
Efficient GPU Hardware Transactional Memory through
Early Conflict Resolution

Sui Chen and Lu Peng
Division of Electrical & Computer Engineering, Louisiana State University

{csui1,lpeng}@lsu.edu

ABSTRACT
It has been proposed that Transactional Memory be added
to Graphics Processing Units (GPUs) in recent years. One
proposed hardware design, Warp TM, can scale to 1000s of
concurrent transactions. As a programming method that can
atomicize an arbitrary number of memory access locations
and greatly reduce the efforts to program parallel applica-
tions, transactional memory handles the complexity of inter-
thread synchronization. However, when thousands of trans-
actions run concurrently on a GPU, conflicts and resource
contentions arise, causing performance loss.

In this paper, we identify and analyze the cause of con-
flicts and contentions and propose two enhancements that try
to resolve conflicts early: (1) Early-Abort global conflict res-
olution that allows conflicts to be detected before they reach
the Commit Units so that contention in the Commit Units
is reduced and (2) Pause-and-Go execution scheme that re-
duces the chance of conflict and the performance penalty of
re-executing long transactions. These two enhancements are
enabled by a single hardware modification. Our evaluation
shows the combination of the two enhancements greatly im-
proves overall execution speed while reducing energy con-
sumption.

1. INTRODUCTION
GPUs are designed for throughput-oriented computing us-

ing large numbers of light-weight parallel threads [12]. For
this purpose, they are constructed with compute units that
can house large numbers of resident threads and a deeply
pipelined memory subsystem that can handle a large number
of parallel memory accesses. The GPU is becoming more
versatile with its feature set enriching ever since compute
acceleration programming models such as CUDA [1] and
OpenCL [3] were introduced: features like atomic opera-
tions and support for recursion have enabled the construction
of programs involving more complicated inter-thread coop-
eration. The collection of lock-free data structures [16] and
programming libraries keeps expanding as well.

Correct and efficient implementation of synchronization
methods in parallel programs that can scale up well is not
a trivial task. While accessing a few hash tables may re-
quire only a single fine-grained word-based lock, writing a
concurrent red-black tree [13] is much more difficult. As
such, transactional memory (TM) [8] has gained attention as
a way to confront the challenges in the development of paral-
lel programs, because it allows all read/write operations in a

transaction to complete atomically as a whole, relieving the
programmer of having to tackle fine-grained locks for per-
formance and correctness. While most research efforts have
focused on TM support on multi-core processors [17] and
hardware TM support has begun entering commodity CPUs
[4], both software and hardware transactional memory sys-
tems have been proposed for GPUs as well. One of such
proposal is named “Kilo TM” [6], followed by its successor
“Warp TM” [7].

Like ordinary GPU programs, GPU hardware transactional
memory also faces the challenge of resource contention. As
the high amount of concurrency on GPUs puts great pressure
on the memory subsystem, a programmer needs to spend
great amounts of effort in optimizing the memory access
pattern of the program in question, otherwise the program
would not scale well and even increasing the number of con-
current threads would harm performance [20]. The same
phenomenon is also observed in Kilo TM and Warp TM,
where having too many concurrent transactions may increase
conflicts and resource contention, resulting in decreased per-
formance.

In this paper, we analyzed the performance penalty result-
ing from conflict and contention with benchmarks running
on Warp TM. Our analysis leads to two enhancements that
can lead to performance improvement on top of Warp TM:

• Early-Abort global conflict resolution: Conflicting
addresses are made accessible from the SIMT cores so
that resolution of certain types of conflict can be done
on the cores, reducing contention at the Commit Units
and the interconnection network, and

• Pause-and-Go execution scheme: Running transac-
tions are stalled when a conflict is likely to happen,
which protects the work the transaction has done so far
from being wasted.

According to our experimental results, the two approaches
result in an overall speedup of up to 1.41x compared to Warp
TM at an average power consumption of 0.8x. Further, the
enhancements used in this paper may be applied on top of
various TM implementations because its correctness is guar-
anteed by the underlying TM implementation.

We make the following contributions in this paper:

1. We analyze the performance overhead of conflicts in
transactional memory on GPUs.

978–1–4673–9211–2/16/$31.00 c© 2016 IEEE

2. We study GPU TM programs with short-running and
long-running transactions.

3. We propose a simple hardware modification for reduc-
ing conflict and contention.

4. We propose two enhancements which may be used on
GPU TM systems with various underlying implemen-
tations.

2. BACKGROUND

2.1 Transactional Memory
Transactional memory (TM) [8] is a technology that al-

lows the programmer to mark code regions as “transactions”
that satisfy serializability and atomicity. It may be viewed as
a generalized version of the atomic compare-and-swap in-
struction, which can operate on an arbitrary set of data in-
stead of just one machine word.

The lifetime of a transaction consists of four major states:
1) executing, where it performs speculative read/write op-
erations that constitute a transaction, 2) committing, where
it is being checked against other committing transactions to
see if data hazards exist, 3) aborted, where a transaction fails
conflict detection and is aborted, with its speculative execu-
tion squashed, and 4) committed, where a transaction passes
conflict detection and its speculative results written to the
memory.

