
Received Month dd, yyyy; accepted Month dd, yyyy

E-mail: author’s e-mail

Front. Comput. Sci.

DOI

Firstname LASTNAME: please insert running head here

RESEARCH ARTICLE

Computer Comparisons in the Presence of

Performance Variation

Samuel Irving
1
, Bin Li

1
, Shaoming Chen

1
, Lu Peng

1
, Weihua Zhang()

2
, and Lide Duan

3

1 Louisiana State University, Baton Rouge, LA 70803, USA

2 Fudan University, Shanghai 201203, China

3 University of Texas at San Antonio, San Antonio, TX 78249, USA

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract Performance variability, stemming from

non-deterministic hardware and software behaviors or

deterministic behaviors such as measurement bias, is a

well-known phenomenon of computer systems which

increases the difficulty of comparing computer

performance metrics and is slated to become even more

of a concern as interest in Big Data Analytics increases.

Conventional methods use various measures (such as

geometric mean) to quantify the performance of

different benchmarks to compare computers without

considering this variability which may lead to wrong

conclusions. In this paper, we propose three resampling

methods for performance evaluation and comparison: a

randomization test for a general performance

comparison between two computers, bootstrapping

confidence estimation, and an empirical distribution and

five-number-summary for performance evaluation. The

results show that for both PARSEC and high-variance

BigDataBench benchmarks 1) the randomization test

substantially improves our chance to identify the

difference between performance comparisons when the

difference is not large; 2) bootstrapping confidence

estimation provides an accurate confidence interval for

the performance comparison measure (e.g. ratio of

geometric means); and 3) when the difference is very

small, a single test is often not enough to reveal the

nature of the computer performance due to the

variability of computer systems. We further propose

using empirical distribution to evaluate computer

performance and a five-number-summary to summarize

computer performance. We use published SPEC 2006

results to investigate the sources of performance

variation by predicting performance and relative

variation for 8,236 machines. We achieve a correlation

of predicted performances of 0.992 and a correlation of

predicted and measured relative variation of 0.5.

Finally, we propose the utilization of a novel Biplotting

technique to visualize the effectiveness of benchmarks

and cluster machines by behavior. We illustrate the

results and conclusion through detailed Monte Carlo

simulation studies and real examples.

Keywords Performance of Systems, Variation,

Performance attributes, Measurement, evaluation,

modeling, simulation of multiple-processor systems;

Experimental design; Big Data;

1 Introduction

Traditionally, computer researchers have used the

geometric mean (GM) of performance ratios of two

computers running a set of selected benchmarks to

compare their relative performances. This approach,

however, is limited by the variability of computer

systems which stems from non-deterministic hardware

and software behaviors [1][12], or deterministic

behaviors such as measurement bias [22]. The situation

is exacerbated by increasingly complicated architectures

and programs. Wrong conclusions could be drawn if

variability is not handled correctly. Using a simple

geometric mean cannot describe the performance

variability of computers [4].

Recently, computer architects have been seeking

advanced statistical inferential tools to address the

problem of performance comparisons of computers. The

two common statistical approaches of comparing two

populations (e.g., two computers) are the hypothesis test

and confidence interval estimation. As we know, most of

the parametric tests such as t-tests require population

distribution normality [11]. Unfortunately, computer

performance measurements are often not normally

distributed but either skewed or multimodal. Figure 1

shows 400 measurements of execution time from

SPEC2006 benchmarks running on a commodity

computer (Intel Core i7 CPU 960@3.20GHz, 1 processor

with 4 cores, 10GB DDR3 RAM(1333 MHz)). We can

see that the distributions of performance measures for the

benchmarks are non-normal; benchmarks “gcc” and

“mcf” are skewed to the right, while “bzip2” is

multimodal. This non-normality observation was first

observed by Chen et al. who tackled with a

non-parametric statistics method named hierarchical

performance testing (HPT) [3][4].

In this paper, we propose three statistical resampling

methods [15] to evaluate and compare computer

performance. The first is a randomization test used to

compare the performance between two computers; the

second is a bootstrapping confidence interval method for

estimating the comparative performance measurement,

i.e. speedup, through a range; and the third is an

empirical distribution method to evaluate the

distributional properties of computer performance. The

basic idea of resampling methods, as the name implies, is

to resample the data iteratively, in a manner that is

consistent with certain conditions (e.g. the general

performance of two computers is equal.). Specifically,

we first resample the data according to the purpose of

each method. Second, for each iteration, we calculate the

statistic of interest, such as the ratio of geometric means

between two computers. Third, we repeat the previous

two steps a number of times. Then the distribution of the

calculated statistic is used as an approximation of the

underlying distribution of the statistic under the assumed

condition. Hence, the resampling methods set us free

from the need for normal data or large samples so that

Central Limit Theorem can be applied [21]. Note that the

proposed three methods all follow the three steps

described above. However, the resampling and

calculating steps within each iteration are different

according to the individual purpose for each method.

In summary, the main contributions of this paper can

be listed as follows:

First, we propose and implement a randomization test

[8] for testing the performances of two computers, which

provides an accurate estimate of the confidence of a

comparison when the performances of two computers are

close to each other.

Second, we propose and implement a

bootstrapping-based confidence interval estimation

method [6] to estimate the confidence interval of the ratio

of geometric means between two computers.

Third, as a generic framework, the proposed method

can directly be applied to arithmetic and harmonic

means. We demonstrate that the arithmetic mean is very

sensitive to outliers while geometric and harmonic means

are much more stable.

Fourth, we point out that a single test is not enough to

reveal the nature of the computer performance in some

cases due to the variability of computer systems. Hence,

we suggest using empirical distribution to evaluate

computer performance and use five-number-summary to

summarize the computer performance.

Figure 1. Histograms of execution times for three SPEC benchmarks from 400 repeated runs of each benchmark on the commodity computer.

Fifth, we investigate the source of performance

variation by predicting the performance and relative

variation of machines running the SPEC 2006 [30]

benchmark suite using published hardware descriptions

and environment variables.

Sixth, we demonstrate the effectiveness of the

proposed sampling methods on Big Data benchmarks

[27] which have more variation behaviors than traditional

CPU benchmarks like SPEC or PARSEC.

Finally, we use a Biplot visualization tool [13] for

computer performance comparisons which can visualize

the projections of high-dimensional data onto a

low-dimensional space through principal component.

2 Motivating Example

In this section, we show an example of comparing two

computers based on t-test and the proposed resampling

methods. Table 1 lists the configurations of the

computers. The data is available on [30]. Figure 2 shows

the empirical distributions of geometric mean for two

computers. The horizontal axis shows the SPEC ratio.

The blue dash line is the empirical distribution of

geometric means for the NovaScale computer, while the

red solid line is the one from IBM. The vertical dash line

shows the geometric mean from the raw data. The basic

idea of using an empirical distribution is to see the

distribution of a statistic (e.g. geometric mean of

computer performance). We can see many useful

distributional properties from the empirical distribution,

such as the center, mode, variation, and range of the

statistic. The details of empirical distribution are

described in Section 5. From Figure 2, although the two

distributions overlap, the geometric mean of computer A

(red solid curve) is well above that of computer B (blue

dash curve). As shown in Table 2, the t-test does not

detect the difference between two computers while the

randomization test does. This implies that the

randomization test is more powerful at detecting the

difference even when there is an overlap between two

distributions. The bootstrap interval also shows the ratio

of geometric means is significantly below one (blue

dashed curve against red solid curve) which implies that

computer A runs faster than computer B.

3 Statistical Performance Comparison via

Randomization Test

Statistical inference is based on the sampling

distributions of sample statistics which answers the

question: “if we recollect the data, what will the statistic

be?” A sampling distribution of a statistic (e.g.

geometric mean) can be well approximated by taking

random samples from the population. Traditional

parametric tests assume the sampling distribution has a

particular form such as a normal distribution. If the

distributional assumption is not satisfied, commonly

there are no theoretical justifications or results available.

On the other hand, the great advantage of resampling is

that it often works even when there is no theoretical

adjustment available. The basic idea of the

randomization test [8] is as follows: in order to estimate

the p-value (i.e. 1- confidence) for a test, we first

estimate the sampling distribution of the test statistic

given the null hypothesis is true. This is accomplished

by resampling the data in a manner that is consistent

with the null hypothesis. Therefore, after resampling

many times, we can build up a distribution (called an

empirical distribution) which approximates the sampling

distribution of the statistic that we are interested in.

