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Abstract
Quantum computing offers promise for solving problems beyond
classical capabilities, but its effectiveness is hindered by noise and
high error rates in superconducting quantum computers. These
issues, exacerbated by nearest-neighbor connectivity, necessitate
extensive routing, leading to decoherence and multiple swap oper-
ations.

We introduce PruningQC, a novel method that optimizes circuit
efficiency by removing redundant gates in measurement subset-
ting, reducing noise, and minimizing circuit depth. By selectively
measuring specific qubits, PruningQC identifies and eliminates
redundant gates without affecting outcomes, thereby enhancing
quantum computing performance. Evaluations on three IBM 127-
qubit machines show that PruningQC improves success rates by an
average of 17.5 times over full measurement methods and 2.1 times
over partial measurement techniques. This improvement is due to
around 50% reduction in circuit depth and a significant decrease in
gate counts. PruningQC can also be integrated with quantum error
correction strategies, advancing quantum computing efficiency.
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1 Introduction
Quantum computing holds promise for addressing challenges unattain-
able by classical methods [23], yet superconducting quantum com-
puters face significant limitations due to low fidelity and noisy
operational environments [6]. These limitations are exacerbated by
the need for extensive routing operations, leading to deeper circuit
designs that degrade performance [22, 25].

To address these challenges, researchers have explored strategies
to enhance performance, such as developing robust quantum chips,
introducing optimized routing paths [25], and dividing circuits into
sub-circuits [24]. However, our research focuses on an underex-
plored area: pruning redundant gates to reduce circuit depth and
improve computational efficiency. By selectively measuring only a
subset of qubits, PruningQC identifies and eliminates redundant
gates, significantly reducing cross-talk, decoherence errors, and the
need for swap operations. This approach enhances fidelity without
altering the logical outcomes of the circuits.

We validated PruningQC using well-known quantum bench-
marks on three 127-qubit IBM quantum computers, showing a
17.5x improvement in success rate over the Baseline and a 50%
reduction in circuit depth. The main contributions of our work are:

• A novel method for reducing quantum circuit depth, distinct
from traditional strategies with high overhead.

• Identification of redundant gates in measurement subsetting,
improving execution performance while maintaining logical
equivalence.

• A comprehensive compilation platform for pruning redun-
dant gates, achieving significant efficiency improvements
with minimal overhead.

2 Background and Related Work
Quantum computing utilizes qubits, which can exist in superpo-
sition states, enabling quantum algorithms to be represented as
sequences of unitary gates that evolve the system’s state. How-
ever, current devices are prone to errors such as crosstalk, gate
inaccuracies, and qubit relaxation (𝑇 1, 𝑇 2) [18], which degrade the
fidelity of computations as circuit depth increases. Consequently,
optimizing the compilation process is crucial to minimize these
errors and enhance overall system performance.
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Figure 1: (a) The Partial Measurement Circuits of the GHZ-
13 algorithm featuring various redundant gates highlighted
within the green box. The leftmost logic circuit depicts a
pruned partial measurement circuit, while the rightmost
logic circuit represents the original partial measurement
circuit without pruning. (b) Relative success rate changes
corresponding to redundant gates increase. Specifically, the
probabilities of states ’00’ and ’11’ increase from 50% to 100%,
and these adjustments are documented as relative success
rates.

Recent work has focused on mitigating these errors through
various software techniques, including measurement error reduc-
tion [4, 5], crosstalk mitigation [3], qubit allocation optimization
[10, 11], and routing path optimization [20]. Measurement subset-
ting has also been proposed to address measurement error crosstalk
[1], where local circuits with different measurement subsets are
executed and updated the global circuit, resulting in boosted per-
formance. Building on these efforts, PruningQC introduces a novel
approach to reducing circuit depth by eliminating redundant gates
in partial measurement circuits, thereby enhancing quantum com-
putation fidelity. Recent methods like qubit tracing QuTracer [14]
involve fine-grained division of circuits to achieve reduced cir-
cuit depth and boost performance. However, QuTracer introduces
significant overhead when performing circuit cutting with par-
tial measurements. For partial measurements involving more than
two qubits, QuTracer separates the circuit into multiple partial
measurement copies, each requiring circuit cutting. To execute
circuit cutting for each partial measurement, QuTracer performs
numerous individual circuit executions, each with different Pauli
measurements. Each Pauli measurement circuit execution requires
hundreds to thousands of additional trials. The number of individual
Pauli measurement circuits grows exponentially with the number
of measured qubits in the partial measurement circuits, leading
to substantial computational overhead. This overhead is further
compounded by the heavy computational demands of pre- and post-
execution processes, making it challenging to implement QuTracer
efficiently on current quantum hardware. In contrast, PruningQC
maintains a lower overhead than the original partial measurement
method, resulting in significantly reduced computation time due to
lower circuit depth.

