Afterwards,
the instruction is executed (including memory ac-
cess) and committed through the back-end of pipeline
stages. In order to be hazard-free, a source instruc-
tion must produce the data early before executions of
its dependent instructions. In other words, a critical
producer, when it is fetched and issued at the same
cycle with its dependent instructions, needs to gener-
ate the result in the front-end of the pipeline in order
to avoid any stall of the dependent instructions. Such
a hazard-free memory load instruction is called a zero-
cycle load.

Front—End (Fetch & Issue) Back-~End (Execution & Commit)

54

I
Dependence Hazard—Free Point

Figure 1: Pipeline partitioning and hazard-free point

There have been several attempts to achieve a zero-
cycle load by predicting and speculating the load value
in the front-end of the processor pipeline. The most
aggressive way is to predict the load value at the on-
set of pipeline execution. A load-value history table is
established and accessed using the Program Counter

(PC) of the load. This scheme allow loads to bypass
caches completely to achieve a zero-cycle load. How-
ever, the lack of close correlation between the instruc-
tion address and the value of the load makes the pre-
diction accuracy low [9, 15, 11].

Another way to circumvent pipeline hazards caused
by the cache latency is to predict the load address
at the onset of pipeline execution so that a cache
access can start speculatively without going through
the normal decode, rename, and address generation
stages [5, 6, 4, 1]. Existing address prediction meth-
ods exploit regular patterns, such as stride-based ad-
dress patterns, and irregular but repeated patterns,
such as addresses for traversing link-based data struc-
ture. However, the difficulty of predicting a significant
portion (over 30% [1]) of load addresses that do not
fall into these two categories remains. Furthermore, a
lengthy cache access is still required even with a cor-
rectly predicted address.

Memory renaming techniques establish dynamic de-
pendence correlations between stores and loads [14].
A separate storage element called a value file (VF) is

used to save the correlated data. When a memory load -

instruction is fetched, an indirect access to the value
file based on the PC of the load can retrieve the data
without going through a lengthy cache access. Studies
show that there are many more loads that consume the
value from the same producer than those loads which
repeat the same value or address from the previous in-
stance of the same load. Therefore, there is a better
chance to obtain the correct load value using memory
renaming through the value file than that based on the
load value/address locality. This approach, however,
requires additional hardware to establish the correct
dependence links among stores and loads.

In this paper, we exploit a new avenue to specu-
latively obtain the load value in front-end stages of
the pipeline. First, we observe that store-load and
load-load correlations are established in software and
often displayed in the program syntax in the form of
a base register ID plus a displacement value. There-
fore, instead of establishing accurate dependence links
in hardware, we can use contents of store/load instruc-
tions to approximate the dependence. Second, appli-
cations exhibit spatial locality among memory refer-
ences. Such locality can also be observed in the pro-
gram syntax. A typical example is found in stack
accesses during procedure calls as consecutive stack
accesses differ only by a small displacement value.
Therefore, it is reasonable to establish store/load de-
pendences on a large block granularity to capture the
spatial data reference locality.

Based on these observations, we propose a Symbolic

56

Cache (SC). An SC is a small separate cache that is ac-
cessed at early front-end stages based on the content of
memory reference instructions. The speculative data
retrieved from the SC can trigger the execution of de-
pendent instructions to avoid delays. In comparison,
the SC works similar to value prediction schemes. In-
stead of predicting the load value based on the past
history of the load, the value can be more accurately
predicted based on the syntax (i.e. the base register
ID and the displacement) of the loads. Similarly, the
general function of the SC is also comparable to that of
the VF in the memory renaming approach. Using the
content of loads, the SC approach can eliminate addi-
tional complexity of establishing correct dependences
and extra tables to allow correct accesses to the VF.

Performance evaluations using SimpleScalar tools
and SPEC95/SPEC2000 integer programs show higher
prediction accuracy in the SC approach in comparison
with other data speculation methods. This is espe-
cially true when hardware resources are limited for
constructing the additional tables and caches. The
remaining paper is organized as follows. We will first
provide motivations and observations for the proposed
method in the next section. This is followed by discus-
sions of design and related issues for establishing the
SC in Section 3. In Section 4, performance evaluations
of three data speculation methods are given. Finally,
Section 5 concludes the paper.

