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Abstract  Performance variability, stemming from 

non-deterministic hardware and software behaviors or 

deterministic behaviors such as measurement bias, is a 

well-known phenomenon of computer systems which 

increases the difficulty of comparing computer 

performance metrics and is slated to become even more 

of a concern as interest in Big Data Analytics increases. 

Conventional methods use various measures (such as 

geometric mean) to quantify the performance of 

different benchmarks to compare computers without 

considering this variability which may lead to wrong 

conclusions. In this paper, we propose three resampling 

methods for performance evaluation and comparison: a 

randomization test for a general performance 

comparison between two computers, bootstrapping 

confidence estimation, and an empirical distribution and 

five-number-summary for performance evaluation. The 

results show that for both PARSEC and high-variance 

BigDataBench benchmarks 1) the randomization test 

substantially improves our chance to identify the 

difference between performance comparisons when the 

difference is not large; 2) bootstrapping confidence 

estimation provides an accurate confidence interval for 

the performance comparison measure (e.g. ratio of 

geometric means); and 3) when the difference is very 

small, a single test is often not enough to reveal the 

nature of the computer performance due to the 

variability of computer systems. We further propose 

using empirical distribution to evaluate computer 

performance and a five-number-summary to summarize 

computer performance. We use published SPEC 2006 

results to investigate the sources of performance 

variation by predicting performance and relative 

variation for 8,236 machines. We achieve a correlation 

of predicted performances of 0.992 and a correlation of 

predicted and measured relative variation of 0.5.  

Finally, we propose the utilization of a novel Biplotting 

technique to visualize the effectiveness of benchmarks 

and cluster machines by behavior. We illustrate the 

results and conclusion through detailed Monte Carlo 

simulation studies and real examples. 
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1  Introduction 

 

Traditionally, computer researchers have used the 

geometric mean (GM) of performance ratios of two 

computers running a set of selected benchmarks to 

compare their relative performances. This approach, 

however, is limited by the variability of computer 



 

 

systems which stems from non-deterministic hardware 

and software behaviors [1][12], or deterministic 

behaviors such as measurement bias [22]. The situation 

is exacerbated by increasingly complicated architectures 

and programs. Wrong conclusions could be drawn if 

variability is not handled correctly. Using a simple 

geometric mean cannot describe the performance 

variability of computers [4]. 

Recently, computer architects have been seeking 

advanced statistical inferential tools to address the 

problem of performance comparisons of computers. The 

two common statistical approaches of comparing two 

populations (e.g., two computers) are the hypothesis test 

and confidence interval estimation. As we know, most of 

the parametric tests such as t-tests require population 

distribution normality [11]. Unfortunately, computer 

performance measurements are often not normally 

distributed but either skewed or multimodal. Figure 1 

shows 400 measurements of execution time from 

SPEC2006 benchmarks running on a commodity 

computer (Intel Core i7 CPU 960@3.20GHz, 1 processor 

with 4 cores, 10GB DDR3 RAM(1333 MHz)). We can 

see that the distributions of performance measures for the 

benchmarks are non-normal; benchmarks “gcc” and 

“mcf” are skewed to the right, while “bzip2” is 

multimodal. This non-normality observation was first 

observed by Chen et al. who tackled with a 

non-parametric statistics method named hierarchical 

performance testing (HPT) [3][4].  

In this paper, we propose three statistical resampling 

methods [15] to evaluate and compare computer 

performance. The first is a randomization test used to 

compare the performance between two computers; the 

second is a bootstrapping confidence interval method for 

estimating the comparative performance measurement, 

i.e. speedup, through a range; and the third is an 

empirical distribution method to evaluate the 

distributional properties of computer performance. The 

basic idea of resampling methods, as the name implies, is 

to resample the data iteratively, in a manner that is 

consistent with certain conditions (e.g. the general 

performance of two computers is equal.). Specifically, 

we first resample the data according to the purpose of 

each method. Second, for each iteration, we calculate the 

statistic of interest, such as the ratio of geometric means 

between two computers. Third, we repeat the previous 

two steps a number of times. Then the distribution of the 

calculated statistic is used as an approximation of the 

underlying distribution of the statistic under the assumed 

condition. Hence, the resampling methods set us free 

from the need for normal data or large samples so that 

Central Limit Theorem can be applied [21]. Note that the 

proposed three methods all follow the three steps 

described above. However, the resampling and 

calculating steps within each iteration are different 

according to the individual purpose for each method. 

In summary, the main contributions of this paper can 

be listed as follows:  

First, we propose and implement a randomization test 

[8] for testing the performances of two computers, which 

provides an accurate estimate of the confidence of a 

comparison when the performances of two computers are 

close to each other.  