Transactional memory systems fall into distinct subregions
of the design space [5]. Design choice can be made on when
conflict detection is performed. An eager TM system per-
forms conflict detection during execution while a lazy one
does it in the commit stage. Another choice can be made
on where to store versioning meta-data. The meta-data may
reside on the memory side in the form of ownership records,
which are mapped to parts of the memory, such as locks as-
sociated with machine words [24] or objects [9] [10]. The
meta-data may also reside on the thread side in the form of
read/write logs, a buffer that keeps the speculative read/write
values in a transaction.

Both hardware-based and software-based transactional mem-
ory systems have been proposed for GPU systems. Both
have to take into account the characteristics of the GPU in
order to be efficient. We will be discussing and improv-
ing on a hardware-based TM system, Warp TM[7] (which
is built on Kilo TM [6]) in this paper.

2.2 Kilo TM
Kilo TM [6] is a hardware-based GPU transactional mem-

ory system, which features value-based validation and lazy
version management, thus allowing the programmer to write
weakly-isolated transactions in GPU kernel code. It is based
on an algorithm similar to RingSTM [18].

In the base algorithm, the life time of transactions can
be divided into execution and commit. During execution,
the transactional loads and stores performed are buffered in
read- and write-logs. During commit, the logs are trans-
ferred to the Commit Units in the memory partitions for
conflict detection and resolution. Conflicts between com-
mitting transactions are detected using an algorithm simi-
lar to RingSTM [18], with transactions claiming entries in a

ring buffer and committing in a global order. To speed up
committing, the validation step is performed in two stages.
The first stage involves probabilistically detecting overlap
between the signatures of read- and write-sets encoded with
bloom filters, which is also called hazard detection. The
second stage is value-based validation and it is needed only
when hazard exists and is responsible for resolving false haz-
ards.

The Kilo TM design introduces new hardware units and
new hardware features to enable the operation of transac-
tional memory. The execution stage of transactions takes
place in the SIMT cores. The load/store units are responsible
for maintaining the read- and write-logs for transactions that
are being executed. The SIMT stack is extended to handle
transactional code blocks. The commit stage takes place in
the Commit Units, which implements the ring buffers, bloom
filter-based signatures and valid-based validation. The Com-
mit Units are located in the memory partitions. The entire
address space is divided into disjoint sets, each of which is
managed by one Commit Unit. As such, the implementation
is a distributed algorithm which involves multiple Commit
Units, and a protocol that aggregates and broadcasts vali-
dation results between the Commit Units and SIMT cores.
At the beginning of a commit, the transactional log walk-
ers transfer the logs to the Commit Units. When validation
results are computed, they are sent back to the originating
SIMT cores.

2.3 Warp TM
Derived from Kilo TM, Warp TM [7] introduces the im-

portant concept of warp-level transaction management, based
on the fact that threads in GPU are executed in lock-step, re-
ferred by NVidia as “warps”. This is reflected in various
aspects of the design of the GPU hardware. As a result it
is advantageous to handle the threads in a warp as a single
entity.

Based on this, Warp TM implemented two optimizations.
First, scalar protocol messages in Kilo TM are superseded by
coalesced protocol messages in Warp TM. Second, conflicts
within a warp are resolved prior to the transfer of read/write
sets for global commit and validation. This can reduce con-
tention and delay at the Commit Units, improve performance
and reduce energy consumption.

3. CONFLICT AND CONTENTION REDUC-
TION

In this section, we list the conflict types in a way that is
relevant to the GPU architecture in question. Because of the
GPU architecture, certain types of conflict can be resolved
at the SIMT cores. The others have to travel through the
Commit Units, as illustrated in Figure 1. So, more conflicts
resolved on the core side means fewer transactions need to
reach the Commit Unit for conflict resolution. Here we give
types of conflicts and indicate the opportunities.

3.1 Spatial and Temporal Types of Conflict
Spatial: A conflict between two simultaneously running

transactions in the GPU transactional memory may span across
different levels of thread hierarchies, as illustrated in Figure
1. Depending on the location of the transactions in a conflict

Figure 1: Spatial and Temporal Types of Conflict in a
GPU TM and the resolution flow of conflicts (end of ar-
row = resolved). Pause-and-Go and Early-Abort Global
Conflict Detection are added in this paper to resolve
more conflicts before they reach for the Commit Unit.

pair there exist three non-overlapping spatial types: Type 1
(intra-warp), Type 2 (inter-warp, but in the same block), and
Type 3 (inter-block).

Since the shared memory is the “most recent common
ancestor” in the memory hierarchy accessible to threads in
the same block, Type 1 conflicts can be resolved within the
SIMT core using the shared memory, as is described as Intra-
warp Conflict Resolution in Warp TM. Type 2 conflicts, how-
ever, are not handled by warp-level conflict detection due to
the overhead of increased complexity and the rarity of Type
2 conflicts. Type 3 conflicts involve global read/write sets so
they cannot be resolved in the core.

The detection of both Type 2 and 3 conflicts needs to be
done in one level higher in the memory hierarchy which is
the off-chip DRAM partitions, the “most recent common an-
cestor” in the memory hierarchy accessible to threads in dif-
ferent blocks.

One transaction may be involved in more than one type
of conflict with other transactions, but all transactions can-
not commit if one conflicts with any committing transaction
at all. Performance improvement can come from resolving
Types 2 and 3 conflicts at the SIMT core in addition to Type
1.