Thus, we can estimate the p-value based on the

empirical distribution.

Computer BComputer A

Figure 2. Density plots of the empirical distributions for the two computers. The
Dotted lines are the geometric means.

Table 1. Configurations of the two computers in Figure 2.

 Configurations

Middle (blue dashed line) NovaScale T860 F2 (Intel Xeon E5645, 2.40 GHz)

Middle (red solid line) IBM System x3400 M3 (Intel Xeon E5649)

Table 2. Test results for the example in Figure 2.

T test p-value Randomization test p-value 95% Bootstrapping

0.117 0.016 [0.974, 0.997]

Suppose we have two computers A and B to compare

over a benchmark suite consisting of n benchmarks. For

each computer, we ran the benchmarks m times and

denote the performance scores of A and B at their j
th

 runs

of the i
th
 benchmark as ai,j and bi,j respectively. The

hypotheses are specified below.

Null hypothesis: the general performance of A and B

over n benchmarks are equivalent.

Alternative hypothesis: we will use only one of the

following three as our alternative hypothesis.

H1a: the general performance of A is better than that of B.

H1b: the general performance of B is better than that of A.

H1c: the general performance of A is not the same as that

of B.

We proposed the randomization test as follows:

1) For each benchmark i (i=1,…,n), we combine all

the m performance scores from A and B into one list

respectively.

2) We randomly permute the list, for each benchmark,

and assign the first m scores to computer A and the other

m to B for the i
th

 benchmark.

3) Calculate the ratio of the geometric mean of the

performance scores for computer A and B over n

benchmarks.

4) Repeat step 1-3 M times (M is usually a large

number, e.g. 500), so we have M geometric mean ratios,

denote as FM (i.e. the empirical distribution of geometric

mean ratios under the null hypothesis) from M

repetitions.

5) Calculate gA|B, the ratio of the geometric mean of the

performance scores for computer A and B over n

benchmarks on the original data. Then we calculate an

empirical p-value based on FM and the alternative

hypothesis as follows. If we use H1a, then the empirical

p-value is the proportion of FM that is greater than or

equal to gA|B. If H1b is selected, then the empirical

p-value is the proportion of FM that is less than or equal to

gA|B. If we use H1c, then the empirical p-value is the twice

of the smaller empirical p-value from H1a and H1b.

 Figure 3 illustrates the proposed randomization test

under the alternative H1a. Note that the randomization

test described above uses the geometric mean to

evaluate the computer performance. However, the

proposed method can be easily modified to adopt other

measures such as harmonic and arithmetic mean.

4 Confidence Interval Estimation by

Boostrapping

Due to the performance variability, the comparative

performance measure, such as the ratio of geometric

means and speedups, between two computers varies on

different measurements. Hence, presenting a single

numeric estimate cannot describe the amount of

uncertainty due to the performance variability. The basic

idea of a confidence interval (CI) is to provide an interval

estimate (which consists of a lower limit and an upper

limit) on the statistic with some predetermined

confidence level, instead of giving a single estimate. The

interpretation of a confidence interval is based on

recollecting the data or repeating the experiment.

Bootstrapping [6] is a commonly used statistical

technique which quantifies the variability of a statistic,

e.g. estimate a 95% confidence interval of a statistic or its

0.750
0.742
0.749
0.803
0.743

0.587
0.580
0.582
0.578
0.581

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

1 2 n

Computer A

Computer B

Random
permutation

0.578
0.742
0.750
0.749
0.587

0.580
0.582
0.581
0.743
0.803

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

1 2 n

Computer A

Computer B

Geometric mean ratio is
1.698 from original data

Histogram of GM ratios based
on 1000 random permutations.

Empirical p-value
is the total area on
the right of 1.698

Calculate the GM
ratio from
permutated data

Figure 3. Illustration of the proposed randomization test.

standard deviation, which are not yet available in theory

[9]. The basic idea of bootstrapping is to use the sample

as an approximation of the underlying population

distribution, which is unknown, and resample the data

with replacement (note that each observation can be

sampled more than once). We proposed the following

bootstrapping method to estimate the ratio of the

geometric mean of the performance scores from two

computers.

1) For each benchmark i (i=1,…,n), we combine all the

m execution times from computer A and B into one list

respectively.

2) We randomly sample the list with replacement for

each benchmark, and assign the first m scores to

computer A and the other m to B for the ith benchmark.

3) Calculate the ratio of the geometric mean of the

execution times for computer A and B over n

benchmarks.

4) Repeat step 1-3 T times (T is usually a large number,

e.g. 500), so we have T geometric mean ratios, denote as

HT from T repetitions. Let
2/

TH and be the α/2

and 1-α/2 percentiles of HT respectively. Then, a

two-sided (1-α)×100% bootstrap confidence interval is

 2/12/ ,

TT HH . A one-sided (1-α)×100% bootstrap

confidence interval can be either or

 1, TH . The former one-sided confidence interval

is explained as the ratio of GMs between computer A

and B is at least

TH
 with confidence (1-α)×100%,

while the latter as the ratio of GMs between computer A

and B is at most
1

TH
 with confidence (1-α)×100%.

Figure 4 illustrates the proposed bootstrapping method

using an example.

5 Empirical Distribution and Five-Number

Summary

Although the proposed randomization test demonstrates

more precise than conventional t-test, when two

computers show overlapped distributions and close

geometric mean, a single test such as t-test and

randomization test can’t identify their differences. Figure

5 shows three pairs of computers listed in Table 3. The

p-values of both t-test and randomization test for all the

three pairs are close to 1.0. For example, the p-values are

0.941 and 0.856 for t-test and randomization test

respectively for the two computers shown in Figure 5(a).

Similar situations also apply to the pairs in Figure 5(b)

and 5(c). This indicates no performance differences

could be identified by a single test. On the other hand, an

insignificant test result does not necessarily mean the two

2/1
TH

 ,
TH

Table 3. Configurations of three pairs of computers in Figure 5.

 Configurations

Figure 5(a) (blue dashed line) PowerEdge R510 (Intel Xeon E5620, 2.40 GHz)

Figure 5(a) (red solid line) IBM BladeCenter HS22 (Intel Xeon X5550)

Figure 5(b) (blue dashed line) SuperServer 5017C-MF (X9SCL-F, Intel G850)

Figure 5(b) (red solid line) Acer AW2000h-AW170h F1(Intel Xeon X5670)

Figure 5(c) (blue dashed line) IBM System x3850 X5 (Intel Xeon E7-4820)

Figure 5(c) (red solid line) IBM System x3690 X5 (Intel Xeon E7-2830)

0.750
0.742
0.749
0.803
0.743

0.587
0.580
0.582
0.578
0.581

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

1 2 n

Computer A

Computer B

Bootstrapping

0.578
0.578
0.750
0.749
0.580

0.580
0.582
0.581
0.743
0.581

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

1 2 n

Computer A

Computer B

Geometric mean ratio is
1.216 from original data

Histogram of GM ratios from
1000 bootstrapping samples.

2.5 and 97.5
percentiles on the
boostrapped results

Calculate the GM
ratio from
bootstrapping

Figure 4. Illustration of proposed bootstrapping confidence interval estimation.

computers have the same performance. For example, in

Figure 5 we see that all three computers depicted by red

solid lines have slightly higher geometric means than

their competitors, but their performances are less

consistent than the ones shown by blue dashed lines.

Therefore in comparing performance, we need to

consider the system variation effect especially when the

means are close.

Hence, we suggest using the empirical distribution of

the geometric mean and its five-number-summary to

describe of performance for a computer as follows:

1) For each benchmark i (i=1,…,n), we randomly

select one performance score.

2) Calculate the geometric mean of the performance

score for this computer.

3) Repeat step 1-2 M times (M is usually a large

number, e.g. 500), so that we have M geometric means,

denoted as FG R(i.e. the empirical distribution of

geometric mean) from M repetitions.

4) Then calculate the five elements of the

five-number-summary of FG: minimum, first quartile

(25th percentile, denoted as Q1), median, third quartile

(75th percentile, denoted as Q3), and maximum.

Detailed results will be shown in section VI.E.