Second, we propose and implement a 

bootstrapping-based confidence interval estimation 

method [6] to estimate the confidence interval of the ratio 

of geometric means between two computers.  

Third, as a generic framework, the proposed method 

can directly be applied to arithmetic and harmonic 

means. We demonstrate that the arithmetic mean is very 

sensitive to outliers while geometric and harmonic means 

are much more stable.  

Fourth, we point out that a single test is not enough to 

reveal the nature of the computer performance in some 

cases due to the variability of computer systems. Hence, 

we suggest using empirical distribution to evaluate 

computer performance and use five-number-summary to 

summarize the computer performance. 

 

Figure 1. Histograms of execution times for three SPEC benchmarks from 400 repeated runs of each benchmark on the commodity computer.  



 

 

Fifth, we investigate the source of performance 

variation by predicting the performance and relative 

variation of machines running the SPEC 2006 [30] 

benchmark suite using published hardware descriptions 

and environment variables.  

Sixth, we demonstrate the effectiveness of the 

proposed sampling methods on Big Data benchmarks 

[27] which have more variation behaviors than traditional 

CPU benchmarks like SPEC or PARSEC. 

Finally, we use a Biplot visualization tool [13] for 

computer performance comparisons which can visualize 

the projections of high-dimensional data onto a 

low-dimensional space through principal component.  

 

2  Motivating Example 

 

In this section, we show an example of comparing two 

computers based on t-test and the proposed resampling 

methods. Table 1 lists the configurations of the 

computers. The data is available on [30]. Figure 2 shows 

the empirical distributions of geometric mean for two 

computers. The horizontal axis shows the SPEC ratio. 

The blue dash line is the empirical distribution of 

geometric means for the NovaScale computer, while the 

red solid line is the one from IBM. The vertical dash line 

shows the geometric mean from the raw data. The basic 

idea of using an empirical distribution is to see the 

distribution of a statistic (e.g. geometric mean of 

computer performance). We can see many useful 

distributional properties from the empirical distribution, 

such as the center, mode, variation, and range of the 

statistic. The details of empirical distribution are 

described in Section 5. From Figure 2, although the two 

distributions overlap, the geometric mean of computer A 

(red solid curve) is well above that of computer B (blue 

dash curve). As shown in Table 2, the t-test does not 

detect the difference between two computers while the 

randomization test does. This implies that the 

randomization test is more powerful at detecting the 

difference even when there is an overlap between two 

distributions. The bootstrap interval also shows the ratio 

of geometric means is significantly below one (blue 

dashed curve against red solid curve) which implies that 

computer A runs faster than computer B. 

 

3  Statistical Performance Comparison via 

Randomization Test 

 

Statistical inference is based on the sampling 

distributions of sample statistics which answers the 

question: “if we recollect the data, what will the statistic 

be?” A sampling distribution of a statistic (e.g. 

geometric mean) can be well approximated by taking 

random samples from the population. Traditional 

parametric tests assume the sampling distribution has a 

particular form such as a normal distribution. If the 

distributional assumption is not satisfied, commonly 

there are no theoretical justifications or results available. 

On the other hand, the great advantage of resampling is 

that it often works even when there is no theoretical 

adjustment available. The basic idea of the 

randomization test [8] is as follows: in order to estimate 

the p-value (i.e. 1- confidence) for a test, we first 

estimate the sampling distribution of the test statistic 

given the null hypothesis is true. This is accomplished 

by resampling the data in a manner that is consistent 

with the null hypothesis. Therefore, after resampling 

many times, we can build up a distribution (called an 

empirical distribution) which approximates the sampling 

distribution of the statistic that we are interested in. 

Thus, we can estimate the p-value based on the 

empirical distribution. 

Computer BComputer A

 

Figure 2. Density plots of the empirical distributions for the two computers. The 
Dotted lines are the geometric means. 

Table 1. Configurations of the two computers in Figure 2. 

 Configurations 

Middle (blue dashed line) NovaScale T860 F2 (Intel Xeon E5645, 2.40 GHz) 

Middle (red solid line) IBM System x3400 M3 (Intel Xeon E5649) 

Table 2. Test results for the example in Figure 2.  

T test p-value Randomization test p-value 95% Bootstrapping 

0.117 0.016 [0.974, 0.997] 

 



 

 

Suppose we have two computers A and B to compare 

over a benchmark suite consisting of n benchmarks. For 

each computer, we ran the benchmarks m times and 

denote the performance scores of A and B at their j
th

 runs 

of the i
th
 benchmark as ai,j and bi,j respectively. The 

hypotheses are specified below. 

Null hypothesis: the general performance of A and B 

over n benchmarks are equivalent. 