Temporal: For transactions not executing in lock-step,
they must overlap both temporally and spatially to conflict
with each other. Recall that the two steps in the life time of
a transaction are execution and commit. Depending on the
step the transactions in a pair are in, there exist three non-
overlapping temporal types: Type 1 (committing and com-
mitting), Type 2 (committing and executing) and Type 3 (ex-
ecuting and executing). All 3 types of conflicts must be re-
solved at the Commit Unit with one exception that read-only

Figure 2: Transaction Flowchart

transactions may self-abort when it fails Temporal Conflict
Detection [6] because only the Commit Unit has the infor-
mation needed for conflict resolution.

To summarize, the more conflicts resolved before a run-
ning transaction reaches the Commit Unit, the less contention
there will be in the entire system. In this paper we propose
two new approaches that resolve conflicts of Spatial Type 3
(inter-block) and of Temporal Type 2. The approaches are
enabled by modifying existing hardware that makes conflict
data available in the SIMT cores illustrated in Figure 2. The
two approaches are:

• Early-Abort global conflict resolution resolves con-
flicts between transactions about to commit and the
ones already committing. Similar to intra-warp con-
flict detection, it reduces the number of transaction reach-
ing the Commit Unit and saves validation cost.

• Pause-and-Go execution scheme resolves conflicts be-
tween executing transactions and committing transac-
tions by temporarily stalling transactions that are about
to execute load/store instructions that may result in a
conflict. It reduces the incidence of conflicts.

The result is fewer conflicts, less resource pressure on
the Commit Unit, and better overall performance. Both ap-
proaches are enabled by the hardware modification described
in Section 4.

3.2 Concerns over Correctness
It is of utmost importance for a transactional memory sys-

tem to guarantee the correct execution of transactions. In this
paper, correctness is guaranteed by the last step in the trans-
action execution flow, value-based validation. Early-Abort
can only abort transactions selectively and never commits

Figure 3: The TM-enabled GPU architecture. The Con-
flict Address Table and the Reference Count Table are
added in this paper.

the write sets to the memory; Pause-and-Go does not abort
any transaction so it does not cause inconsistency. More
specifically, what may happen when a false positive or a false
negative occurs is:

• If a non-conflicting transaction is aborted, its work up
to the commit point is wasted and it will restart from
the beginning of the transaction.

• If a conflicting transaction is not identified in Pause-
and-Go or Early-Abort, it will eventually be aborted at
the Commit Unit. This is the same expected behavior
as in Warp TM.

Another potential problem that TM systems may encounter
is livelocks, which are caused by transactions repeatedly abort-
ing another. Similar symptoms are named by Bobba [5] as
Friendly Fire and Dueling Upgrades. Pause-and-Go and
Early-Abort do not introduce such “pathologies” because
only committing transactions are allowed to abort execut-
ing transactions but not the other way around, resulting in
an implicit conflict management policy that gives priority to
committing transactions. Therefore, a pair of transactions
could not repeatedly abort each other.

4. HARDWARE MODIFICATIONS TO WARP
TM

The modified hardware is depicted in Figure 3. It consists
of two address-indexed lookup tables. The per-SIMT-core
Conflict Address Table (CAT) maps addresses to two bits
indicating whether a word is written or read by committing
transactions. The per-Commit-Unit Reference Count Table

Figure 4: The Conflicting Address Table (CAT) in SIMT
cores and the Reference Count Table (RCT) in Commit
Units, and the operations related to the two tables on the
Warp TM protocol message time line.

(RCT) maps addresses to the number of readers and writers.
The Commit Unit maintains the Reference Count Table as it
processes committing transactions. The Conflicting Address
Tables on the cores are updated through the interconnection
network.

When a transaction is executing, the SIMT core tries to
resolve conflicts early utilizing the Conflicting Address Ta-
ble.

4.1 Maintaining the Reference Count Table and
the Conflict Address Table

When a transaction starts committing, it will potentially
be involved in conflict with all other committing and running
transactions over the addresses in its read and write sets. To
detect conflict between a committing transaction and a run-
ning transaction, the read/write logs of the committing trans-
action have to be made visible to the SIMT cores. The two
tables work in conjunction to achieve this goal.

The Reference Count Table in a Commit Unit keeps the
number of readers and writers. It is updated when commit-
ting transactions are processed.

When log transfer is completed, read/write addresses reach
the Commit Units. The read addresses are being appended
to the ring buffer as well as the validation queue and are pre-
pared for value-based validation. The write addresses are
inserted into the Last Writer History Table, which is also
an address-indexed lookup table. At these two points, the

reader/writer count of an address is incremented for each ad-
dress appearing in the read/write set.

As the Commit Unit receives validation reply from the
L2 cache, it checks the value of each of the words in the
read set. If all values in the read set match the values in the
memory, the transaction passes value-based validation. If
any address does not match, the transaction fails validation.
Whether the outcome of the transaction is, the addresses will
not be used by the transaction anymore. So, when the out-
come is known, the Commit Unit traverses the read/write
logs and decrements the reference counts.

The core-side Conflict Address Tables reflect which ad-
dresses are being referenced in the Commit Unit. Every
time addresses are inserted into or removed from the per-
Commit-Unit Reference Count Table, a message is sent from
the Commit Unit to notify all the SIMT cores of the change
in the address set. The message consists of a series of en-
tries, each of which contain the word addresses, a read/write
bit and an add/remove bit. Since the words are aligned to
a multiple of 4 bytes, the two least significant bits in the
addresses are always zero. Thus, each entry can be made ex-
actly 4 bytes long. When the SIMT cores receive the packets,
they update the Conflict Address Tables accordingly. Figure
4 gives a visual description of the two tables and how they
are updated.