6 Experimental Results

6.1 “Monte Carlo Simulation Study on Statistical Power

and False Discovery Rates (FDRs)

In order to show the effectiveness of a testing method,

we examine the statistical power (the ability to detect an

effect, i.e. deviation from the null hypothesis) and the

false discovery rate which is the probability of having

type I error (i.e. rejecting the null hypothesis while the

null hypothesis is true) of our proposed method, t-test,

and a recent proposed HPT approach [3]. A common way

to evaluate and compare the statistical powers and false

discovery rates (FDRs), which are defined below, of the

tests is through Monte Carlo simulation study.

Statistical power: the probability of rejecting the null

hypothesis while the null hypothesis is, in fact, not true.

Note that we denote power as statistical power in this

paper.

False discovery rates: the probability of rejecting the

null hypothesis while the null hypothesis is, in fact, true.

Hence, ideally we would like the statistical power to be

as large as possible and the FDR as small as possible. In

real examples, we usually do not know the underlying

truth. In order to investigate the properties of HPT, t-test,

Computer BComputer A

 (a) (b) (c)

Figure 5. Density plots of the empirical distributions for three pairs of computers. The dot lines are the geometric means.

 (a) (b)

Figure 6. Results of Monte Carlo simulation study 1 (part (a)) and study 2 (part (b)) on statistical power and FDR.

and randomization test we applied a Monte Carlo

simulation study where the truth is known. Below are the

settings for the Monte Carlo simulation study on power

and FDR for two imaginary computers X and Y that uses

the following steps.

a. For each benchmark running on computer X, we

randomly select m (m=5 in this study) execution

times without replacement (i.e. each execution time

can be selected at most once) from the 1000

execution times measured from that benchmark

running on computer A shown in Table 4.

b. Then we randomly pick L (L is between 0 and 13)

benchmarks and add a constant 1.0 to all the

execution times for the selected L benchmarks

running on the real computer, and assign the sum to

be the execution time of the benchmarks running on

Computer Y. The reason that we use constant 1.0 in

step b to make a difference between two computers is

that the standard deviations of the performance from

all 13 benchmarks range from 0.012 to 0.91. Hence,

adding 1.0 to any benchmark can guarantee that there

is at least one standard deviation difference between

computer X and Y.

c. The HPT test, t-test, and our proposed randomization

test are carried out on the data generated through

steps a & b.

d. Repeat steps a-c 100 times.

Remarks: Notice that the execution times in step a for

computer X and Y are selected from the same population

(from the selected commodity computer). In step b, if L is

greater than zero, then the truth is computer X has better

performance than computer Y which has longer

execution times for the L benchmarks. It is ideal if the

test can detect the difference by rejecting the null

hypothesis (i.e. the general performance of X is better

than that of Y). Hence, P, the proportion of times (among

100 repetitions) a test rejects the null hypothesis, can be

viewed as an approximate estimate of its power for

nonzero L. On the other hand, when L is zero, that

proportion, P, becomes an estimate of its FDR.

In this study, we set the significance level at 0.05 and

use the two-sided alternative hypothesis (H1c). Figure

6(a) shows the Monte Carlo simulation results (i.e. P, the

proportion of times the null hypothesis is rejected) on

HPT, t-test (TT) and the proposed randomization test

(RT) using the execution time measurements from the

selected computer as the underlying population. Notice

that the first point (L=0), the value of P is an estimate of

the FDR, which should be close to the specified

significance level (here it is 0.05) for a good test. For

other points (L=1,…,13), the value of P is an estimate of

the power, which is supposed to be large for a good test.

So we can see that our proposed randomization test has

much higher power than the other two tests when L is

between one and seven. When L is greater than seven, all

tests achieve perfect power. When L is zero, the FDRs for

all tests are small and close to the specified significance

level (here it is 0.05).

Without losing generality, we also repeat the above

described Monte Carlo study by using the measurements

from computer C shown in Table 4 running with

PARSEC in step a. Figure 6(b) shows the Monte Carlo

simulation results (i.e. the proportion of times the null

hypothesis is rejected) on HPT, TT, and the proposed RT

using execution time measured from another computer as

the underlying population. From this figure, similar

observations can be made. When L is between 1 and 5,

RT demonstrates stronger statistical power than HPT

does. This is because, unlike our proposed RT, HPT is

calculated using rank-based nonparametric tests (i.e.

using Wilcoxon rank-sum test in Step 1 and Wilcoxon

signed-rank test in Step 2). In statistics it is well known

that the statistical power for the nonparametric tests

based on ranks are usually less likely to detect the effects

due to the loss of some information on magnitude by

ranking [10]. Regarding the t-test, we see it starts to

have positive power when L is four and reaches the

perfect power when L becomes seven. In fact, t-test

shows higher power than the HPT when L is between

four and seven. The reason is that the parametric tests are

usually more efficient (i.e. higher power) than their

nonparametric rank-based counterparts which was used

in the HPT method [23].

Table 5. Results of pairwise comparison among four computers based on 100

random replications. The numbers shown in the table are the number of times

the null hypothesis is rejected at the significance level 0.01 (the numbers in the

parenthesis are for the significance level at 0.05).

Comparison B vs. A D vs. A C vs. A D vs. B C vs. B D vs. C

HPT 100

(100)

100

(100)

5

(91)

90

(99)

100

(100)

99

(100)

T-test 100

(100)

100

(100)

91

(100)

100

(100)

100

(100)

100

(100)

RT 100

(100)

100

(100)

100

(100)

100

(100)

100

(100)

100

(100)

Thanks to high performance computers, the proposed

randomization test (with M=500) takes an average CPU

timing of 0.41 seconds running on a regular Dell

workstation with an Intel Xeon 2.66GHz processor for

the above experiment. The algorithm is implemented as

R language functions.

6.2 Monte Carlo Simulation Study on Confidence

Interval

Like the Monte Carlo simulation in Section VI.A, we

also investigate the property of the proposed

bootstrapping confidence interval and HPT

speedup-under-test estimate from a simulation with

known data generation mechanism. Below are the

settings for the Monte Carlo simulation study on two

imaginary computers X and Y.

a. For each benchmark running on computer X, we

randomly select m (m=5 in this study) execution

times without replacement from the 1000 execution

times measured from that benchmark running on

computer A shown in Table 4.

b. Then we multiply all the execution times (all n

benchmarks) of computer X by a constant 2.0. We

assign the new values as execution times for

computer Y.

c. The 95% speedups from HPT test and the proposed

95% bootstrapping confidence intervals are carried

out on the data generated through step a & b.

d. Repeat step a-c 100 times.

Figure 7 shows the one hundred 0.95-Speedups from

HPT test (red curves) and the proposed 95%

bootstrapping confidence intervals (blue curves on the

boundaries with the grey region in the middle). The

black dashed line is the true ratio, 2, and the solid black

line is the measured ratio of geometric mean. Note that

the t-test confidence interval (t-interval), which is not

shown in Figure 7, is much wider than the bootstrapping

confidence interval and outside the range of the plot. This

implies our bootstrapping confidence interval is more

accurate than t-interval. Based on Figure 7, we have the

following remarks.

1) Among all 100 bootstrapping confidence intervals,

there are ninety-five intervals holding the true value, 2,

which follows the pre-specified confidence level, 95%.

2) We see that the 0.95-Speedups from HPT test are

consistently below the true value and the bootstrapping

confidence intervals (lower than most of the lower limits

of the bootstrapping CIs). This is because of the low

power for the rank-based nonparametric tests.

3) The measured ratio of geometric mean varies

around the true value 2 and falls within the bootstrapping

CIs. This implies the ratio of geometric means is still a

good estimate of comparative performance between two

computers.

95% bootstrapping confidence intervals geometric means HPT test

Figure 7. The 95% bootstrapping confidence intervals (boundaries of shaded region), measured ratios of geometric means performance speedups (solid line within
the confidence interval) and 0.95-speedups from HPT test (red lines) based on 100 random replications.

Table 4. Configurations of the four commodity computers.

Computer Configurations

A AMD Opteron CPU 6172 @ 2.10GHz, 2 processors, each with 12

cores, with 12GB DDR3 RAM(1333 MHz)

B Intel Core i7 CPU 960 @ 3.20GHz, 1 processor with 4 cores

(Hyperthreading enabled), 10GB DDR3 RAM(1333 MHz)

C Intel Xeon CPU X5355 @ 2.66GHz, 2 processors, each with 4

cores, 16GB DDR2 RAM (533MHz)

D Intel Xeon CPU E5530 @ 2.40GHz, 2 processor, each with 4 cores,

12GB DDR3 RAM (1333MHz)

We also performed the above experiment on other

commodity computers (listed in Table 4). The results are

similar to Figure 7. The Bootstrapping method also runs

fast in R. It takes an average time of 0.51 seconds running

on a Dell workstation equipped with an Intel Xeon

2.66GHz processor for the above experiment.