Alternative hypothesis: we will use only one of the 

following three as our alternative hypothesis. 

H1a: the general performance of A is better than that of B.   

H1b: the general performance of B is better than that of A. 

H1c: the general performance of A is not the same as that 

of B.   

We proposed the randomization test as follows:  

1)  For each benchmark i (i=1,…,n), we combine all 

the m performance scores from A and B into one list 

respectively. 

2) We randomly permute the list, for each benchmark, 

and assign the first m scores to computer A and the other 

m to B for the i
th

 benchmark.  

3) Calculate the ratio of the geometric mean of the 

performance scores for computer A and B over n 

benchmarks.   

4) Repeat step 1-3 M times (M is usually a large 

number, e.g. 500), so we have M geometric mean ratios, 

denote as FM (i.e. the empirical distribution of geometric 

mean ratios under the null hypothesis) from M 

repetitions. 

5) Calculate gA|B, the ratio of the geometric mean of the 

performance scores for computer A and B over n 

benchmarks on the original data. Then we calculate an 

empirical p-value based on FM and the alternative 

hypothesis as follows. If we use H1a, then the empirical 

p-value is the proportion of FM that is greater than or 

equal to gA|B.  If H1b is selected, then the empirical 

p-value is the proportion of FM that is less than or equal to 

gA|B. If we use H1c, then the empirical p-value is the twice 

of the smaller empirical p-value from H1a and H1b.  

  Figure 3 illustrates the proposed randomization test 

under the alternative H1a. Note that the randomization 

test described above uses the geometric mean to 

evaluate the computer performance. However, the 

proposed method can be easily modified to adopt other 

measures such as harmonic and arithmetic mean. 

 

4 Confidence Interval Estimation by 

Boostrapping 

 

Due to the performance variability, the comparative 

performance measure, such as the ratio of geometric 

means and speedups, between two computers varies on 

different measurements. Hence, presenting a single 

numeric estimate cannot describe the amount of 

uncertainty due to the performance variability. The basic 

idea of a confidence interval (CI) is to provide an interval 

estimate (which consists of a lower limit and an upper 

limit) on the statistic with some predetermined 

confidence level, instead of giving a single estimate. The 

interpretation of a confidence interval is based on 

recollecting the data or repeating the experiment.  

Bootstrapping [6] is a commonly used statistical 

technique which quantifies the variability of a statistic, 

e.g. estimate a 95% confidence interval of a statistic or its 
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Figure 3.  Illustration of the proposed randomization test. 



 

 

standard deviation, which are not yet available in theory 

[9]. The basic idea of bootstrapping is to use the sample 

as an approximation of the underlying population 

distribution, which is unknown, and resample the data 

with replacement (note that each observation can be 

sampled more than once). We proposed the following 

bootstrapping method to estimate the ratio of the 

geometric mean of the performance scores from two 

computers.  

1) For each benchmark i (i=1,…,n), we combine all the 

m execution times from computer A and B into one list 

respectively.  

2) We randomly sample the list with replacement for 

each benchmark, and assign the first m scores to 

computer A and the other m to B for the ith benchmark.  

3) Calculate the ratio of the geometric mean of the 

execution times for computer A and B over n 

benchmarks.   

4) Repeat step 1-3 T times (T is usually a large number, 

e.g. 500), so we have T geometric mean ratios, denote as 

HT from T repetitions. Let 
2/

TH and be the α/2 

and 1-α/2 percentiles of HT respectively. Then, a 

two-sided (1-α)×100% bootstrap confidence interval is

 2/12/ ,  

TT HH . A one-sided (1-α)×100% bootstrap 

confidence interval can be either  or 

  1, TH . The former one-sided confidence interval 

is explained as the ratio of GMs between computer A 

and B is at least 


TH
 with confidence (1-α)×100%, 

while the latter as the ratio of GMs between computer A 

and B is at most 
1

TH
 with confidence (1-α)×100%. 

Figure 4 illustrates the proposed bootstrapping method 

using an example. 

 

5  Empirical Distribution and Five-Number 

Summary 

 

Although the proposed randomization test demonstrates 

more precise than conventional t-test, when two 

computers show overlapped distributions and close 

geometric mean, a single test such as t-test and 

randomization test can’t identify their differences. Figure 

5 shows three pairs of computers listed in Table 3. The 

p-values of both t-test and randomization test for all the 

three pairs are close to 1.0. For example, the p-values are 

0.941 and 0.856 for t-test and randomization test 

respectively for the two computers shown in Figure 5(a). 

Similar situations also apply to the pairs in Figure 5(b) 

and 5(c). This indicates no performance differences 

could be identified by a single test. On the other hand, an 

insignificant test result does not necessarily mean the two 

2/1 
TH

 ,
TH

Table 3. Configurations of three pairs of computers in Figure 5. 