4.2 Table Size Limit
When the Reference Count Table is full, new entries will

be simply ignored. The Conflict Address Tables will not be
updated in this case, either.

Opportunity for reducing contention may be missed when
the tables are full, but the correctness of transactions will not
be affected since the correctness is guaranteed by the TM
implementation in the value-based validation stage.

4.3 Early-Abort Utilizing the Conflicting Ad-
dress Table

Early-Abort (EA) tries to detect Spatial Type 3 (inter-block
conflict) conflicts at the intra-warp conflict resolution stage
and abort the conflicting transactions. By avoiding sending
the read/write sets of the conflicting transactions to the Com-
mit Unit, Early-Abort reduces the resource contention in the
Commit Unit.

This step requires matching the read/write sets of the threads
in a warp with the addresses in the CAT. The match is imple-
mented by performing a table look-up during the log scan-
ning process. Assuming a 4-port L1 cache, the lookup takes
up to 8 cycles for a warp with 32 active threads. The match
overlaps with the mark-and-check Intra-Warp Conflict Res-
olution step. When a transaction reads/writes an address in
the CAT, it is considered likely to be in conflict with another
committing transaction and is aborted (except for read-read
transactions.) After this step, the transactions in a warp are
free of Spatial Type 1 (intra-warp) conflicts with reduced
Spatial Type 3 (inter-block) conflicts.

4.4 Pause-and-Go Execution
Certain transactional applications contain very long trans-

actions or large read/write sets and may encounter conflict
over only a small fraction of the read/write sets, resulting

Figure 5: Pause-and-Go execution scheme showing two
warps of 4 transactions committing, one of which fails
validation.

in most of the work being wasted. Pause-and-Go execution
takes a more “gentle” approach to such conflicting transac-
tions, trying to avoid aborting the entire transaction while
resolving the conflicts. This approach is similar to Stag-
gered Transactions [23] proposed for CPU-based transac-
tional memory systems, where critical regions are serialized
to avoid completely aborting transactions.

At each load/store instruction, the read/write addresses
for a warp are checked against the Conflict Address Table,
which may take up to 8 cycles with a 4-port L1 cache. A
thread that is likely to conflict is temporarily “paused”. The
remaining threads will continue executing and attempt to
commit. When the attempt is completed, the control flow
will return to the paused threads.

By pausing a potentially conflicting transaction before the
commit stage, the “paused” thread can simply avoid the con-
flict without having to restart execution. Restarting a trans-
action is costly especially for long transactions. Figure 5 il-
lustrates one case where Pause-and-Go avoids wasting work
done by an otherwise aborted transaction.

In order to correctly recover the transactional logs upon
the resume of paused transactions, the Log Index (L col-
umn) is added to the SIMT stack. The Pause-and-Go execu-
tion scheme revolves around the SIMT stack and the trans-
actional logs.

SIMT Stack: Pause-and-Go execution introduces new
SIMT stack states. Figure 6 describes how they are main-
tained. In 1, transactions start, with one Retry entry and
one Trans entry pushed onto the SIMT stack. The threads
execute the instruction at 0x110, which performs a transac-
tional load. The addresses loaded by threads 0-3 exist in
the Conflicting Address Table, so they are “paused” and will
not continue executing with threads 4-7 for this commit at-
tempt. This results in the SIMT stack configuration in 2,
where two Trans entries exist on the top of the stack. The
top of stack which represents threads 4-7 attempt to com-
mit, but only threads 4 and 7 passed validation. Bits 5 and
6 are set on the Retry entry. The top of stack Trans entry
is popped from the stack, and the Trans entry representing
the previously paused threads 0-3 becomes the top of stack.
Threads 0-3 execute and attempt to commit, but only threads

Figure 6: SIMT Stack handling in “Pause-and-Go” exe-
cution scheme.

Figure 7: Transactional logs (left) and SIMT stack
(right) after three rounds of “pause.”

0 and 3 passed validation. Bits 1 and 2 are set on the Retry
entry and results in the stack configuration in 4. After the
Trans entry is popped from the stack, the Retry entry be-
comes the top. After that, execution flow is identical to what
is expected in the original Kilo TM and Warp TM, where the
Retry entry is copied to create a new Trans entry.

Branch divergence inside paused threads is also handled
in exactly the same way as in Kilo TM and Warp TM.

Transactional logs: When a warp is being executed, the
Log Index in its corresponding SIMT stack entry is kept in
sync with the log pointer of its transactional log walker, as
illustrated in Figure 7. To back up the transactional logs for
the paused transactions, the log pointer is stored in the Log
Index field for the newly created Trans SIMT stack entry.
To resume the transactional logs, the log pointer is simply
reset to the value in the Log Index field in the SIMT stack
when the paused transactions resume.