6.3 Pairwise Comparison of Four Commodity

Computers

Here, we applied our methods, t-test and HPT on

pairwise comparison of four computers denoted as A, B,

C and D which are specified in Table 4. For each

computer, we run 1000 times for each benchmark in

PARSEC [2] and SPLASH-2 [27] and then measure the

execution time. All benchmarks are using their 8-thread

version. In order to mimic the reality and have a full

evaluation, we randomly select 5 out of 1000 execution

times (without replacement) for each benchmark and

computer. Then we applied HPT, t-test, and our methods

(RT) on the selected sample which is a subset of the

whole dataset. To avoid sampling bias, we repeat the

experiment 100 times.

Table 5 shows the Monte Carlo results (i.e. the number

of times the null hypothesis is rejected based on 100

random repetitions) on t-test, HPT and proposed

randomization test on all six pairwise comparisons

among four computers. Based on Table 5, we have the

following observations:

1) In four pairwise comparisons (i.e. B vs. A, D vs. A,

C vs. B and D vs. C), all methods have the same

conclusions (i.e. reject the null hypothesis and conclude

two computers have significantly different performance.)

2) For comparing computer A and C, we see that HPT

rejects the null hypothesis only 5 out of 100 times while

our methods rejects the null in all 100 trials at

significance level 0.01. When we change the significance

level to 0.05, the number of times the null hypothesis is

rejected for HPT increases to 91. T-test performs similar

to randomization test, except it fails to reject the null

hypothesis 9 times at significance level 0.01.

3) For comparing computer B and D, we see that HPT

rejects the null hypothesis 90 out of 100 times while both

randomization test and t-test reject the null in all 100

trials at significance level 0.01. When we change the

significance level to 0.05, the number of times the null

hypothesis is rejected for HPT increases to 99.

For this experiment, we conclude that when the

performance difference between two computers is large
1
,

all three tests will have the same significant conclusion.

However, when performance gap between two

computers is small, then the randomization test has the

highest chance to detect the difference.

Figure 8 shows the one hundred 0.95-Speedups from

HPT test (red curves), the proposed 95% bootstrapping

confidence intervals (blue curves on the boundaries with

the grey region in the middle), and 95% t-confidence

interval (gray lines). We see that the speed-up estimates

from HPT approach are smaller than the bootstrapping

estimates most of the time, which concurs with the Monte

Carlo simulation results in Figure 7. This confirms that

the speed-up estimates of HPT are relatively conservative

than the bootstrapping estimates. Regarding the

t-confidence interval, it is much wider than its

bootstrapping counterpart, indicating that the

bootstrapping method estimate is more precise than

t-test. One interesting thing we found is that the HPT 0.95

speedup is very close to the lower bound of the 95%

t-confidence interval. This implies that the HPT speedup

estimate is conservative and tends to underestimate the

true speedup value.

95% bootstrapping confidence intervals

95% t-confidence interval

HPT test

Figure 8. The 95% bootstrapping confidence intervals (boundaries of shaded
region), 0.95-speedups from HPT test (red lines) and 95% t-confidence
interval (grey lines) on six pairwise comparisons among Computer A, B, C
and D from 100 replications.

6.4 SPEC CPU2006 Results

Now we carry out another experiment using the data

collected from SPEC.org and have been used in Chen et

al. [3]. Table 6 shows the comparative results of the

0.95-performance speedups obtained by HPT, 95%

t-intervals, and the 95% bootstrapping confidence

intervals of the ratio of geometric means performance

speedups. The first row shows the ratio of geometric

means performance speedups from the data.

Interestingly, we see that the bootstrapping CI holds the

ratio of geometric means performance speedups from the

data. The 0.95-performance speedups obtained by HPT

are all below the bootstrapping CIs. The 95% t-intervals

are much wider than the ones from bootstrapping

method, indicating its relatively low precision for

estimation compared with bootstrapping method. In

addition, the HPT 0.95 speedups are close to the lower

limits of the t-intervals.

The above experiment shows that the HPT and our

methods can identify the difference between each pair of

computers, although the absolute Speedup numbers are

different. Now we select another seven pairs of

computers from SPEC.org [30] listed in Table 7 and

perform the same experiment.

The results are listed in Table 8. We see that HPT shows

low confidence and conservative estimate of Speedups in

all cases while our proposed RT method demonstrates

high confidence (>0.999). Similar as above results in

Table 6, the 95% t-intervals are wider than the ones from

bootstrapping method. Again, the GM Speedup is in the

range of bootstrapping confidence intervals.

6.5 Five-number-summary Results

As we shown in Figure 5, the empirical distribution

described above fully embraces the variability of

computer systems which stems from non-deterministic

hardware and software behaviors. However, sometimes it

is desired to summarize the results through a few

numbers instead of the empirical distribution, which

usually contains hundreds of numbers. This can be

achieved through the five-number-summary of the

empirical distribution. Figure 9 illustrates the

five-number-summary on the IBM BladeCenter HS22.

We know that the total area under the density curve is

Figure 9. Illustration of five-number-summary on IBM BladeCenter HS22.

Table 6. Quantitative comparisons of 0.95-performance speedups obtained by HPT, the 95% confidence intervals obtained from t-test, and bootstrapping method.

 A1-A2 B1-B2 C1-C2 D1-D2 E1-E2 F1-F2 G1-G2

GM Speedup 3.339 3.495 1.698 3.259 1.984 1.675 1.27

HPT Speedup 2.64 2.24 1.39 2.45 1.76 1.546 1.15

T-interval [2.626,4.245] [2.364,5.167] [1.417,2.035] [2.540,4.182] [1.733,2.272] [1.429,1.964] [1.139,1.417]

Bootstrap CI [3.326,3.352] [3.476,3.513] [1.696,1.700] [3.257,3.262] [1.983,1.986] [1.674,1.676] [1.268,1.273]

Table 8. Comparative summary results on comparing another seven pairs of computers.

 H1-H2 I1-I2 J1-J2 K1-K2 L1-L2 M1-M2 N1-N2

GM Speedup 1.122 1.135 1.127 1.318 1.11 1.13 1.167

HPT confidence 0.732 0.868 0.576 0.885 0.753 0.804 0.825

HPT Speedup 0.950 0.928 0.944 0.962 0.94 0.908 0.932

T confidence 0.849 0.896 0.878 0.975 0.814 0.872 0.891

T-test CI [0.956,1.316] [0.973,1.325] [0.967,1.314] [1.037,1.675] [0.948,1.298] [0.963,1.325] [0.964,1.413]

RT confidence >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999

Bootstrap CI [1.117,1.126] [1.13, 1.14] [1.117,1.138] [1.31,1.325] [1.109, 1.11] [1.127,1.132] [1.166,1.168]

Table 7. Configurations of another seven pairs of computers.

Computer 1 Computer 2

H1: Fujitsu, CELSIUS R570, Intel Xeon

E5506

H2: Fujitsu Siemens Computers,

CELSIUS M460, Intel Core 2 Quad

Q9550

I1: Fujitsu, CELSIUS R570, Intel Xeon

E5506

I2: Sun Microsystems, Sun Fire X4450

J1: Supermicro A+ Server 2042G-6RF,

AMD Opteron 6136

J2: Supermicro, Motherboard H8QI6-F,

AMD Opteron 8435

K1: Huawei RH2285,Intel Xeon E5645 K2: Fujitsu CELSIUS W380, Intel Core

i5-660

L1: Tyan YR190-B8228, AMD Opteron

4238

L2: Fujitsu CELSIUS W380, Intel Core

i5-660

M1: Tyan YR190-B8228, AMD

Opteron 4180

M2: Fujitsu Siemens Computers,

CELSIUS M460, Intel Core 2 Quad

Q9550

N1: Fujitsu, CELSIUS M470, Intel

Xeon W3503

N2: Sun Microsystems, Sun Fire X4150

100%. The first quartile (Q1), median, and the third

quartile (Q3) cut the total area into four equal areas,

which has 25% under curve area. Hence,

five-number-summary is a compact way to summarize

the distribution of a random variable and it shows the

following characteristics of the distribution: 1) the range

of data; 2) the range of the middle 50% of the data is

Q3-Q1, which is called the Interquartile range (IQR) in

the statistics community; 3) the center of the distribution.