2 Background and Motivation

“Ze—mem=10 ~#— mem=30 —&—mem=50 —~mem=100 —%-mem=200]

0.8

L1 Cache Latency

Figure 2: IPCs of various cache/memory latencies

It is well-known that increasing cache and memory
latencies deteriorate pipeline performance. Figure 2
shows average IPCs of several SPEC95 and SPEC2000
integer benchmarks with various cache and memory
latencies. The simulation is performed using the Sim-
pleScalar tool on a Sun/Solaris environment {3]. We

vary first-level data cache (L;) access latencies from 1
to 5 cycles with memory latencies of 10, 30, 50, 100,
and 200 cycles. The second-level cache (Lz) latency
is fixed at 10 cycles and other parameters follow the
default values. We simulate an 8-wide, out-of-order
pipeline, with 32KB, 4-way, instruction and data L;
caches and a 1MB, 4-way, combined L2 cache. The re-
sults indicate that each cycle reduction of the L; access
delay improves the IPC by about 7-10%. Techniques
based on load value speculation to hide the cache la-
tency are the main focus in this paper.

/* rules to prevent opponent makes 2 shimari */
void shimari_kakari (void) {
int numshimari(2],
if (boardsize < 13) return;

.ent shimari_ kakari
shinari_kakari:

.frame §$fp,72,$31

.mask 0xc0070000, -8

.fmask 02200000000,0

subu $sp, #sp,72

sw $31,64 ($sp)

sw $£p .60 ($5p) [Spatial Locality J

sw $18,/56 ($8p)

swW $17,/52($sp)

sW $16,48($sp)

move $fp,$sp

1w $2,boardsize

_______ Store/Load
$L96: Correlation

move $fp,$sp

1w $31,/64($8p)

1w $fp,

1w $18,56 ($sp)

1w $17,/52 ($sp) Spatial Locality

1w $16,48 ($sp)

addu $sp, $sp,72

3 $31

.end shimari kakari

Figure 3: Syntax corrections of store/load and their
spatial locality

There are two key observations that establish the
foundation of the Symbolic Cache (SC). First, store-
load and load-load correlations are often displayed in
the program syntax in the form of a base register ID
plus a displacement value. Second, such a simple mem-
ory reference syntax also exhibits spatial locality. Both
of these properties can be observed in accessing global-
allocated variables, local stacks for procedure calls, as
well as the heap for dynamic allocated variables. Fig-
ure 3 shows the source and the assembly codes of a
simple function from Go of SPEC95. This function is
invoked many times to determine a strategy for the
next move. Note that we omit the function body and

56

only show stack accesses for saving and restoring reg-
isters. The store/load dependence can be established
perfectly with a matching pair of base register (sp) and
displacement. Meanwhile, the spatial locality among
stores and among loads is also evident from the dis-
placement values. In general, these properties exist
in all functions. Other program constructs such as
stores/loads in unrolled loops, handling spoiling code,
etc. also show similar syntax correlations and locality
properties.

Given these syntax correlations among stores and
loads in applications, we can establish a small SC
to save and speculate load values in the front-end of
pipeline stages.

3 Establishing Symbolic Caches

An SC is a small cache which is addressed by the
content of load/store instructions. The SC can be
accessed once loads/stores are fetched out of the in-
struction cache. As a result, pipeline stages involv-
ing register file access, address generation/translation,
and cache access for loads can be bypassed to shorten
the load-to-use latency. The impact of pipeline per-
formance using an SC is very similar to that of using
the VF in memory renaming techniques [14], where
the speculative load data is fetched out of the VF in-
directly through a pointer table.

It is essential to properly extract the symbolic ad-
dress from the content of load/store instructions in
order to capture the syntax correlation among stores
and loads. Meanwhile, the aliasing problem among

" symbolic addresses need to be considered. A typical

memory instruction consists of an opcode, a register
source/destination, and a memory source/destination.
Intuitively, we can use the memory source/destination
to form a 32-bit symbolic address as illustrated in Fig-
ure 4. The least significant 16 bits are extracted from
the displacement value, and the base register ID (5
bits) are inserted next to the displacement. Although
simple, this approach suffers aliasing problems because
multiple memory addresses can be mapped to the same
symbolic address. In addition, this simple symbolic
address formation creates other access and alignment
problems:

o Aliasing of Symbolic Address: With the
simple address mapping shown in Figure 4, a
32-bit memory address is represented by a 21-
bit symbolic address. Potentially, many different
memory addresses can be expressed by the same
symbolic address. An obvious example can be
found in stack accesses for saving and restoring

31

1w $3,12($sp)

2120 16 15 0

|

Unused (11) Displacement (16)

(|]

Symbolic Address = 0000 0000 0001 1101 0000 0000 0000 1100

Figure 4: Extracting symbolic address from memory
instructions

registers during procedure calls. Although ac-
cessing different stack frames in each procedure,
the same stack pointer (sp) with similar ranges
of offset values are commonly used. The content
in the SC for the saving registers is likely to be
destroyed by nested procedure calls and cannot
be saved for restoring the same registers.