The reason backup and restore can be done with just mod-
ifying the log pointer is because a log entry represents all the
transactions in a warp, including inactive ones, for which the
entries contain zeroes. The logs are then interleaved into a
linear buffer. As a result, the log entries of paused trans-
actions will not get overwritten by other active transactions,

Table 1: GPGPU-Sim Configuration
GPU

SIMT Cores 15
SIMD Width 16 x 2
Warps/Threads per Core 48 warps × 32 = 1536 threads
Memory Partitions 6
Core/Interconnect/Memory clock 1400/1400/924 MHz
Warp Scheduler Count 2 per core
Warp Scheduler Policy Greedy-then-oldest

L1 Data Cache per Core 60KB / 48KB, 128B line, 6-way
(Not caching global accesses)

Shared Memory per Core 16KB
L2 Cache for all Cores 128KB × 6 partition = 768KB
Interconnect Topology 1 Crossbar per direction
Interconnect Bandwidth 32B/cycle = 288GB/s per direction
Interconnect Latency 5 cycles to traverse
DRAM Scheduler Out-of-order, FR-FCFS
DRAM Scheduler Queue Size 16
DRAM Return Queue Size 116
DRAM Timing Hynix H5GQ1H24AFR
Min. L2 Latency 330 Compute cycles

Warp TM
Commit Unit Clock 700 MHz
Validation/Commit BW 1 Word per cycle per CU

Concurrency Control 2 Warps per core
(960 concurrent Txns)

Intra-Warp CD Resources 4KB Shared memory per warp
Intra-Warp CD Mechanism 2-Phase Parallel Conflict Resolution
TCD Last Written Time Table 16KB (2048 entries in 4 sub arrays)
TCD Detection Granularity 128 Byte

Contention Reduction
Conflict Address Table per Core 12KB (3072 entries)
Reference Count Table per CU 15KB (3072 entries)

and restoring the log state only includes changing the log
pointer.

5. INTEGRATING WITH WARP TM
As Figure 2 shows, Early-Abort global conflict resolution

(EA) and Pause-and-Go (PG) execution scheme are added
to the transactional execution flow. Due to the fact that the
Reference Count Tables are only updated when a transac-
tion starts committing and the existence of delay in passing
message from the Commit Units to the SIMT cores, EA and
PG may cause false positives in aborting or pausing trans-
actions. As is discussed in Section 3.2, the correctness of
transactions will be guaranteed by the TM and therefore not
affected. Together they constitute a hierarchical validation
scheme similar to Warp TM and the GPU STM[24].

The two approaches proposed in this paper can achieve
performance improvement regardless of the number of con-
current transactions per SIMT core.

The Reference Count Tables in the Commit Units may
be constructed via minor modifications on the Last Write
History Table. The Conflicting Address Tables in the SIMT
cores may be constructed with the same hardware as the L1
cache and the Shared Memory. For a fair comparison, we
give the baseline GPU of our comparison extra L1 cache
with the size of the Conflict Address Table (extra 12 KB),
as described in Table 1.

6. EXPERIMENTAL SETUP

Table 2: Benchmark Properties
(Transaction length and read/write set size measured under baseline

settings)

Name Threads Read/Write
Set Size

Average Tx
Length

(Cycles)
HashTable 1K entries (HT1K) 23040 2 / 4 8835
HashTable 512 entries (HT512) 23040 2 / 4 10135
ATM 25K accounts (ATM50K) 23040 3 / 2 1423
ATM 10K accounts (ATM25K) 23040 3 / 2 1803
Sparse Mat-Vec Mult. (SpMV) 13000 5 / 1 2221
Linked List (List) 23040 1 / 4 460
Binary Tree (BinTree) 1000 78 / 2 13320
Red-Black Tree small (RBT180) 180 33 / 17 16604
Red-Black Tree large (RBT450) 450 35 / 17 29455

We extend the Warp TM hardware platform using GPGPU-
Sim 3.2.1 [2]. It simulates a device similar to NVidia GTX
480 (Fermi). Table 1 summarizes the key architectural pa-
rameters. The following benchmarks are used in our evalua-
tion:

Hash Table is a benchmark used in Kilo TM, where each
thread inserts into a hash table, each being a linked list. In
this paper we use table sizes 1024 and 512 to create higher
contention workloads.

Bank Account (ATM) is a benchmark used in Kilo TM,
where each thread performs bank transactions between two
out of a fixed number of accounts. In this paper we consider
25K and 10K accounts.

SpMV is a program that multiplies a vector and a sparse
matrix represented in the Yale format. Transactions are used
to update the destination vector.

List is based on the ListRel benchmark from DSTM2
[10]. The task of each thread is to insert a node into a
linked list. Each thread first finds the insertion point in non-
transactional code, then performs the insertion with a trans-
action.

BinTree is a generic binary search tree. The tree is pro-
grammed in a way similar to List, where each transaction
first finds the insertion point in non-transactional mode and
then performs the insertion with a transaction.

RBTree is a port of the red-black tree implementation in
the RSTM [15] test suite. Each thread performs an insertion
into the red-black tree with a transaction.

Table 2 summarizes the benchmarks. The benchmarks
differ in transaction length, read/write set size, contention
rate and working set size. This allows us to evaluate the early
conflict resolution approaches in a wide range of situations.

We used GPUWattch [14] to estimate the average dynamic
power consumed by each benchmark with the two proposed
approaches added to Warp TM. This includes the lookup and
maintenance of the Reference Count Tables and the Con-
flicting Address Tables, as well as the extra interconnection
traffic required to update the Conflicting Address Table. We
then multiply the average power by the execution time to
obtain the total energy needed to execute each benchmark.

7. EXPERIMENTAL RESULTS
In this section, we analyze the performance improvements

resulting from the proposed enhancements, Early-Abort (EA)

Figure 9: Normalized Energy Consumption. The lower
the better.

Figure 10: Overall Number of Aborted Transactions.

and Pause-and-Go (PG) and compare the results with the
baseline.