Both the range and IQR are often used as measuring the

variation of a random variable. Figure 10 shows the

boxplots, which are the graphic presentation of

five-number-summary, of the computers listed in Table

3. Note that in boxplot, the bottom and the top of the

boxplot are the minimum and maximum. The bottom and

top of the box are the Q1 and Q3, respectively. The line

inside the box is the median.

7 Investigating the Source of Variance

For this investigation, we predict the performance

variation of a hardware configuration using only a

description of the hardware and the flags used for

compilation and execution. To simplify this prediction,

we first predict the performance of a given hardware

configuration and then predict the relative variation

(standard deviation of performance divided by

performance) which can then be used to calculate the

variation.

We use 8,236 hardware configurations running SPEC

INT 2006 available from [30] as the dataset. The

reported SPEC ratio is used as the performance metric

for each machine. Performance and normalized

variance histograms are shown in Figure 11.

We use the published hardware configurations to train

performance and relative variation predictors. For this

experiment, we consider only the “base” configuration

and performance results from the SPEC dataset.

For each hardware configuration, we have 24

variables describing the basic the hardware and software

environment including CPU Model, Frequency, number

of cores, cache sizes, etc. These variables are a mixture

of integer variables (e.g. number of threads, hard disk

speed) and string variables (e.g. Operating System,

Compiler). In addition to the hardware/software

environment variables, we use Boolean variables to

indicate whether or not a certain flag was used during

compilation or execution on this machine. Only the 100

most commonly used flags are considered during

prediction. In total, we utilize 132 variables for

predicting performance and relative variation.

The dataset of 8,236 machines is split into a training

set and a testing set using 70% and 30% of the total

dataset, respectively. The response variables are the

performance and relative variation. The performance is

the geometric mean of the median measure from 12

benchmarks. Note that each benchmark has 3

measurements. The relative variation is the ratio of the

standard deviation of the geometric mean and the

performance. Note that the standard deviation is

estimated based on 500 bootstrap samples.

For both performance and relative variation, the

boosting regression tree algorithm is used to fit

predictive models using 24 environment variables as

well as all 124 variables. The models are trained on

training set and the prediction performance is evaluated

on testing set.

The correlation of predicted and measured

performance using only environment variables on test

Figure 11. (Left) A histogram of the SPEC ratios and (Right) relative SPEC

ratio variance for 8,236 hardware configurations running SPEC INT 2006

published between 2006 and Q2, 2017.

 (a) (b) (c)

Figure 10. Graphic representation of five-number-summaries corresponding
to the computers in Figure 5.

Table 9. Environment variables with the highest relative influence when

predicting Performance

Variable Rel Inf

File System 40.567

CPU Frequency 21.502

L3 Cache Size 17.014

RAM Stick Size 10.772

L2 Cache Size 1.801

Disk Size 1.446

Auto-Parallel Enabled 1.218

RAM Stick Count 1.054

CPU Cores per Chip 0.829

L1 Cache Size 0.819

samples is 0.982. The top ten variables with the highest

relative variable importance when predicting

performance using only environment variables are

shown in Table 9.

 The most influential variable when predicting

performance using only environment variables is the

File System type (e.g. NTFS, ext4, ReiserFS, etc.)

followed by the CPU Clock Frequency. Variables

relating to memory size are highly influential including:

L1, L2, and L3 cache sizes as well as the amount of

RAM (number of sticks * stick count) and the hard disk

size. Variables relating to parallelism rank slightly lower:

“Auto-Parallel Enabled”, which allows multithreading,

and the number of CPU Cores per Chip. SPEC CPU

2006 benchmarks are a mix of memory bound

applications (strongly influenced by memory variables)

and compute-bound applications (strongly influenced by

parallelism).

 The correlation is increased to 0.992 when both

environment and flag variables are used to predict

performance; the top ten variables are shown in Table 10.

 Four flag variables are amount the top ten most

influential variables when predicting performance. The

most influential variable is the “AVX2” compiler flag

which enables the use of the AVX2 instruction set,

which can reduce the total number of instructions. The

second most influential variable is the “Auto-p32”

compiler flag which automatically converts 64 bit

pointers to 32 bits when possible, improving

performance. The “ParNumThreads” flag is used to

specify the number of threads to use in a parallel region.

Table 10. Environment and Flag variables with the highest relative

influence when predicting Performance. Flag variables are shown in bold.

Variable Rel Inf

AVX2 25.207

File System 20.325

CPU Frequency 19.745

L3 Cache Size 12.589

Auto-p32 8.766

ParNumThreads=1 2.702

RAM Stick Size 1.289

SmartHeap64 1.19

Auto-Parallel Enabled 0.974

CPU Cores per Chip 0.928

In the dataset, ParNumThreads is used primarily to

disable parallelism by setting the number of threads to 1.

The “SmartHeap64” compiler flag enables the use of the

64-bit MicroQuill SmartHeap library [31] which can

improve heap-intensive multi-threaded applications.

Since the relative variation is highly skewed with

some extremely large outliers, logarithm is applied to

make it less skewed. Using on environment variables,

the correlation of predicted and measured relative

variations is 0.498. The top ten variables with the

highest relative information are shown in Table 11.

Table 11. Environment variables with the highest relative influence when

predicting Relative Variation.

Variable Rel Inf

L2 Cache Size 25.851

File System 13.958

CPU Chip Count 10.414

Total RAM Size 8.788

System State 6.638

CPU Core Count 5.152

L3 Cache Size 4.556

Threads per Core 4.011

RAM Stick Count 3.995

Disk Size 3.494

The top ten variables for predicting relative variation

can be broken down into two key groups. Firstly,

variables related to the total number of threads,

including: CPU Chip Count, System State, CPU Core

Count, and Threads per Core. More threads running in

parallel creates more opportunities for interference,

which can act as a source of randomness and thus

increase variation. The System State variable indicates

the runlevel of the operating system; runlevel influences

the number of OS background threads that may interfere

with benchmark performance.

Secondly, variables related to memory, including: L2

Cache Size, File System, Memory Size, L3 Cache Size,

RAM Stick Count, and Disk Size. Lower memory tiers

are shared by more competing threads and thus larger

sizes can increase the impact of thread interference.

Similarly, the File System type will influence the quality

of service for parallel disk accesses.

Combining the environment and flag variables, the

correlation of predicted and measured relative variations

is increased to 0.534. The top ten variables with the

highest relative information are shown in Table 12.

Table 12. Environment and flag variables with the highest relative

influence when predicting Relative Variation. Flag variables are shown in

bold.

Variable Rel Inf

L2 Cache Size 20.976

CPU Chip Count 8.647

File System 7.818

Total Memory Size 6.724

Par Num Threads = 1 4.427

CPU Core Count 4.364

System State 3.751

Threads Per Core 3.688

HugeTLBFS-link=BDT 3.228

Memory Stick Count 3.066

When using all variables for predicting relative

variation, only two flag variables appear in the top ten.

“Par Num Threads = 1” disables parallelism when used,

removing some threads that may cause interference. The

“HugeTLBFS-link=BDT” flag instructs Linux’s

RAM-based filesystem to store BSS, initialized data,

and text into huge pages. Huge pages may increase the

likelihood of inter-thread interference by moving more

data into shared memory space.

From this investigation, we see that while performance can

be explained almost completely by the environment and flag

variables used – relative variation can only be explained in

part. Our results suggest that the primary source of

variation is intra-thread interference given that significant

environment variables relate to the number of active threads

and the size of shared memory. Flag variables were found

to be less significant than environment variables when

prediction variation, with the most significant flag variable

being disabling parallelism for some benchmarks. We do

not have variables relating to the number of OS threads

running in the background or certainty that the SPEC 2006

was run as the only application, which could explain the

remainder of the variation.

8 The Sampling Size

Due to the performance variability, we usually measure

the performance score more than once for each

benchmark. Hence, it remains a question that how many

measurements (performance scores) for each benchmark,

m, we should take. Generally, the size of m depends on

two factors:

1) The size of the performance variability. If there is no

performance variability, then measuring once, m=1,

gives an accurate performance score. On the other hand,

if the performance variability is large, then we need m be

large to have a good estimation of performance.