Uneven SC Index Distribution: It is well-
known that displacement values in memory ref-
erences are unevenly distributed with a high per-
centage of ‘0’. Using a portion of the displace-
ment bits as the index of the SC has a potential
to generate many conflict misses.

Word/Byte Alignment: The most difficult
problem lies in the difference of the line bound-
ary between a symbolic and a L; cache lines.
This is due to the fact that offset bits of a cache
line are not the same between the symbolic and
the real addresses. It is essential to properly
align the data layout in the symbolic cache ac-
cording to the symbolic address to capture the
spatial locality of memory references.

3.1 Procedure Coloring and Index
Randomization

In order to alleviate the stack access aliasing problem
in different procedure calls, we apply a simple pro-
cedure coloring technique. A global counter called
P-color is implemented. The P-color is incremented
whenever a procedure call is encountered. The P-
color is decremented after returning from a procedure
call. The P-color can be incremented contiguously
in nested or recursive procedures before being decre-
mented. Stack accesses between a caller and its callees
can be differentiated by the P-color to avoid conflicts
in accessing the SC.

The P-color can be concatenated with the symbolic
address for stack accesses. The width of the P-color
counter is flexible as long as it can be fitted into the

remaining bits of the symbolic address. Figure 5 (a)
illustrates the symbolic address after adding a 6-bit P-
color. It is important to know that the P-color is only
applied to stack accesses which use sp as the based reg-
ister. Other memory accesses do not add the P-color
to allow sharing of global variables among different
procedures.

(a):

P-color = 010010

31

lw $3,12($sp)

27 26 2120 16 15 0

lunused (S)I P-color (6) | BaseID (5)1

Displacement (16)

Symbolic Address =

57

0000 0010 01[01 1101] 0000 [0000 00]00 1100

(b): Randomized Index = 011101

Figure 5: (a) Adding procedure color to symbolic ad-
dress; (b) Index randomization in SC

An uneven distribution of the index bits extracted
directly from the displacement value has a potential
to create heavy conflict misses to the SC. This is due
to the fact that high-order displacement bits are of-
ten all zeros. This problem can be dealt with by a
simple randomization technique. Instead of extracting
index bits from the symbolic address directly, random-
ized index bits<can be formed by ezclusive-ORing the
original index bits from the displacement with the bits
from the base register ID and the P-color as illustrated
in Figure 5 (b). In this example, we assume the SC
has 64 sets with 64-byte line size. The six index bits
are obtained by ezclusive-ORing normal index bits in
position 6 to 11:with the base register ID and partial
P-color bits starting at position 16 through 21.

3.2 Word/Byte Alignment

One remaining-issue is the data alignment between
the SC and the L; data cache. The symbolic address
within a cache line, i.e. the last few offset bits, may
not be the same as the offset bits in the real address.
In order to exploit spatial reference locality, the cache
line fetched from L; need to be rearranged in the SC
such that the data layout can be aligned with the sym-
bolic address. The basic alignment algorithm works as
follows. When a memory request misses the SC, the
target cache line is fetched from the memory hierar-
chy and loaded into the SC. The target byte/word is
placed in the SC according to offset bits of the sym-
bolic address. For example, assume there are eight

Unfitted Data

L1 Cache Line

110 101

[111

Unfilled Data

SC Cache Line

Figure 6: Data alignment in symbolic cache

access units in a cache line as shown in Figure 6. The
symbolic offset of the target unit is 010 while the offset
of the real address is 101. In this case, the target data
101 is loaded into unit 010 in the SC. The remaining
units are loaded according to the location of the tar-
get unit. There are thus two aspects to consider for
achieving a proper data alignment.

e Granularity of data alignment: Depending
on memory access granularity, it is conceivable
that the data alignment can be performed at
byte, half-word, word, or double-word level.

¢ Handling underflow/overflow data: Since
the line boundary of the SC and the L; cache
may be different, only partial line can be filled
on each SC miss. In addition, there are excessive
data from the target L; cache line that cannot
fit into the requested line location in the SC. The
simplest and most natural solution is to only fill
a partial SC line and drop those unfitted data.
Other options include fetching two adjacent L,
lines for each requested SC line, and/or to search
and place the overflow L, data into the correct
second SC line.