7.1 Performance and Power Consumption
Figure 8 and 9 shows the overall running time breakdown

of the benchmarks and the overall energy consumption. Over-
all, the proposed approaches yielded a speedup of 1.41x (an
average of 0.71x running time) compared to baseline Warp
TM. On average, enabling both approaches yielded higher
performance improvement than using either approach alone.
The average energy consumption has also decreased due to
the decrease in execution time. On average the energy con-
sumption is 0.8x compared to the baseline Warp TM.

A closer look at the benchmarks suggest that the Early-
Abort (EA) yields greater performance improvement than
Pause-and-Go (PG) for Hashtable (HT1K and HT512), Bank
Account (ATM25K and ATM10K) and SpMV; Pause-and-
Go performs better on Binary Tree (BinT) and Red-Black
Tree (RBT450 and RBT180).

The running time result shows that Hashtable (HT1K and
HT512), Bank Account (ATM25K and ATM10K) and SpMV
spend a significant amount of time in the Commit Unit and
they perform better with Early-Abort. Since Early-Abort

Figure 8: Overall Running Time and Per-Transaction Breakdown, where GM stands for Geometric Mean of all bench-
marks. The lower the bar, the faster.

reduces the number of conflicting transactions entering the
Commit Unit, transactions in these benchmarks can commit
faster.

On the contrary, some of the benchmarks benefit more
from Pause-and-Go and their running times are mainly spent
in the SIMT core.

The aforementioned results are caused by multiple rea-
sons including the average transaction length, types of con-
flict between the transactions, running time breakdown and
the degree of branch divergence in each of the benchmarks.

7.2 Performance Improvement from Reduced
Commit Unit Contention

For Hashtable (HT1K and HT512), Bank Transfer (ATM25K
and ATM10K) and SpMV, we can see a correlation between
the reduced number of transactions aborted at the Commit
Unit (Figure 10) and the improved overall performance (Fig-
ure 8).

The reason behind the correlation is two-fold:

• First, aborting conflict transactions at the SIMT core
side prevents resource contention at the Commit Unit,
which makes committing faster;

• Second, due to the shortened delay, the SIMT core can
complete committing the current warp and switch to
other warps more quickly.

The correlation between the load on Commit Unit and
overall performance is most obvious in Hashtable (HT1K
and HT512): the ratio between aborts at the SIMT core and
Commit Unit has shifted dramatically. With Early-Abort en-
abled, more than half of the transactional aborts occur in
the SIMT cores. This means there were many conflict pairs
that fall into the Type 2 (inter-warp) and 3 (inter-core) cat-

Figure 11: Overall Breakdown of types of conflict be-
tween all running transactions, counted in pairs of trans-
actions, by whether read/write addresses overlap.

egories that were not resolved by intra-warp conflict resolu-
tion alone, but are resolved by Early-Abort global conflict
resolution. As a result, despite the higher number of cu-
mulative aborts, the transactions are able to complete faster
because the Commit Units are less congested.

Figure 11 shows that in Hashtable (HT1K and HT512),
Bank Account (ATM25K and ATM10K) and SpMV, more
than half of the conflicts between transactions are of Type
3. Most of the conflicts can be detected by Early-Abort in
the SIMT core, but would have to go through the Commit
Unit in Warp TM with only intra-warp conflict resolution en-
abled. On the other hand, enabling Pause-and-Go execution
scheme reduces the overall number of aborts and amount of

Figure 12: Average transaction length in cycles.

Hashtable insertion kernel:
__tbegin();
int hash = key, pool_slot = tid+1
BaseEntry *base = &g_hashtable->mValues[hash];
tTableEntry *ent = &g_entrypool[pool_slot];
ent->mKey = key;
ent->mValue = value;
ent->mNext = base->mIndex;
g_hashtable->mValues[hash].mIndex = pool_slot;
__tcommit();

Binary tree insertion kernel:
__tbegin();
while (true) {

if (val < curr->val) {
if (curr->left == NULL)

curr->left = my; break;
else curr = curr->left;

} else {
if (curr->right == NULL)

curr->right = my; break;
else curr = curr->right;

} }
__tcommit();

Figure 13: Transactional code regions in Hashtable and
Binary Tree.

conflicts most of the time.

7.3 Performance Improvement from Reduced
Aborts

For List, Binary Tree (BinT) and Red-Black Tree (RBT450
and RBT180), Pause-and-Go execution scheme achieves sim-
ilar or greater performance improvement than Early-Abort
does. This is because of the following two reasons:

• The three benchmarks spend a significant portion of
time in transaction execution, rather than in the Com-
mit Unit. Thus, the speedup from reduced transaction
re-execution becomes more significant. Figure 10 sug-
gests that the absolute number of aborts are always re-
duced when Pause-and-Go is activated.

• The three benchmarks are inherently more divergent
than Hashtable, ATM and SpMV, so branch divergence

resulted from Pause-and-Go gets amortized with diver-
gence, and do not affect the overall speedup much.

With fewer transactions aborted (Figure 10) and no signif-
icant increase in average transaction execution length (Fig-
ure 12), the time spent on re-execution is decreased, result-
ing in overall speedup for List, Binary Tree and Red-Black
Tree.