2) The quality of the statistical inference. Hypothesis

testing and estimation are the two major branches of

statistical inference. A good test procedure should have a

high probability to detect the deviation from the specified

null hypothesis (i.e. high statistical power) when the null

hypothesis is not true. On the other hand, the width of the

confidence interval and the mean squared error (MSE) of

an estimated parameter (e.g. speedup), gives us some

idea about how uncertain we are about the unknown

parameter. The smaller the width of a confidence interval

(with fixed confidence level, e.g. 95%) and MSE, the

more precise the estimate is. Hence, the statistical power,

MSE and the width of confidence interval are widely

used to examine the quality of statistical inference.

Here, we redo the Monte Carlo simulation study on

power, described in Section VI.A, with L=1 on the

commodity computer (AMD Opteron CPU 6172 @

2.10GHz, 2 processors, each with 12 cores, with 12GB

DDR3 RAM(1333 MHz)) using different sizes of m,

m=3, 5, 7, 10, 15, 20, 30, 50, 100. The top panel of the

proposed bootstrap estimate with different sizes of m.

The vertical grey bar indicates the standard deviation of

MSE. We see that the size of MSE (the smaller the MSE,

the more accurate the estimate is) and its standard

deviation decreases with the increase of m. Sometimes

we may constrain the width of the confidence intervals.

For example, we want to have a 95% confidence interval

with width (i.e. upper limit – lower limit) no greater than

0.03. Notice that the smaller the width, the more

consistency the estimate has. The bottom panel of Figure

12 shows the width of 95% confidence interval with

different size of m. The vertical grey bar indicates the

standard deviation of width. Similar to MSE, we see that

the width of confidence interval decreases as m increases.

The above study shows the statistical properties of the

proposed methods by increasing the size m. However, in

practice we usually don’t know the truth. Hence, the

power of the test and MSE are unknown. A common way

to determine the size of m is by setting the width of the

confidence interval in advance. Figure 13 shows the

flowchart of selecting the size of m in practice based on

the predetermined width of confidence interval ∆.

Basically, we need specify an initial value of m, usually a

small value like 3, and a threshold for the width of

confidence interval ∆. Then we sample m measurements

for each benchmark and computer. We calculate a

bootstrapping confidence interval based on the sample

data. If the width of confidence interval is greater than

the threshold Δ, then we increase the size of m and

sample more measurements for each benchmark and

computer. Then we recalculate the confidence interval.

We stop sampling when the width of confidence interval

is no greater than the predetermined threshold ∆.

For the example below, we use two computers: A and

C described in section VI.C. We would like to find the

size of m by restricting the width of the bootstrapping

confidence interval of the ratio of geometric means

performance speedups to be no greater than 0.015. Table

13 shows the bootstrapping confidence intervals and

corresponding width with various sizes of m. We see that

the sample size of m should be at least 16 under the

restriction.

9 Applicability to Other Means

As a generic framework, our proposed methods can be

directly applied to arithmetic and harmonic means while

the HPT framework cannot apply since it uses rank

instead of any performance metric. We applied the

propose methods using these three means on an example

in which we compare SPEC scores of two machines:

IBM System x3500 M3 with Intel Xeon E5530, and

CELSIUS R570 with Intel Xeon X5560, which are

Figure 12. The sample size effect on the statistical power, MSE and the
width of confidence interval under various sizes of m.

Measuring

Bootstrapping
CI

Is CI width
greater than Δ?

Input Δ and
initial m value

No
Stop

No

Yes Increase m
value

Figure 13. Flowchart of choosing the sample size based on the width of
confidence interval.

Table 13. An illustration of choosing the sample size (m) based on the width of confidence interval.

m 3 5 7 10 13 15 16

Bootstrap CI [1.203, 1.228] [1.204, 1.223] [1.207, 1.227] [1.212, 1.228] [1.216, 1.231] [1.216 1.232] [1.217, 1.232]

CI Width 0.0256 0.0198 0.0194 0.0166 0.0153 0.0155 0.0149

obtained from SPEC website [30]. Table 15 shows the

confidences and confidence intervals using three metrics

on the example. We see that both harmonic mean and

geometric mean identify the difference between two

computers while arithmetic mean cannot. This is because

the arithmetic mean is subject to extreme values. For

example, among 29 benchmarks, CELSIUS R570 has 25

benchmarks with a larger mean performance score than

their counterparts for IBM System x3500 M3. However,

IBM System x3500 M3 has much higher performance

scores in the libquantum and bwaves benchmarks than

their counterparts in CELSIUS R570. If the two

benchmarks are eliminated from the data, then changes in

the confidence and confidence interval using the

arithmetic mean are much larger than the ones using the

geometric and harmonic means.

10 Applicability to Big Data Benchmarks

In this section we study the effectiveness of the proposed

sampling methods on Big Data benchmarks [27], which

have been demonstrated to be different from traditional

CPU benchmarks like SPEC or PARSEC. Big Data

Analytics is an emerging field that is driven by the need

to find trends in increasingly large data sets. Applications

include search engines, social networking, e-commerce,

multimedia analytics, and bioinformatics. Big Data

applications require extra layers in the software stack due

to the use of distributed storage and processing

frameworks, such as Apache Hadoop, thus creating

additional opportunities for variance. We find the

execution-time-variance of Big Data applications

(calculated as the standard deviation divided by the

mean) to be about twice as large as that of spec

benchmarks; this is due to these additional virtualization

layers used by the Big Data Bench (i.e. Hadoop, Spark,

Java).

As listed in Table 14, a set of seven Big Data

benchmarks were chosen from the spark implementation

of the BigDataBench version 3.1.1 [29] and executed on

five separate machines listed in Table 16. Each

benchmark was executed 1000 to 2000 times on each

machine and the execution time was measured. The

larger variance of Big Data application performance

makes naïve comparisons of machine performances

impractical and mandates a sampling method such as the

one proposed.

We ran three studies using the big data described

above. Study 1 & 2 are both based on the random

sampling of Machine 3 and Machine 4. Namely, for

each benchmark from each computer, five execution

times are randomly selected without replacement. Then

we (1) compare the two computers using HPT, t-test and

proposed randomization test; (2) estimated the ratio of

the geometric means through the proposed

bootstrapping confidence interval, t-test confidence

interval and HPT speedup-under-test estimate based on

the randomly selected subset of data. Both studies were

repeated 100 times. (3) For Study 3, we applied a new

visualization tool called a Biplot [13] to visually

examine the performance of many computers and

benchmarks simultaneously.

In Study 1, for a significance level of 0.05, HPT fails

to reject null hypothesis as the two machines generally

have the same performance in terms of the geometric

mean, 69% of times, while t-test and our randomization

test both are 0% (i.e. reject all 100 times). When the

significance level is 0.01, since HPT uses nonparametric

test, their p-value in this case cannot go below 0.01. The

t-test fails to reject the null hypothesis 4% of the time,

Table 14. Summary of Selected Big Data Workloads

ID Domain Operations or Algorithm Types Data Sets

a Social Networks Connected Components Offline Analytics Facebook Social Network

b Social Networks Kmeans Offline Analytics Facebook Social Network

c Search Engine Sort Offline Analytics Wikipedia Entries

d Search Engine Grep Offline Analytics Wikipedia Entries

e Search Engine Word Count Offline Analytics Wikipedia Entries

f E-Commerce NaiveBayes Interactive Analytics Amazon Movie Reviews

g Search Engine Page Rank Offline Analytics Google Web Graph

Table 15. Summary of comparing geometric, harmonic and arithmetic

means on confidence and confidence interval (CI).

 G-Mean H-Mean A-Mean

Confidence >0.99 >0.99 0.492

CI [0.913, 0.920] [0.887, 0.892] [1.019, 1.031]

Confidence* >0.99 >0.99 >0.99

CI* [0.882, 0.889] [0.881, 0.886] [0.880, 0.889]

* Confidence and confidence interval after eliminating the libquantum

and bewaves benchmarks.

while our test still rejects all 100 times.

Figure 14 shows the results of Study 2. The black

solid line in the center is the observed geometric means

based on 100 simulations. The blue solid lines show the

95% bootstrapping Confidence intervals. The green

solid lines show the 95% t-test confidence intervals. The

red dash line shows the HPT speed-up estimates. Based

on the figure, we can see that the t-test confidence

interval is consistently wider than the bootstrapping

confidence interval and that the HPT speedup estimates

are highly variable bouncing up and below and far away

from the observed Geometric means.