Performance evaluation on these design options will
be given in the next section. Note that the SC is up-
dated by every store instruction. Data coherency be-
tween the SC and the L; cache is unnecessary due to
the speculative nature of the SC. It is also important
to keep in mind that the primary goal of establishing
the SC is to provide a fast load to shorten the load-
to-use latency. The simplicity of design is essential to
minimize adverse effects of managing a separate SC.

4 Performance Evaluation

Performance evaluations of three load value specula-
tion methods including the last/stride based load value
prediction (VP), the memory renaming (MR), and the
proposed symbolic cache (SC) are given. Our primary
focus is to compare the prediction accuracy among the
three mechanisms. Therefore, detailed pipeline and

58

memory hierarchy cycles are not considered in this
paper. All simulations are carried out on the func-
tional model of SimpleScalar. Ten integer programs,
Gee, Go, Li, M88k, Perl, and Vortez from SPEC95
and Gzip, Mcf, Parse, and Twolf from SPEC2000 are
used for this study. For each workload, we use the first
50 million instructions to warm up the caches and ta-
bles, then collect simulation statistics from the next
500 million instructions.

4.1 Data Alignment

In order to confine our performance evaluation space,
we first study the alignment granularity. Table 1 shows
matches of the least-significant two bits between the
symbolic and the real addresses with different memory
access granularity in the ten integer programs. The
two numbers in each entry represent the percentages of
matched and mismatched memory addresses. On the
average, 82.5%, 4.5% and 13.0% of memory references
are accessing word, half-word and byte respectively.
Mismatches of the least two bits for the three access
granularity are about 0%, 0.8% and 5.7%. SPEC2000
programs show higher percentages of sub-word mem-
ory references with more mismatches of the least 2
bits. For simplicity, we decided to apply only word
alignment, which can capture about 94% of correct
data alignment regardless the granularity of memory
accesses.

f l Byte l H-word l Word l Total
Gcee 4.3/3.1 12.2/0.9 { 79.5/0 | 96.0/4.0
Go 0/0 0/0 100/0 100/0
Li 17.8/3.4 0/0 78.8/0 | 96.6/3.4

M88k 6.0/0 0.2/0 93.8/0 100/0
Perl 7.0/9.0 2.8/0.9 | 80.3/0 | 90.1/9.9
Vortex 0.5/0.6 2.4/0 96.5/0 | 99.4/0.6
Gzip 5.7/7.0 9.2/1.6 76.5/0 | 91.4/8.6
Mcf 5.2/7.7 1.8/2.3 83.0/0 | 90.0/10.0
Parse | 15.6/13.5 3.8/1.2 | 65.9/0 | 85.3/14.7
Twolf | 10.9/12.9 | 4.3/0.8 71.1/0 | 86.3/13.7
Aver. 7.3/5.7 3.7/0.8 | 82.5/0 | 93.5/6.5

Table 1: Percentage of match/mismatch of least two
bits for accessing byte, half-word and word

With regards to line-fills on SC misses, preliminary
studies show that options of filling the entire SC line
by fetching potentially more than one L; cache lines,
and/or placing the entire targeted L; line into the SC
provide very limited benefit. Therefore, we consider
only simple partial SC line-fills and drop any unfitted
data in the following evaluation.

I [Geec | Go Li [M88k | Perl | Vortex | Gzip | Mcf | Parse | Twolf [Average |
No-color | 71.9 | 47.8 | 67.0 | 86.9 | 68.6 70.5 70.2 | 82.3 | 60.9 74.4 70.0
2-bit 742 | 48.7 | 69.2 | 88.2 | 71.9 74.5 70.3 | 824 | 62.9 74.4 71.7
4-bit 74.2 | 48.7 | 69.2 | 88.2 | 71.8 74.5 70.3 | 824 | 62.8 74.4 7.7
Table 2: Accuracy with/without the P-color
| [[Gec | Go | Li [M88k | Perl | Vortex | Gzip | Mcf | Parse | Twolf [[Average
4-way 68.5 | 439 | 65.2 | 83.1 | 65.7 62.6 70.1 | 80.9 | 55.8 70.8 66.6
Fully-asso 74.8 | 49.4 | 69.7 | 88.5 | 72.5 76.5 70.3 | 825 | 65.8 74.5 72.5
4-way, random | 74.2 | 48.7 | 69.2 | 88.2 | 71.8 74.4 70.3 | 824 | 62.8 74.5 1.7