Figure 13 shows the transactional part of Hashtable and
Binary Tree. The Hashtable kernel does not have any if
statements, so each thread executes the same code path. For
Binary Tree, the data affects the code path executed by the
threads in a warp and can cause branch divergence. This
means that the length of transactions in Binary Tree is vari-
able and can be much longer than that of a Hashtable even if
the average transaction length is similar, making re-execution
more costly. Also, the performance penalty caused by branch
divergence resulting from pausing threads is less significant
in Binary Tree. This can be justified by Figure 12, as the
number of cycle per transaction for Binary Tree actually de-
creased.

In contrast, branch divergence induced by Pause-and-Go
could cause transactions to run longer for HashTable. Ap-
plying either Early-Abort or Pause-and-Go reduces aborts at
the Commit Unit to the same level for HashTable, but due
to the longer average transaction length, Pause-and-Go does
not deliver as much performance improvement as Early-Abort.

7.4 Combining Early-Abort and Pause-and-
Go Execution Scheme

According to the experimental results we can observe the
following:

• Enabling both approaches yields a greater performance
improvement in Hashtable (HT1K and HT512), Bank
Account (ATM25K and ATM10K) and SpMV than en-
abling either approach individually.
In these applications, the number of aborts at the Com-
mit Unit is fewer than when enabling either approach
individually.

• Enabling both approaches in List gives the same im-
provement as enabling Pause-and-Go alone does. In
fact, Early-Abort is never triggered in this benchmark.

• Enabling both approaches in Red-Black Tree (RBT450
and RBT180) is not as good as enabling only Pause-
and-Go.
The reason is, when Early-Abort and Pause-and-Go are
enabled simultaneously, performance penalty resulting
from false positives would arise (non-conflicting trans-
actions are wrongly aborted at the SIMT core). The
penalty is re-execution which could be expensive, so
the result is less optimal than when using Pause-and-
Go alone.

Therefore, we can devise the following rules for applying
either or both early conflict resolution approaches:

• If the benchmark consists of large read/write sets (Red-
black tree, Binary Tree), apply Pause-and-Go execu-
tion scheme;

Figure 14: Sensitivity of Relative Speedup to Table Sizes.

• If the benchmark consists of mostly Type 1 conflicts
and almost no conflicts of other 2 Types (example:
List, Binary Tree), apply Pause-and-Go execution scheme;

• If the benchmark consists of considerable amounts of
Type 3 and 2 conflicts, apply Early-Abort; further, if
it consists of short transactions with small read/write
sets, apply both Pause-and-Go and Early-Abort.

7.5 Sensitivity to Table Size
We vary the size of the Reference Count Table and the

Conflicting Address Table and see how the performance im-
provement from applying either or both early conflict resolu-
tion methods changes. The sizes are varied from 10 through
100000. The results for HT1K, ATM10K, SpMV, List, BinT
and RBT450 are shown in Figure 14.

Overall, for all benchmarks except List, a larger table size
gives greater performance improvement. Increase of speedup
slows down after the table size exceeds around 1000 for
SpMV and RBT450 or around 3000 for HT1K and ATM10K.
This means the table size of 3000 is enough for tracking all
the addresses touched by the concurrent transactions. For
List, a very small table size (say 10) performs as well as a
large table.

7.6 Interconnection Network Delay and Traf-
fic

Early-Abort and Pause-and-Go relies on passing of con-
flict address information from the Commit Units to the SIMT
cores. For the benchmarks we used in this paper, it takes 5 to
25 cycles for the conflict address messages to travel from the

Figure 15: Average message delay between the Commit
Unit and the SIMT cores.

Commit Units to the SIMT cores, as is shown in Figure 15.
The results indicate that the delays are not directly related to
the speedup.

Depending on the benchmark, the ratio between the extra
traffic and the original traffic ranges from less than 1% (in
Binary Tree) to around 20% (in HT 1K). The size of the
extra traffic is on par with the transferred logs.

8. RELATED WORK
There are other proposals for GPU transactional memory

other than Warp TM and Kilo TM. Various software-based

implementations exist that can perform as well as CPU coun-
terparts. Efforts have gone into various aspects concerning
the design of GPU TMs: Xu et al. [24] proposed GPU-STM
with encounter-time lock sorting to avoid deadlocks. Holey
et al. [11] explored eager/pessimistic conflict detection on
read/write operations.

Waliullah et al. pointed out that conflicts in hardware TM
systems cause performance losses due to aborts and extra
communication [21]. Their work introduced a new cache
miss state that can help eliminate conflicts. With a similar
goal, our two approaches aim at reducing aborts and com-
munication between the core and the Commit Units.

There exist various proposals for accelerating transactional
memory using hardware mechanisms. Wang et al. proposed
TCache [22] which caches the shadow copy of transactional
blocks, thus accelerating the re-execution for restarted trans-
actions. Stipic et al. [19] proposed GTags, a hardware mech-
anism for fast access to transactional meta-data needed for
conflict detection. Like both of these mechanisms, the Early-
Abort approach also shortens the time needed to decide when
to abort a transaction, thus accelerating transactions.

Xiang et al. proposed Staggered Transactions [23] that
puts a thread into wait mode when a data conflict is likely to
happen, rather than abort the thread eagerly. In their work,
threads decide when to pause themselves by accessing locks
using non-transactional loads/stores in a transaction. Pause-
and-Go execution scheme shares the same philosophy but
pauses threads from the warp scheduler’s point of view, not
from the scalar threads’ point of view, due to the difference
between GPU and CPU architectures.