11 Biplots for the Visualization of

Benchmark Effectiveness

Finally, we use a Biplot visualization tool [13] for

computer performance comparisons. Biplot is a useful

tool to visualize the projections of high-dimensional

data onto a low dimensional space through principal

component analysis. In this section, we will first briefly

describe the principal component analysis technique and

introduce the Biplot method through an illustrative

example. Then we will apply the Biplot method to the

performance results of all five machines used in section

IX with seven Big Data benchmarks and explain the

results that may shed new insights on comparing

computer performance.

Principal component analysis is a time-honored

method for dimension reduction and data visualization.

Figure 15 shows a randomly generated dataset with

1000 points from a bivariate Gaussian distribution.

Figure 15(a) shows the raw data with the two principal

components. The first principal component (PC1),

shown as the red arrow in the plot, is the direction in

feature space (e.g. X1 and X2 in this case) along which

projections have the largest variance. The second PC

(PC2), shown as the blue arrow in the plot, is the

direction which maximizes variance among all

directions orthogonal to the first PC. The principal

components are the linear combination of all the

features. The value of the coefficients for the PC is

called the loading vector of the corresponding PC. The

value for the sample point of the PC is called the score

for the corresponding PC. For example, PC1 is equal to

0.996X1+0.258X2; hence the loading vector for PC1 is

Figure 14. The 95% bootstrapping confidence intervals (solid blue lines), measured ratios of geometric means (solid black line within the confidence

interval), 95% t-test confidence intervals (solid green lines) and 0.95-speedups from HPT test (red dash lines) based on 100 random replications.

Table 16. Summary of Selected Computers

ID Configurations

1 Intel Xeon CPU E5-2630 @ 2.6 GHz, 2 processors, each with 12 cores, 192GB DDR3 RAM (1600 MHz)

2 Intel Xeon CPU X5530 @ 2.40GHz, 2 processors, each with 4 cores, 12GB DDR3 RAM (1333MHz)

3 Intel Core i7 CPU 3820 @ 3.6 GHz, 1 processor with 8 cores, 24GB DDR3 RAM (1600 MHz)

4 Intel Core i7 CPU 960 @ 3.20 GHz, 1 processor with 4 cores (Hyperthreading enabled), 10GB DDR3 RAM(1333MHz)

5 AMD Opteron CPU 6172 @ 2.1GHz, 2 processors, each with 12 cores, with 12GB DDR3 RAM(1333 MHz)

(0.996, 0.258). For a sample point with X1=1 and X2=0,

the PC1 score is equal to 0.996×1+0.258×0=0.996.

Instead of plotting the data on its raw scales, an

alternative way to visualize the data is to project the data

onto PC1 and PC2. In this example, since the data

contains only two variables, X1 and X2, projecting onto

PC1 and PC2 is equivalent to rotating the data to use

PC1 and PC2 as the horizontal and vertical axes. This is

shown in Figure 15(b). For each point, the projected

value on the horizontal axis is its PC1 score, while the

projected value on the vertical axis is its PC2 score.

A Biplot graph, which is shown in Figure 15(c),

presents not only the PC scores but also the loading

vectors in a single display. The red arrow shows the

coefficient values for X1 on the PC1 and PC2 loading

vectors. As can be seen, the coefficient value for X1 in

PC1 (i.e. 0.966) is larger than its counterpart in PC2 (i.e.

0.258) and the coefficient value for X2 in PC2 is

negative (i.e. -0.966), with its absolute value being

larger than its counterpart in PC1. Hence, we can see

PC1 reflects mainly the variation in the X1 direction,

and PC2 mainly reflects variation in the X2 direction.

Figure 15(d) shows the proportion of variance that is

explained by each PC. Since the data has only two

variables, there are at most two PCs. The first PC

explains about 95% of the total variance of the data,

while PC2 explains the remaining 5%.

Figure 16 shows the Biplot of the performances of all

five machines used in section IX with all seven Big Data

benchmarks. Note that for each machine and each

benchmark, we have measured about 1000 times. To

create the Biplot in Figure 16, we use the median value

of the performance measure for each benchmark and

machine. The median values for all five machines and

all seven Big Data Benchmarks are listed in the Table 17.

Since we have five machines and seven benchmarks,

there are up to five PCs. The right panel of Figure 16

shows the proportion of total variance explained by each

PC. As we can see, the first two PCs explained more

than 99.7% of the total variance. Hence, using the

leading two PCs in the Biplot keeps almost all the

information in the data. Based on the Biplot, which is

shown on the left panel, we have the following remarks.

1) We see that the benchmark b has the largest impact

(i.e. coefficient value) on the PC1. This indicates

that PC1 roughly reflects the performance measure

on benchmark b. This can be verified by the

dominant value of the loading coefficient for

benchmark b in PC1 (i.e. equal to 0.91).

Figure 15. Illustrative example for principal component analysis and biplot:

(a) raw data with PC1 and PC2; (b) PC scores on the PC1 and PC2; (c)

Lower left: biplot of the data.(d) proportion of total variance explained by

PC1 and PC2.

Figure 16. Biplot on big data benchmark example: (a) Biplot on PC1 and PC2

together with the loading values for seven benchmarks; (b) proportion of total

variance explained by five PCs.

Table 17. Median values of all five machines on seven

big data benchmarks

 a b c d e f g

1 12746 53600 14182 12785 14473 13292 19774

2 7265 53581 9157 7427 9154 7718 14602

3 10945 44492 12101 10894 12379 11184 16028

4 11499 47084 12318 11205 13062 11444 16997

5 18429 92291 18867 16448 18915 17429 29271

Table 18. Pairwise correlation among all seven big data benchmarks

 a b c d e f g

a 1.00 0.82 1.00 0.99 1.00 1.00 0.96

b 0.82 1.00 0.83 0.76 0.80 0.78 0.94

c 1.00 0.83 1.00 0.99 1.00 1.00 0.97

d 0.99 0.76 0.99 1.00 1.00 1.00 0.93

e 1.00 0.80 1.00 1.00 1.00 1.00 0.95

f 1.00 0.78 1.00 1.00 1.00 1.00 0.95

g 0.96 0.94 0.97 0.93 0.95 0.95 1.00

2) For PC2, the remaining six benchmarks measures

are clustered together and have about the same

impact (i.e. coefficient value). This indicates that

these six measures (from benchmark a, c, d, e, f, g)

are highly correlated to each other and PC2 mainly

reflects the average performance on these six

benchmarks. Table 18 shows the pairwise

correlation among all seven benchmarks. We see

that most of the pairwise correlations among

benchmarks a, c, d, e, f, g are over 0.95 (shown in

red fonts).

3) The PC1 score for machine 5 is far greater than the

other four machines. This is due to its higher

performance on all seven benchmarks and

particularly on benchmark b (i.e. 92291).

4) The PC2 score for machine 2 is the smallest among

all. This is due to its lower performance on

benchmark a, c, d, e, f, g, for which is has the

lowest values among all five machines, and

relatively large value on benchmark b, which for

which it has the third largest value among all.

5) Overall, machines 1, 3 and 4 have similar

performance over all seven benchmarks. Machine 5

has the highest overall performance, while machine

2 has the lowest overall performance.

12 Related Work

Over decades, the debate over the method and metrics for

computer performance evaluation has never ended

[5][16][20]. Fleming and Wallace [10] argued that using

geometric mean to summarize normalized benchmark

measurements is a correct approach while arithmetic

mean will lead to wrong conclusions in this situation.

Smith [26], however, claimed that geometric mean

cannot be used to describe computer performance as a

rate (such as mflops) or a time by showing counter

examples. Furthermore, John [17] advocated using

weighted arithmetic mean or harmonic mean instead of

geometric mean to summarize computer performance

over a set of benchmarks. Hennessy and Patterson [14]

described the pros and cons of geometrics mean,

arithmetic mean, and harmonic mean. Eeckhout [7]

summarized that arithmetic and harmonic means can

clearly describe a set of benchmarks but cannot apply the

performance number to a full workload space, while

geometric mean might be extrapolated to a full

benchmark space but the theoretic assumption cannot be

proven.