3 Problem and Motivation
During the partial measurement experiments, we identified redun-
dant gates in the original work [1]. As explained in Sec. 4.2, these
redundant gates can be removed without changing the logical out-
comes of the circuit. This approach is based on the well-known
causal cone method, derived from the concept of the light cone in
physics [8]. The causal cone analysis helps determine which gates

Figure 2: An illustrative example of a logic circuit highlight-
ing the equivalence achieved by pruning redundant circuits.
The GHZ logic circuit is segmented into critical and redun-
dant subcircuits with measurements. Dashed boxes indicate
exemplary circuits.

and associated errors contribute to the measurements, a technique
extensively used in quantum computing simulations [16].

We conducted experiments using a partial measurement circuit
from the GHZ-13 algorithm, progressively removing redundant
gates, as shown in Fig. 1. Contrary to expectations, we found that the
computing performance improved as more redundant gates were
removed. Further investigation revealed that unwanted hardware
errors were the primary cause of the performance issues in the
original setup.

Removing redundant gates enhances performance by mitigating
several types of errors. First, redundant gates increase circuit depth,
leading to more relaxation errors (𝑇 1 and 𝑇 2 errors). Second, these
gates can introduce crosstalk, creating physical errors that affect the
critical path and compromise measurement accuracy. Third, fewer
redundant gates reduce the need for swap operations, which are
used to move qubits to suitable physical locations during execution.
Swap operations can introduce errors, including the movement
of critical qubits along the swap path, additional crosstalk, and
relaxation errors due to increased waiting time. Notably, these
swap errors are often invisible at the logical level.

To address these challenges, it is crucial to develop a partial
measurement-aware compiler that actively reduces redundant gates,
thereby avoiding unwanted hardware errors and enhancing com-
putational performance.

4 PruningQC Design
4.1 PruningQC Objectives
In quantum computing, increased qubit usage and circuit length
are directly associated with higher noise levels and error rates. Par-
tial measurement circuits often contain redundant gates, which
can degrade performance by unnecessarily increasing circuit depth
and introducing additional sources of error. Removing these redun-
dant gates can lead to substantial improvements in computational
accuracy. For instance, in our primary experiment, eliminating re-
dundant CNOT gates in a GHZ-13 benchmark circuit resulted in a
47% increase in the success rate.

PruningQC is a framework designed for partial measurement-
aware compilation. It actively identifies and eliminates redundant
gates, optimizing the circuit for execution. Furthermore, it enables
the development of tailored compilation strategies for the pruned
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Figure 3: PruningQC compilation workflow

circuits, significantly boosting computational performance and re-
liability.

4.2 Pruning Equivalent Proof
We demonstrate that removing redundant gates from a circuit does
not alter the measurement outcomes. As shown in Fig. 2, if a cir-
cuit 𝐶 contains redundant gates 𝑅, the modified circuit 𝐶′ (with 𝑅

removed) produces identical measurement statistics.
This equivalence is maintained since the redundant gates act

only on unmeasured qubits. Fig. 2 illustrates this with a GHZ logic
circuit, where removing redundant circuits yields identical outputs.
These results are consistent with other proof methods, such as the
Lieb-Robinson bound and non-signaling quantum theorem [9, 26].

4.3 PruningQC Compilation
PruningQC offers a comprehensive compilation strategy designed
to enhance the computational performance of any given algorithm.
The compilation workflow, illustrated in Fig. 3, accepts a logic or
compiled circuit, a designated set of measurement qubits, and the
noise profile of the machine as inputs. Subsequent steps involve
applying pruning-related compilation optimizations at both the
logic circuit and the compiled circuit levels, aiming to identify and
eliminate as many redundant gates as possible. The ensuing sub-
sections will provide detailed descriptions of the key components
utilized in the PruningQC approach, delineating each step’s role
and contribution to optimizing the overall circuit efficiency.