 Configurations 

Figure 5(a) (blue dashed line) PowerEdge R510 (Intel Xeon E5620, 2.40 GHz) 

Figure 5(a) (red solid line) IBM BladeCenter HS22 (Intel Xeon X5550) 

Figure 5(b) (blue dashed line) SuperServer 5017C-MF (X9SCL-F, Intel G850) 

Figure 5(b) (red solid line) Acer AW2000h-AW170h F1(Intel Xeon X5670)  

Figure 5(c) (blue dashed line) IBM System x3850 X5 (Intel Xeon E7-4820) 

Figure 5(c) (red solid line) IBM System x3690 X5 (Intel Xeon E7-2830) 
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Figure 4. Illustration of proposed bootstrapping confidence interval estimation. 



 

 

computers have the same performance. For example, in 

Figure 5 we see that all three computers depicted by red 

solid lines have slightly higher geometric means than 

their competitors, but their performances are less 

consistent than the ones shown by blue dashed lines. 

Therefore in comparing performance, we need to 

consider the system variation effect especially when the 

means are close.         

Hence, we suggest using the empirical distribution of 

the geometric mean and its five-number-summary to 

describe of performance for a computer as follows: 

1) For each benchmark i (i=1,…,n), we randomly 

select one performance score.   

2) Calculate the geometric mean of the performance 

score for this computer. 

3) Repeat step 1-2 M times (M is usually a large 

number, e.g. 500), so that we have M geometric means, 

denoted as FG R(i.e. the empirical distribution of 

geometric mean) from M repetitions.  

4) Then calculate the five elements of the 

five-number-summary of FG: minimum, first quartile 

(25th percentile, denoted as Q1), median, third quartile 

(75th percentile, denoted as Q3), and maximum. 

Detailed results will be shown in section VI.E. 

  

 

6  Experimental Results 

6.1 “Monte Carlo Simulation Study on Statistical Power 

and False Discovery Rates (FDRs) 

In order to show the effectiveness of a testing method, 

we examine the statistical power (the ability to detect an 

effect, i.e. deviation from the null hypothesis) and the 

false discovery rate which is the probability of having 

type I error (i.e. rejecting the null hypothesis while the 

null hypothesis is true) of our proposed method, t-test, 

and a recent proposed HPT approach [3]. A common way 

to evaluate and compare the statistical powers and false 

discovery rates (FDRs), which are defined below, of the 

tests is through Monte Carlo simulation study.   

Statistical power: the probability of rejecting the null 

hypothesis while the null hypothesis is, in fact, not true. 

Note that we denote power as statistical power in this 

paper. 

False discovery rates: the probability of rejecting the 

null hypothesis while the null hypothesis is, in fact, true.  

Hence, ideally we would like the statistical power to be 

as large as possible and the FDR as small as possible. In 

real examples, we usually do not know the underlying 

truth. In order to investigate the properties of HPT, t-test, 

Computer BComputer A  

 
   (a)       (b)               (c) 

Figure 5. Density plots of the empirical distributions for three pairs of computers. The dot lines are the geometric means. 

 

 

 

 

 

                                                                      

                                                                                                                                                                 
            

            (a)               (b) 

Figure 6. Results of Monte Carlo simulation study 1 (part (a)) and study 2 (part (b)) on statistical power and FDR. 

 

 

 

 

 

 

 

 

 



 

 

and randomization test we applied a Monte Carlo 

simulation study where the truth is known. Below are the 

settings for the Monte Carlo simulation study on power 

and FDR for two imaginary computers X and Y that uses 

the following steps. 

a. For each benchmark running on computer X, we 

randomly select m (m=5 in this study) execution 

times without replacement (i.e. each execution time 

can be selected at most once) from the 1000 

execution times measured from that benchmark 

running on computer A shown in Table 4. 

b. Then we randomly pick L (L is between 0 and 13) 

benchmarks and add a constant 1.0 to all the 

execution times for the selected L benchmarks 

running on the real computer, and assign the sum to 

be the execution time of the benchmarks running on 

Computer Y.  The reason that we use constant 1.0 in 

step b to make a difference between two computers is 

that the standard deviations of the performance from 

all 13 benchmarks range from 0.012 to 0.91. Hence, 

adding 1.0 to any benchmark can guarantee that there 

is at least one standard deviation difference between 

computer X and Y. 

c. The HPT test, t-test, and our proposed randomization 

test are carried out on the data generated through 

steps a & b. 

d. Repeat steps a-c 100 times. 