9. CONCLUSION
We proposed two early conflict resolution methods, Early-

Abort and Pause-and-Go execution scheme, for GPU hard-
ware transactional memory systems. Our approaches are
based on making conflict information available to the SIMT
cores for early conflict resolution, shortening the time re-
quired to abort conflicting transactions and enabling pausing
a transaction to avoid performing a conflicting load/store.
Our evaluation showed the approaches reduced conflicts and
Commit Unit contention, resulting in an average of 1.41x
speedup at 0.8x energy consumption.

This paper demonstrates the effectiveness of utilizing in-
formation regarding conflicting transactions to resolve con-
flicts early. This insight may be gradually incorporated into
future development of contention management and conflict
resolution techniques on future transactional memory sys-
tems involving GPUs.

10. REFERENCES
[1] “About CUDA,” https://developer.nvidia.com/about-cuda.

[2] “GPGPU-Sim 3.2.1 with Warp TM,”
http://www.ece.ubc.ca/~wwlfung/code/kilotm-gpgpu_sim.tgz.

[3] “OpenCL. The open standard for parallel programming of
heterogeneous systems.” https://www.khronos.org/opencl/.

[4] “Chapter 8, Intel Transactional Synchronization Extensions,” in Intel
Architecture Instruction Set Extensions Programming Reference,
2012.

[5] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,
and D. A. Wood, “Performance Pathologies in Hardware

Transactional Memory,” in Proceedings of the 34th International
Symposium on Computer Architecture (ISCA), 2007.

[6] W. Fung, I. Singh, A. Brownsword, and T. M. Aamodt, “Hardware
transactional memory for GPU architectures,” in Proceedings of the
44th International Symposium on Microarchitecture(MICRO), 2011.

[7] W. Fung and T. Aamodt, “Energy efficient GPU transactional
memory via space-time optimizations,” in Proceedings of the 46th
International Symposium on Microarchitecture (MICRO), 2013.

[8] M. Herlihy, J. Eliot, and B. Moss, “Transactional Memory:
Architectural Support For Lock-free Data Structures,” in Proceedings
of the 20th Annual International Symposium on Computer
Architecture (ISCA), 1993.

[9] M. Herlihy and V. Luchangco, “Software Transactional Memory for
Dynamic-Sized Data Structures,” in Proceedings of the 22th
Symposium on Principles of Distributed Computing (PODC), 2003.

[10] M. Herlihy, V. Luchangco, and M. Moir, “A Flexible Framework for
Implementing Software Transactional Memory,” in Proceedings of
the 21th ACM SIGPLAN Conference on Object-Oriented
Programing, Systems, Languages, and Applications (OOPSLA),
2006.

[11] A. Holey and A. Zhai, “Lightweight Software Transactions on
GPUs,” in Proceedings of the 43rd International Conference on
Parallel Processing (ICPP), 2014.

[12] S. Keckler, W. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the Future of Parallel Computing,” Micro, IEEE, vol. 31,
no. 5, pp. 7–17, Sept 2011.

[13] J. H. Kim, H. Cameron, and P. Graham, “Lock-Free Red-Black Trees
Using CAS,” 2011.

[14] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi, “GPUWattch: Enabling Energy
Optimizations in GPGPUs,” in Proceedings of the 40th International
Symposium on Computer Architecture (ISCA), 2013.

[15] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. N. S. III, and M. L. Scott, “Lowering the overhead of nonblocking
software transactional memory,” Technical Report 893, Dept. of
Computer Science, University of Rochester, 2006.

[16] P. Misra and M. Chaudhuri, “Performance Evaluation of Concurrent
Lock-Free Data Structures on GPUs,” in Proceedings of the 18th
International Conference on Parallel and Distributed Systems
(ICPADS), 2012.

[17] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible Decoupled
Transactional Memory Support,” in Proceedings of the 34th
International Symposium on Computer Architecture (ISCA), 2007.

[18] M. F. Spear, M. M. Michael, and C. von Praun, “RingSTM: Scalable
Transactions with a Single Atomic Instruction,” in Proceedings of the
20th International Symposium on Parallel Algorithms and
Architectures (SPAA), 2008.

[19] S. Stipic, S. Tomic, F. Zyulkyarov, A. Cristal, O. Unsal, and
M. Valero, “TagTM - accelerating STMs with hardware tags for fast
meta-data access,” in Proceedings of Design, Automation Test in
Europe Conference Exhibition (DATE), March 2012.

[20] V. Volkov, “Better performance at lower occupancy,” in GPU
Technology Conference (GTC), 2010.

[21] M. Waliullah and P. Stenstrom, “Classification and Elimination of
Conflicts in Hardware Transactional Memory Systems,” in
Proceedings of the 23rd International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), 2011.

[22] S. Wang, D. Wu, Z. Pang, W. Tang, and X. Yang, “Lowering the
Overhead of Hybrid Transactional Memory with Transact Cache,” in
Proceedings of the 9th International Conference for Young Computer
Scientists (ICYCS), 2008.

[23] L. Xiang and M. L. Scott, “Conflict Reduction in Hardware
Transactions Using Advisory Locks,” in Proceedings of the 27th
International Symposium on Parallelism in Algorithms and
Architectures (SPAA), 2015.

[24] Y. Xu, R. Wang, N. Goswami, and T. Li, “Software Transactional
Memory for GPU Architectures,” Proceedings of the International
Symposium on Code Generation and Optimization (CGO), 2014.