Table 3: Accuracy with index randomization

4.2 Sensitivity of P-color and Index
Randomization

Table 2 shows the accuracy of load value speculation
using a 8KB SC with different P-color bits. In general,
we observe about 2% average improvement by adding
the P-color. However, three out of four SPEC2000
workload show no improvement with P-color. After
examining dynamic procedure calls in these programs,
we found that there are very few nested calls. For
instance, in Gzip, about 98% of the calls are labeled
at level 6. We also observe that there is no benefit
by increasing the number of bits in the P-color. Deep
analysis of application programs reveals that perfectly-
nested or deeply-recursive procedures that benefit with
more P-colors rarely exist. The actual execution path
traverses back and forth among different levels of pro-
cedures. With more P-colors, more levels of procedure
invocation can be differentiated. However, due to a
small SC, the data from ancient ancestors is difficult
to hold anyway.

The benefit of index randomization is more evident
in Table 3, in which the accuracy of three 8KB SC con-
figurations are displayed. By randomizing the index,
a 4-way set-associative SC can achieve the accuracy
approaching to that of a fully-associative SC. On the
other hand, without index randomization, the 4-way
design degrades the accuracy by about 9%.

4.3 Comparison of Three Data Specu-
lation Methods

The accuracy of three load value speculation mech-
anisms are evaluated. For a:fair comparison, we
simulate comparable hardware with respect to addi-
tional storage requirement among the three mecha-

59

nisms. The VP scheme establishes a value history
table with tags for matching the PC of a load. In
addition, an increment value is needed in each en-
try to accommodate a stride-based predictor. Besides
the value file, two additional tables are constructed in
the MR scheme. The Store/Load Cache (SLC) saves
pointers to the value file. The SLC is addressed by
the PC of loads and stores with tags for matching the
correct PC for indirect accesses to the value file. The
Store-Address Cache (SAC) also records pointers to
the value file. The SAC is accessed by load/store ad-
dresses for establishing load/store correlations. Again,
address tags are necessary to make a correct correla-
tion. The SC is simply a data cache addressed by sym-
bolic addresses. There is no extra hardware except for
a small tag array in which each tag is associated with
a 64-byte symbolic line.

We consider six configurations for accuracy compar-
isons as shown in Table 4. The hardware requirement
is represented by the total number of entries in the re-
spective tables and caches. Because of the additional
tag arrays, the storage requirement for the VP and the
MR are about 40-50% and 10-15% more than that of
the SC in each configuration. Note that in this first-cut
estimation, extra control hardware is not considered.

Figure 7 plots the accuracy curves for the three
data speculation methods. General speaking, the SC
has the highest accuracy, especially with small con-
figurations. The results indicate that the SC can
capture syntax correlations and spatial locality effec-
tively with small cache sizes as the prediction accu-
racy approaches 70% by using a tiny 2KB SC. The
MR scheme, on the other hand, requires more than
8 times of hardware storage to achieve a comparable
accuracy. The MR scheme performs poorly with small
configurations primarily because of heavy misses to the

MR
(Conﬁg. VP VF SLC | SAC SC
(word) | (word) | (link) | (link) | (line)
1 128 64 128 128 16
2 256 128 256 256 32
3 512 256 512 512 64
4 1024 512 1024 1024 128
5 2048 1024 2048 2048 256
6 4096 2048 4096 | 4096 512

Table 4: Six configurations for accuracy comparisons

—a— Symb. Cache
—8— Mem. Rename
—— Value Pred.

80
” / B —
g . /
: P
I
-
=
g 50
) /
40 |
30 7 T T T T
1 2 3 4 5 6
Configuration

Figure 7: Average accuracy of three data speculation
methods

small SLC/SAC for establishing correct links. The MR
scheme shows better improvement when the configu-
ration size increases. With bigger SLC/SAC, data de-
pendence links can be built more precisely than those
approximated by the symbolic address. However, the
SC still maintains the edge of capturing spatial local-
ity. The last/stride value predictor has the worse accu-
racy as we expected. This confirms a poor correlation
between the load value and its instruction address.
For example, considering the third configuration
with a 4KB SC, the average prediction accuracy are
53.9%, 57.4% and 71.1% for the VP, the MR, and the
SC respectively as shown in Figure 8. For the ten in-
teger programs, Gec, M88k, Perl, Vortex, Gzip, Mcf,
and Twolf show good syntax correlations with over
70% of prediction accuracy. Among them, Gee, Perl,
Vortez, and Twolf demonstrate a large improvement
over the MR scheme. Again, this is because of heavy
SLC/SAC misses. Go, and Parse show worse syntax
correlations. These two programs have very dynamic
procedure call patterns with small amount of register

Accuracy (%)

== Value Pred.
= Mem. Rename

100 = Symb. Cache

M88k Perl Vortex Gzip Mcf Parse Twolf Average

Figure 8: Accuracy of three data speculation methods
of individual programs (configuration 3)

saving/restoring in each procedure to benefit the SC
approach.