Remarks: Notice that the execution times in step a for 

computer X and Y are selected from the same population 

(from the selected commodity computer). In step b, if L is 

greater than zero, then the truth is computer X has better 

performance than computer Y which has longer 

execution times for the L benchmarks. It is ideal if the 

test can detect the difference by rejecting the null 

hypothesis (i.e. the general performance of X is better 

than that of Y). Hence, P, the proportion of times (among 

100 repetitions) a test rejects the null hypothesis, can be 

viewed as an approximate estimate of its power for 

nonzero L. On the other hand, when L is zero, that 

proportion, P, becomes an estimate of its FDR. 

In this study, we set the significance level at 0.05 and 

use the two-sided alternative hypothesis (H1c). Figure 

6(a) shows the Monte Carlo simulation results (i.e. P, the 

proportion of times the null hypothesis is rejected) on 

HPT, t-test (TT) and the proposed randomization test 

(RT) using the execution time measurements from the 

selected computer as the underlying population. Notice 

that the first point (L=0), the value of P is an estimate of 

the FDR, which should be close to the specified 

significance level (here it is 0.05) for a good test. For 

other points (L=1,…,13), the value of P is an estimate of 

the power, which is supposed to be large for a good test. 

So we can see that our proposed randomization test has 

much higher power than the other two tests when L is 

between one and seven. When L is greater than seven, all 

tests achieve perfect power. When L is zero, the FDRs for 

all tests are small and close to the specified significance 

level (here it is 0.05).  

Without losing generality, we also repeat the above 

described Monte Carlo study by using the measurements 

from computer C shown in Table 4 running with 

PARSEC in step a. Figure 6(b) shows the Monte Carlo 

simulation results (i.e. the proportion of times the null 

hypothesis is rejected) on HPT, TT, and the proposed RT 

using execution time measured from another computer as 

the underlying population. From this figure, similar 

observations can be made. When L is between 1 and 5, 

RT demonstrates stronger statistical power than HPT 

does. This is because, unlike our proposed RT, HPT is 

calculated using rank-based nonparametric tests (i.e. 

using Wilcoxon rank-sum test in Step 1 and Wilcoxon 

signed-rank test in Step 2). In statistics it is well known 

that the statistical power for the nonparametric tests 

based on ranks are usually less likely to detect the effects 

due to the loss of some information on magnitude by 

ranking [10].  Regarding the t-test, we see it starts to 

have positive power when L is four and reaches the 

perfect power when L becomes seven. In fact, t-test 

shows higher power than the HPT when L is between 

four and seven. The reason is that the parametric tests are 

usually more efficient (i.e. higher power) than their 

nonparametric rank-based counterparts which was used 

in the HPT method [23].   



 

 

Table 5. Results of pairwise comparison among four computers based on 100 

random replications. The numbers shown in the table are the number of times 

the null hypothesis is rejected at the significance level 0.01 (the numbers in the 

parenthesis are for the significance level at 0.05). 

Comparison B vs. A D vs. A C vs. A D vs. B C vs. B D vs. C 

HPT 100 

(100) 

100 

(100) 

5 

(91) 

90 

(99) 

100 

(100) 

99 

(100) 

T-test 100 

(100) 

100 

(100) 

91 

(100) 

100 

(100) 

100 

(100) 

100 

(100) 

RT 100 

(100) 

100 

(100) 

100 

(100) 

100 

(100) 

100 

(100) 

100 

(100) 

 

Thanks to high performance computers, the proposed 

randomization test (with M=500) takes an average CPU 

timing of 0.41 seconds running on a regular Dell 

workstation with an Intel Xeon 2.66GHz processor for 

the above experiment. The algorithm is implemented as 

R language functions. 

6.2  Monte Carlo Simulation Study on Confidence 

Interval 

Like the Monte Carlo simulation in Section VI.A, we 

also investigate the property of the proposed 

bootstrapping confidence interval and HPT 

speedup-under-test estimate from a simulation with 

known data generation mechanism. Below are the 

settings for the Monte Carlo simulation study on two 

imaginary computers X and Y. 

a. For each benchmark running on computer X, we 

randomly select m (m=5 in this study) execution 

times without replacement from the 1000 execution 

times measured  from that benchmark running on 

computer A shown in Table 4. 

b. Then we multiply all the execution times (all n 

benchmarks) of computer X by a constant 2.0. We 

assign the new values as execution times for 

computer Y. 

c. The 95% speedups from HPT test and the proposed 

95% bootstrapping confidence intervals are carried 

out on the data generated through step a & b. 

d. Repeat step a-c 100 times. 