Relying on only a single number is difficult to describe

system variability stemming from complex hardware and

software behaviors. Therefore, parametric statistic

methods such as confidence interval and t-test have been

introduced to evaluate performance [19][1].

Nevertheless, Chen et al. [3] demonstrated that these

parametric methods in practice require a normal

distribution of the measured population which is not the

case for computer performance. In addition, the number

of regular benchmark measurements from SPEC or

PARSEC is usually not sufficient to maintain a normal

distribution for the sample mean. Therefore, Chen et al.

[3] proposed a non-parametric Statistic Hypothesis Tests

to compare computer performance. As demonstrated in

the paper, our proposed resampling methods can identify

smaller differences between two computers even in a

situation where a single test is not enough to reveal it.

Oliveira et al. [24] applied quantile regression to the

non-normal data set and gained insights in computer

performance evaluation that Analysis of variance

(ANOVA) would have failed to provide. Our approach

considers different variation sources (non-deterministic

or deterministic behaviors) for the fixed computer

configurations and handles the non-normality by using

resampling technique such as bootstrapping and

permutation.

Patil and Lilja [25] demonstrated the usage of

resampling and Jackknife in estimating the harmonic

mean of an entire dataset. Unlike their approach, we

applied resampling methods on a more complicated

situation - comparing two computers on multiple

benchmarks with multiple measurements. Hence, the

bootstrapping method in our paper is different from the

one in [25]. Namely, we bootstrap the samples within

each benchmark instead of on the entire dataset.

This work is an extension of our prior ISPASS

publication [17] which was limited in scope to statistical

resampling methods for measuring computer

performance on SPEC benchmarks without the use of

Biplot visualization tools.

13 Conclusion

We propose a randomization test framework for

achieving a both accurate and practical comparison of

computer architectures performance. We also propose a

bootstrapping confidence interval estimation framework

for estimating a confidence interval on a quantitative

measurement of comparative performance between two

computers. We illustrate the proposed methods through

both Monte Carlo simulations where the truth is known

and real applications.

Interestingly, even though geometric mean as a single

number cannot describe the performance variability, we

find that the ratio of geometric means between two

computers always falls into the range of Boosted

Confidence Intervals in our experiments.

In cases where two computers have very close

performance metrics, we propose using empirical

distribution to evaluate computer performance and using

five-number-summary to summarize the computer

performance.

We investigate the source of performance variation by

using hardware and environment descriptions to predict

performance and relative variation with a predicted and

measured correlation of 0.992 and 0.5 respectively. The

best predictors of relative variation are found to be the

degree of parallelism and the size of amount memory

space, suggesting performance variation comes in large

part from thread interference.

 We demonstrate that the proposed sampling method is

effective at differentiating the performances of machines

running Big Data benchmarks, which have higher

variance than traditional CPU benchmarks. Our analysis

of Big Data benchmark variance was extended using a

Biplot to visualize machine performance similarities and

benchmark correlation.

Acknowledgements This work is supported in part by NSF

Grants CCF-1017961, CCF-1422408, and CNS-1527318. We

acknowledge the computing resources provided by the Louisiana

Optical Network Initiative (LONI) HPC team. Finally, we

appreciate invaluable comments from anonymous reviewers.

References

[1] Alaa R. Alameldeen and David A. Wood, "Variability in

Architectural Simulations of Multi-threaded Workloads," in
HPCA-9, Feb. 2003.

[2] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li, “The PARSEC Benchmark Suite: Characterization and
Architectural Implications,” In Proceedings of the 17th PACT,
October 2008.

[3] T. Chen, Y. Chen, Q. Guo, O. Temam, Y. Wu, and W. Hu,
"Statistical performance comparisons of computers," in HPCA-18,
2012.

[4] T. Chen, Q. Guo, O. Temam, Y. Wu, Y. Bao, Z. Xu, and Y. Chen,
"Statistical Performance Comparisons of Computers," IEEE
Transactions on Computers, 2015.

[5] Daniel Citron, Adham Hurani, and Alaa Gnadrey, "The harmonic
or geometric mean: does it really matter?," ACM SIGARCH
Computer Architecture, vol. 34, no. 4, pp. 18 - 25, September 2006.

[6] A. C. Davison and D. V. Hinkley, Bootstrap Methods and their
Application, Cambridge University Press, 1997.

[7] Lieven Eeckhout, “Computer Architecture Performance Evaluation
Methods,” Morgan & Claypool Press, 2010.

[8] E. S. Edgington, Randomization tests, 3rd ed. New York:
Marcel-Dekker, 1995.

[9] Bradley Efron and Robert J. Tibshirani, “An Introduction to the
Bootstrap,” Chapman and Hall/CRC, 1994.

[10] Philip J. Fleming and John J. Wallace, “How not to lie with
statistics: The correct way to summarize benchmark results,”
Communications of the ACM, 29(3):218–221, March 1986.

[11] Rudolf J. Freund, Donna Mohr, and William J. Wilson, “Statistical
Methods,” Academic Press, 3rd edition, 2010.

[12] Andy George, Dries Buytaer, and Lieven Eeckhout, “Statistically
rigorous java performance evaluation”, in OOPSLA’07, 2007.

[13] Gower, J.C., Lubbe, S. and le Roux, N. (2011). Understanding
Biplots. Wiley.

[14] John L. Hennessy and David A. Patterson, “Computer Architecture:
A Quantitative Approach,” 4th ed., Morgan Kaufmann, 2007.

[15] Myles Hollander and Douglas A. Wolfe, "Nonparametric Statistical
Methods," Wiley-Interscience, 2nd ed. 1999.

[16] Muhammad Faisal Iqbal and Lizy Kurian John, "Confusion by All
Means," in Proceedings of the 6th International Workshop on
Unique chips and Systems(UCAS-6), 2010.

[17] B. Li, S.-M. Chen, and L. Peng, “Precise Computer Performance
Comparisons Via Statistical Resampling Methods,” In Proceedings
of The 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Philadelphia, PA. Mar.
2015.

[18] Lizy Kurian John, "More on finding a single number to indicate
overall performance of a benchmark suite," ACM SIGARCH
Computer Architecture, vol. 32, no. 1, pp. 3 - 8, March 2004.

[19] David J. Lilja, “Measuring Computer Performance: A Practitioner's
Guide,” Cambridge University Press, 2000.

[20] John R. Mashey, "War of the benchmark means: time for a truce,"
ACM SIGARCH Computer Architecture, vol. 32, no. 4, pp. 1 - 14,
September 2004.

[21] David Moore, George P. McCabe, and Bruce Craig, "Introduction
to the Practice of Statistics," W. H. Freeman Press; 7th Ed. 2010.

[22] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney,
“Producing wrong data without doing anything obviously wrong”,
in ASPLOS-14, 2009.

[23] Richard A. Johnson, Statistics: Principles and Methods, Wiley; 6th
edition, 2009.

[24] Augusto Oliveira, Sebastian Fischmeister, Amer Diwan, Matthias
Hauswirth, and Peter F. Sweeney, “Why you should care about
quantile regression,” in ASPLOS-18, 2013.

[25] Shruti Patil and David J. Lilja, “Using Resampling Techniques to
Compute Confidence Intervals for the Harmonic Mean of
Rate-Based Performance Metrics,” IEEE Computer Architecture
Letters, Jan.-June, 2010, pp. 1-4.

[26] James E. Smith, "Characterizing computer performance with a
single number," Communications of the ACM, vol. 31, no. 10, pp.
1202 - 1206, Oct. 1988.

[27] Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W.,
Jia, Z., Shi, Y., Zhang, S., Zhen, C., Lu, G., Zhan, K., Qiu, B.:

Bigdatabench: A big data benchmark suite from internet services.
In: The 20th IEEE International Symposium on High-Performance
Computer Architecture(HPCA), (2014)

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 Programs: Characterization and Methodological
Considerations,” in ISCA-22, pages 24-36, Jun. 1995.

[29] http://prof.ict.ac.cn/BigDataBench/

[30] http://www.spec.org/cpu2006/results/.

[31] http://www.microquill.com/smartheap/

Please provide each author’s biography

here with no more than 120 words. The

photo can be informal. Our journal

prefers to exhibit an encouraging

atmosphere. Please use one that best

suits our journal.

http://prof.ict.ac.cn/BigDataBench/
http://www.spec.org/cpu2006/results/
http://www.microquill.com/smartheap/