4.3.1 Modify MeasuredQubits. During this phase, adjustments are
made to the input circuit to choose the optimal measurement gate
sets, extracting more redundant gates. This module plays a pivotal
role in crafting localized sub-circuits, each with a distinct set of
partial measurement gates. These sub-circuits facilitate the post-
execution Bayesian update algorithm, enhancing fidelity [1], and

help aggregate results from smaller qubit clusters to reconstruct
the original larger outcomes [24].

Algorithm 1 Identify & Pruning Redundant Gates
Require: Circuit𝐶 with amix ofmeasured and unmeasured qubits;

qubit 𝑞
Ensure: Optimized circuit 𝐶 with redundant gates removed
1: Initialize qubit status for each qubit in 𝐶 to either measured

(𝑀) or unmeasured (𝑈𝑛𝑚)
2: for Traverse through each gate in 𝐶 in reverse order do
3: if Gate is a single-qubit operation and acts on an unmeasured

qubit then
4: Designate the gate as redundant
5: else if Gate is a two-qubit operation then
6: Determine the qubits involved in the operation
7: if Both qubits are unmeasured then
8: Designate the gate as redundant
9: else
10: Update the status of any involved unmeasured qubits

to critical, indicating their role in the computation
11: end if
12: end if
13: end for
14: Remove gates marked as redundant from 𝐶

15: return 𝐶

4.3.2 Decomposition. This model operates at both the logical cir-
cuit and compiled circuit levels. Essentially, this stage processes the
input circuit and generates an equivalent circuit composed solely
of 1-qubit and 2-qubit operations.

At the logical circuit level, the decomposition model transforms
the circuit to exclusively use 1 and 2-qubit gates that are origi-
nally present in the circuit. This model eliminates the presence of
gates involving three or more qubits, thereby enabling the compiler
to commence searching for redundant gates at the logical circuit
level. It also facilitates the subsequent gate commutation model in
identifying equivalent gates within the same 2-qubit gate library.

At the compiled circuit level, the decomposition model breaks
down the gates into those supported by the target machine and
applies optimizations aimed at identifying opportunities to cancel
or combine gates. This approach not only simplifies the circuit but
also enhances its efficiency by reducing unnecessary operations.

4.3.3 Identify & Pruning Redundant Gates. Central to the compi-
lation process, this module is tasked with pinpointing and elimi-
nating redundant gates, yielding a circuit that’s both functionally
equivalent and more concise. As illustrated in Fig. 2, certain proper-
ties characterize these redundant gates, aiding their identification.
Specifically, the gate must be unitary and should only interact with
unmeasured qubit(s). Moreover, the gate cannot propagate its state
through a two-qubit path leading to the measurement gate. The
procedure, elaborated in Algorithm 1, sequentially examines each
gate, assessing their dependencies with respect to the measure
gates based on the aforementioned criteria. To explain briefly, upon
ingestion of a circuit with only select qubits being measured, the
algorithm initializes a dictionary variable,𝑄status, encapsulating the
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measurement status of every qubit. A qubit slated for measurement
is marked𝑀 ; otherwise, it is tagged 𝑈𝑛𝑚, which could change to
𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 once a path is established between itself and a measured
qubit. Then, the algorithm examines all the gates in the circuit in
reverse order, analyzing them for redundancy. As depicted in Fig.
2, the algorithm systematically evaluates each gate, earmarking
those that operate exclusively on unmeasured qubits devoid of any
connection to measurement gates as redundant. Ultimately, these
extra gates are removed from the circuit. It is important to note
that the complexity of Algorithm 1 is 𝑂 (𝐺), where 𝐺 represents
the count of gates, as in the worst case, all gates might be deemed
redundant and each gate is examined once and labeled as such.

Figure 4: Commutation gate pairs of native support gates on
IBM_Kyoto 127-qubit machine.

Figure 5: PartialMeasurement-aware Routing. The left shows
the mapping of virtual qubits with physical qubits before
executing the redundant CNOT gate between 𝑞0 and 𝑞6, high-
lighted on the right-hand instruction list. The three colored
arrows indicate three types of possible methods for relocat-
ing 𝑞0 and 𝑞6 to adjacent positions.