Figure 7 shows the one hundred 0.95-Speedups from 

HPT test (red curves) and the proposed 95% 

bootstrapping confidence intervals (blue curves on the 

boundaries with the grey region in the middle).  The 

black dashed line is the true ratio, 2, and the solid black 

line is the measured ratio of geometric mean. Note that 

the t-test confidence interval (t-interval), which is not 

shown in Figure 7, is much wider than the bootstrapping 

confidence interval and outside the range of the plot. This 

implies our bootstrapping confidence interval is more 

accurate than t-interval. Based on Figure 7, we have the 

following remarks.  

1) Among all 100 bootstrapping confidence intervals, 

there are ninety-five intervals holding the true value, 2, 

which follows the pre-specified confidence level, 95%. 

2) We see that the 0.95-Speedups from HPT test are 

consistently below the true value and the bootstrapping 

confidence intervals (lower than most of the lower limits 

of the bootstrapping CIs). This is because of the low 

power for the rank-based nonparametric tests. 

3) The measured ratio of geometric mean varies 

around the true value 2 and falls within the bootstrapping 

CIs. This implies the ratio of geometric means is still a 

good estimate of comparative performance between two 

computers.   

95% bootstrapping confidence intervals geometric means HPT test

 

Figure 7. The 95% bootstrapping confidence intervals (boundaries of shaded region), measured ratios of geometric means performance speedups (solid line within 
the confidence interval) and 0.95-speedups from HPT test (red lines) based on 100 random replications.  

Table 4. Configurations of the four commodity computers. 

Computer Configurations 

A AMD Opteron CPU 6172 @ 2.10GHz,  2 processors, each with 12 

cores, with 12GB DDR3 RAM(1333 MHz) 

B Intel Core i7 CPU 960 @ 3.20GHz, 1 processor with 4 cores 

(Hyperthreading enabled), 10GB DDR3 RAM(1333 MHz) 

C Intel Xeon CPU X5355 @ 2.66GHz, 2 processors, each with 4 

cores, 16GB DDR2 RAM (533MHz) 

D Intel Xeon CPU E5530 @ 2.40GHz, 2 processor, each with 4 cores, 

12GB DDR3 RAM (1333MHz) 

 

 



 

 

We also performed the above experiment on other 

commodity computers (listed in Table 4). The results are 

similar to Figure 7. The Bootstrapping method also runs 

fast in R. It takes an average time of 0.51 seconds running 

on a Dell workstation equipped with an Intel Xeon 

2.66GHz processor for the above experiment. 

6.3 Pairwise Comparison of Four Commodity 

Computers 

Here, we applied our methods, t-test and HPT on 

pairwise comparison of four computers denoted as A, B, 

C and D which are specified in Table 4. For each 

computer, we run 1000 times for each benchmark in 

PARSEC [2] and SPLASH-2 [27] and then measure the 

execution time. All benchmarks are using their 8-thread 

version. In order to mimic the reality and have a full 

evaluation, we randomly select 5 out of 1000 execution 

times (without replacement) for each benchmark and 

computer. Then we applied HPT, t-test, and our methods 

(RT) on the selected sample which is a subset of the 

whole dataset. To avoid sampling bias, we repeat the 

experiment 100 times. 

Table 5 shows the Monte Carlo results (i.e. the number 

of times the null hypothesis is rejected based on 100 

random repetitions) on t-test, HPT and proposed 

randomization test on all six pairwise comparisons 

among four computers. Based on Table 5, we have the 

following observations: 

1) In four pairwise comparisons (i.e. B vs. A, D vs. A, 

C vs. B and D vs. C), all methods have the same 

conclusions (i.e. reject the null hypothesis and conclude 

two computers have significantly different performance.)  

2) For comparing computer A and C, we see that HPT 

rejects the null hypothesis only 5 out of 100 times while 

our methods rejects the null in all 100 trials at 

significance level 0.01. When we change the significance 

level to 0.05, the number of times the null hypothesis is 

rejected for HPT increases to 91. T-test performs similar 

to randomization test, except it fails to reject the null 

hypothesis 9 times at significance level 0.01.  

3) For comparing computer B and D, we see that HPT 

rejects the null hypothesis 90 out of 100 times while both 

randomization test and t-test reject the null in all 100 

trials at significance level 0.01. When we change the 

significance level to 0.05, the number of times the null 

hypothesis is rejected for HPT increases to 99.  

For this experiment, we conclude that when the 

performance difference between two computers is large
1
, 

all three tests will have the same significant conclusion. 

However, when performance gap between two 

computers is small, then the randomization test has the 

highest chance to detect the difference.  