5 Conclusion

A new load data speculation method based on instruc-
tion syntax correlations of stores and loads has been
introduced in this paper. Instead of hardware estab-
lishing the store/load correlation during runtime, the
proposed method establishes a small symbolic cache to
capture existing syntax correlations and memory ref-
erence locality. The symbolic cache is addressed by
the content of store/load instructions to enable data

" accesses in the front-end of the processor pipeline to

60

shorten load-to-use latency. Performance evaluation
of SPEC integer programs has demonstrated that the
proposed method can achieve 70% accuracy with a
small 2KB symbolic cache. Such accuracy requires
much larger storages using other memory renaming
techniques.

Acknowledgment:

This work is supported in part by NSF grants MIP-
9624498, EIA-0073473 and by Intel research donations.
Anonymous referees’ comments are very helpful to im-
prove the paper.

References

[1] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim,
L. Rappoport, A. Yoaz, and U. Weiser, “Correlated
Load-Address Predictors,” Proc. of 26th Annual Int’l
Symp. on Computer Architecture, Atlanta, GA, May
1999, pp. 54-63.

[2]

4]

(5]

(7]

(8]

M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan, M.
Kalaev, and R. Ronen, “Early Load Address Res-
olution Via Register Tracking,” Proc. of 27th An-
nual Int’l Symp. on Computer Architecture, Vancou-
ver, Canada, June 2000, pp. 306-315.

D. Burger and T. Austin, “The SimpleScalar Tool Set,
Version 2.0”, Technical Report #1342, CS Depart-
ment, Univ. of Wisconsin-Madison, June 1997.

C. Chen and A. Wu, “Microarchitecture Support for
Improving the Performance of Load Target Predic-

tion,” Proc. of 30th annual international symposium-

on Microarchitecture, Triangle Park, NC, Dec. 1997,
pp. 228-234.

R. Eickemeyer and S. Vassiliadis, “A Load-Instruction
Unit For Pipelined Processors,” IBM Journal of Re-
search and Development, Vol. 37(4), pp. 547-564, July
1993.

J. Gonzalez, and A. Gonzalez, “Speculative Execution
via Address Prediction and Data Prefetching,” ACM
1997 Int’l Conf. on Supercomputing, Vienna, Austria;
Aug. 1997, pp. 196-203.

T. Horel and G. Lauterbach, “UltraSPARC-III: De-
signing Third-Generation 64-Bit Performance”, IEEE
Micro, May/June 1999, pp. 73-85.

R. Kessler, “The Alpha 21264 Microprocessor,” IEEE:

Micro, Vol. 19(2), March/April 1999, pp. 24-36.

61

[9} M. Lipasti, C. Wilkerson and J. Shen, “Value Lo-

cality and Load Value Prediction”, Proc. of the 7th
Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems, Boston, MA, Oct.
1996, pp. 138-147.

[10}+D. Papworth, “Tuning the Pentium Pro Microarchi-

tecture,” IEEE Micro, Vol. 16(2), April 1996, pp. 8-
15.

[11] Y. Sazeides and J. Smith, “The Predictability of Data

Values,” Proc. of 80th annual international sympo-
stum on Microarchitecture, Triangle Park, NC, 1997,
pp. 248-258.

[12]! Tt Slegel, et al., “IBM’s S/390 G5 Microprocessor

Design,” IEFE Micro, Vol. 19(2), March/April 1999,
pp. 12-23.

[13] P. Song, “IBM’s Power3 to Replace P2SC,” Micro-

processor Report, Vol. 11(15), Nov. 1997, pp. 1-11.

[14] G. Tyson and T. Austin, “Improving the Accu-

racy and Performance of Memory Communication
Through Renaming,” Proc. of 30th annual inter-
national symposium on Microarchitecture, Triangle
Park, NC, 1997, pp. 218-227.

[15] K. Wang, and M. Franklin, “Highly Accurate Data

Value Prediction using Hybrid Predictors,” Proc. of
80th annual international symposium on Microarchi-
tecture, Triangle Park, NC, Dec. 1997, pp. 281-290.