4.3.4 Gate Commutation. The gate commutationmodel is designed
to identify equivalent gate patterns that permit the reordering of
gate sequences, thereby presenting additional opportunities to elim-
inate redundant gates and further reduce circuit depth. As depicted
in Fig. 4, we illustrate commutation gate pairs for the basis gates
natively supported by the IBM_Kyoto 127-qubit machines. These
equivalent pairs are utilized to check for gate commutation at the
compiled circuit level. Each of the four subfigures presents a pair of
equivalent gate pairs that can interchange with each other. Using
Fig. 4.b as an example, when implementing the pruning technique,
assume the first qubit is being measured and the second qubit is not.
In this scenario, the configuration on the right-hand side results in
only one ECR gate and a circuit depth of 1. Conversely, the circuit
on the left exhibits a circuit depth of 2 and a higher likelihood of
introducing noise, potentially impacting output performance.

Thus, this model actively searches through the last few gates
for all qubits to identify matching gate commutation patterns for
modification. The rearranged circuit is then resubmitted to the
previous model for further identification of redundant gates and
undergoes this process iteratively𝑛 times. This systematic approach
ensures the optimization of the quantum circuit by minimizing
noise and improving overall computational efficiency.

4.3.5 Partial Measurement-aware Mapping & Routing. Our Prun-
ingQC also implements a tailored mapping and routing strategy
for the pruned partial measurement compiled circuit. PruningQC
reverses the compiled circuit and makes several mapping attempts
based on the readout errors on the physical chip. These attempts
select different combinations of low readout errors for the partial
measurement gates. The options with relatively low swap counts
and circuit depth are then chosen.

The routing strategy is illustrated in Figure 5, showing how dif-
ferent swap paths affect the outcome of pruned partial measurement
circuits. The red arrow indicates six CNOT errors that would be
engraved into the measurement results and should be avoided. The
yellow and green paths are preferable for different topologies. In
the example shown, the green path is optimal since the swap errors
do not affect the measurement, and the path is relatively short in
the mesh topology. However, for hexagonal or ring topologies, the
yellow path would be a better choice.

5 Experiment Setup
Experiments were conducted on three 127-qubit IBM superconduct-
ing quantum machines (IBM_Kyoto, IBM_Brisbane, IBM_Osaka),
all equipped with Eagle r3 processors supporting ECR, ID, RZ, SX,
and X gates.

We used Qiskit [7] for implementing PruningQC, with Noise-
Aware Sabre [13] as the baseline compiler (optimization level 2).
JigSaw [1] was used for partial measurement comparisons, applying
the same optimization as the Baseline for consistency.

We evaluated PruningQCusing benchmarks like Bernstein-Vazirani
(BV), Greenberger-Horne-Zeilinger (GHZ), Deutsch-Jozsa (DJ), Hid-
den Shift (HS), Quantum approximate optimization algorithm (QAOA),
and Variational Quantum Eigensolver (VQE) from previous studies
[12, 13, 17, 21]. These benchmarks, characterized by low success
rates and high circuit depths, were chosen to demonstrate Prun-
ingQC’s effectiveness in improving computational results.

Experiments were conducted with 20K to 68K trials, evenly split
between global execution and partial measurements. PruningQC
was applied during partial measurement trials to demonstrate per-
formance improvements at the same or reduced computational
cost.

Quantum computation performance was evaluated using the
following metrics: Probability of Successful Trial (PST) [15,
17, 21]: The ratio of correct trials to total trials, with relative PST
indicating improvement over the Baseline. Hellinger Fidelity
[2, 8]: Measures the similarity between the output distribution and
a noise-free distribution, serving as a benchmark for evaluating
distribution outputs. Inference Strength (IST) [15, 19]: The ratio
of correct output probability to the most frequent incorrect output,
with higher IST indicating better performance. Circuit Depth
Reduction: Comparison of circuit depths before and after pruning
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Figure 6: PruningQC vs. JigSaw: Relative PST improvement across various benchmarks on IBM 127-qubit machines.

to assess error reduction. Gate Reduction: Analysis of gate count
reduction to highlight efficiency improvements achieved through
pruning.