Figure 8 shows the one hundred 0.95-Speedups from 

HPT test (red curves), the proposed 95% bootstrapping 

confidence intervals (blue curves on the boundaries with 

the grey region in the middle), and 95% t-confidence 

interval (gray lines).  We see that the speed-up estimates 

from HPT approach are smaller than the bootstrapping 

estimates most of the time, which concurs with the Monte 

Carlo simulation results in Figure 7. This confirms that 

the speed-up estimates of HPT are relatively conservative 

than the bootstrapping estimates. Regarding the 

t-confidence interval, it is much wider than its 

bootstrapping counterpart, indicating that the 

bootstrapping method estimate is more precise than 

t-test. One interesting thing we found is that the HPT 0.95 

speedup is very close to the lower bound of the 95% 

t-confidence interval. This implies that the HPT speedup 

estimate is conservative and tends to underestimate the 

true speedup value. 

                                                        
 

95% bootstrapping confidence intervals 

95% t-confidence interval 

HPT test

 

Figure 8. The 95% bootstrapping confidence intervals (boundaries of shaded 
region), 0.95-speedups from HPT test (red lines) and 95% t-confidence 
interval (grey lines) on six pairwise comparisons among Computer A, B, C 
and D from 100 replications.  



 

 

6.4 SPEC CPU2006 Results 

Now we carry out another experiment using the data 

collected from SPEC.org and have been used in Chen et 

al. [3]. Table 6 shows the comparative results of the 

0.95-performance speedups obtained by HPT, 95% 

t-intervals, and the 95% bootstrapping confidence 

intervals of the ratio of geometric means performance 

speedups. The first row shows the ratio of geometric 

means performance speedups from the data. 

Interestingly, we see that the bootstrapping CI holds the 

ratio of geometric means performance speedups from the 

data. The 0.95-performance speedups obtained by HPT 

are all below the bootstrapping CIs. The 95% t-intervals 

are much wider than the ones from bootstrapping 

method, indicating its relatively low precision for 

estimation compared with bootstrapping method. In 

addition, the HPT 0.95 speedups are close to the lower 

limits of the t-intervals.  

The above experiment shows that the HPT and our 

methods can identify the difference between each pair of 

computers, although the absolute Speedup numbers are 

different. Now we select another seven pairs of 

computers from SPEC.org [30] listed in Table 7 and 

perform the same experiment.  

The results are listed in Table 8. We see that HPT shows 

low confidence and conservative estimate of Speedups in 

all cases while our proposed RT method demonstrates 

high confidence (>0.999). Similar as above results in 

Table 6, the 95% t-intervals are wider than the ones from 

bootstrapping method. Again, the GM Speedup is in the 

range of bootstrapping confidence intervals. 

6.5 Five-number-summary Results 

As we shown in Figure 5, the empirical distribution 

described above fully embraces the variability of 

computer systems which stems from non-deterministic 

hardware and software behaviors. However, sometimes it 

is desired to summarize the results through a few 

numbers instead of the empirical distribution, which 

usually contains hundreds of numbers. This can be 

achieved through the five-number-summary of the 

empirical distribution. Figure 9 illustrates the 

five-number-summary on the IBM BladeCenter HS22. 

We know that the total area under the density curve is 

 

Figure 9. Illustration of five-number-summary on IBM BladeCenter HS22.  

Table 6. Quantitative comparisons of 0.95-performance speedups obtained by HPT, the 95% confidence intervals obtained from t-test, and bootstrapping method. 

 A1-A2 B1-B2 C1-C2 D1-D2 E1-E2 F1-F2 G1-G2 

GM Speedup 3.339 3.495 1.698 3.259 1.984 1.675 1.27 

HPT Speedup 2.64 2.24 1.39 2.45 1.76 1.546 1.15 

T-interval [2.626,4.245] [2.364,5.167] [1.417,2.035] [2.540,4.182] [1.733,2.272] [1.429,1.964] [1.139,1.417] 

Bootstrap CI [3.326,3.352] [3.476,3.513] [1.696,1.700] [3.257,3.262] [1.983,1.986] [1.674,1.676] [1.268,1.273] 

 
Table 8. Comparative summary results on comparing another seven pairs of computers. 

 H1-H2 I1-I2 J1-J2 K1-K2 L1-L2 M1-M2 N1-N2 

GM Speedup 1.122 1.135 1.127 1.318 1.11 1.13 1.167 

HPT confidence 0.732 0.868 0.576 0.885 0.753 0.804 0.825 

HPT Speedup 0.950 0.928 0.944 0.962 0.94 0.908 0.932 

T confidence 0.849 0.896 0.878 0.975 0.814 0.872 0.891 

T-test CI [0.956,1.316] [0.973,1.325] [0.967,1.314] [1.037,1.675] [0.948,1.298] [0.963,1.325] [0.964,1.413] 

RT confidence >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 >0.999 

Bootstrap CI [1.117,1.126] [1.13, 1.14] [1.117,1.138] [1.31,1.325] [1.109, 1.11] [1.127,1.132] [1.166,1.168] 

 

Table 7. Configurations of another seven pairs of computers. 