6 Results and Sensitivity Studies
6.1 Probability of Successful Trials and

Inference Strength
We evaluated PruningQC against Baseline and Jigsaw strategies on
IBM 127-qubit machines, showing consistent PST improvements.
PruningQC achieved an average relative PST of 7.85x over the Base-
line, peaking at 56x, while Jigsaw averaged 3.5x with a maximum of
30x, as shown in Fig. 6. PruningQC consistently outperformed Jig-
saw across all benchmarks, notably improving PST in cases where
baseline PST was below 10%. When comparing the fidelity, Prun-
ingQC achieves 10% higher fidelity compared to Baseline and 6.7%
with respect to Jigsaw. We also compare IST values for PruningQC
and Jigsaw. PruningQC enhanced IST by 8.76x to 25.86x, compared
to Jigsaw’s 3.21x to 8.8x improvement. PruningQC consistently
outperformed Jigsaw in both PST and IST metrics.

6.2 Circuit Depth Reduction
Fig. 7 illustrates substantial circuit depth reductions with Prun-
ingQC, achieving approximately 50% reduction compared to Base-
line and Jigsaw. This reduction minimizes the likelihood of relax-
ation errors, leading to enhanced PST and IST.

Figure 7: Compiled circuit depth for Baseline, Jigsaw, and
PruningQC on IBM_Kyoto machine.

6.3 Gate Reduction
Fig. 8 shows gate count reductions with PruningQC, including sig-
nificant decreases in 1-qubit, 2-qubit, and communication gates.
PruningQC averaged 82.9 gates for 1-qubit operations, compared
to 172.9 (Jigsaw) and 233 (baseline). For 2-qubit gates, PruningQC

averaged 17.24 gates, significantly lower than Jigsaw and the Base-
line. The reduction in gate count contributes to the improved PST,
especially for the BV and DJ benchmarks. We examined the effect
of varying partial measurement qubits using the BV-19 algorithm.
PruningQC consistently outperformed Jigsaw across all configura-
tions, demonstrating its robustness in enhancing PST.

Figure 8: Compiled Circuit Gate Counts for Baseline, Jigsaw,
and PruningQC on IBM_Kyoto machine.

7 Scalability Study
7.1 Complexity Study
The PruningQC framework involves three key stages: generating
compiled circuits with pruned redundant gates, executing these
circuits on a quantum machine, and applying a post-execution re-
construction algorithm on a classical computer. The compilation
stage incurs a minor overhead with linear complexity𝑂 (𝐺), where
𝐺 is the number of gates, with fewer than 10 repetitions. During ex-
ecution, PruningQC requires similar or less quantum computation
time compared to Jigsaw and Baseline, due to its focus on Partial
Measurement Circuits (PMCs) with reduced circuit depth. The post-
execution Bayesian Reconstruction algorithm, shared with Jigsaw,
maintains linear complexity in time and memory, ensuring that
PruningQC is comparable or superior in computational overhead
to other approaches.
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7.2 Scalability on Circuit Depth and Gates
Fig. 9 illustrates PruningQC’s performance in reducing circuit depth
and gate counts compared to Baseline and Jigsaw, using the DJ
benchmark on the IBM_Kyoto machine. PruningQC consistently
achieves a 50% reduction in circuit depth and significantly lowers
gate counts, with a 63.8% reduction in 1-qubit gates and a 50% reduc-
tion in 2-qubit gates relative to Baseline and Jigsaw. These results
suggest that PruningQC scales effectively for larger computations
and is applicable to a wider range of algorithms.

Figure 9: Scalability analysis of PruningQC vs. Baseline and
Jigsaw using the DJ algorithm on IBM_Kyoto machine. (a)
Circuit Depth Comparison. (b) Gate Count Analysis: 1-qubit
gates (left y-axis) and 2-qubit gates (right y-axis).

8 Conclusion
PruningQC, a novel quantum compilation framework, enhances
computational fidelity and efficiency by eliminating redundant
gates and implementing partial measurement-aware compilation.
Evaluations on three 127-qubit IBM machines using established
benchmarks show significant improvements in computation suc-
cess rates, along with reduced circuit depth and gate counts. These
enhancements address key challenges in quantum computing, such
as noise and error propagation, and extend the capabilities of quan-
tum hardware by minimizing circuit complexity and mitigating
decoherence and operational errors.
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