Computer 1 Computer 2 

H1: Fujitsu, CELSIUS R570, Intel Xeon 

E5506   

H2: Fujitsu Siemens Computers, 

CELSIUS M460, Intel Core 2 Quad 

Q9550 

I1: Fujitsu, CELSIUS R570, Intel Xeon 

E5506   

I2: Sun Microsystems, Sun Fire X4450 

J1: Supermicro A+ Server 2042G-6RF, 

AMD Opteron 6136   

J2: Supermicro, Motherboard H8QI6-F, 

AMD Opteron 8435  

K1: Huawei RH2285,Intel Xeon E5645   K2: Fujitsu CELSIUS W380, Intel Core 

i5-660 

L1: Tyan YR190-B8228, AMD Opteron 

4238   

L2: Fujitsu CELSIUS W380, Intel Core 

i5-660 

M1: Tyan YR190-B8228, AMD 

Opteron 4180    

M2: Fujitsu Siemens Computers, 

CELSIUS M460, Intel Core 2 Quad 

Q9550 

N1: Fujitsu, CELSIUS M470, Intel 

Xeon W3503     

N2: Sun Microsystems, Sun Fire X4150 

 



 

 

100%. The first quartile (Q1), median, and the third 

quartile (Q3) cut the total area into four equal areas, 

which has 25% under curve area. Hence, 

five-number-summary is a compact way to summarize 

the distribution of a random variable and it shows the 

following characteristics of the distribution: 1) the range 

of data; 2) the range of the middle 50% of the data is 

Q3-Q1, which is called the Interquartile range (IQR) in 

the statistics community; 3) the center of the distribution. 

Both the range and IQR are often used as measuring the 

variation of a random variable. Figure 10 shows the 

boxplots, which are the graphic presentation of 

five-number-summary, of the computers listed in Table 

3. Note that in boxplot, the bottom and the top of the 

boxplot are the minimum and maximum. The bottom and 

top of the box are the Q1 and Q3, respectively. The line 

inside the box is the median. 

 

 

7  Investigating the Source of Variance 

 

For this investigation, we predict the performance 

variation of a hardware configuration using only a 

description of the hardware and the flags used for 

compilation and execution.  To simplify this prediction, 

we first predict the performance of a given hardware 

configuration and then predict the relative variation 

(standard deviation of performance divided by 

performance) which can then be used to calculate the 

variation.   

We use 8,236 hardware configurations running SPEC 

INT 2006 available from [30] as the dataset.  The 

reported SPEC ratio is used as the performance metric 

for each machine.  Performance and normalized 

variance histograms are shown in Figure 11. 

We use the published hardware configurations to train 

performance and relative variation predictors. For this 

experiment, we consider only the “base” configuration 

and performance results from the SPEC dataset. 

For each hardware configuration, we have 24 

variables describing the basic the hardware and software 

environment including CPU Model, Frequency, number 

of cores, cache sizes, etc. These variables are a mixture 

of integer variables (e.g. number of threads, hard disk 

speed) and string variables (e.g. Operating System, 

Compiler).  In addition to the hardware/software 

environment variables, we use Boolean variables to 

indicate whether or not a certain flag was used during 

compilation or execution on this machine. Only the 100 

most commonly used flags are considered during 

prediction.  In total, we utilize 132 variables for 

predicting performance and relative variation.  

The dataset of 8,236 machines is split into a training 

set and a testing set using 70% and 30% of the total 

dataset, respectively.  The response variables are the 

performance and relative variation. The performance is 

the geometric mean of the median measure from 12 

benchmarks. Note that each benchmark has 3 

measurements.  The relative variation is the ratio of the 

standard deviation of the geometric mean and the 

performance. Note that the standard deviation is 

estimated based on 500 bootstrap samples.  

For both performance and relative variation, the 

boosting regression tree algorithm is used to fit 

predictive models using 24 environment variables as 

well as all 124 variables. The models are trained on 

training set and the prediction performance is evaluated 

on testing set. 

The correlation of predicted and measured 

performance using only environment variables on test  

 

Figure 11. (Left) A histogram of the SPEC ratios and (Right) relative SPEC 

ratio variance for 8,236 hardware configurations running SPEC INT 2006 

published between 2006 and Q2, 2017. 

 

 

        (a)         (b)         (c) 

Figure 10. Graphic representation of five-number-summaries corresponding 
to the computers in Figure 5.  



 

 

Table 9. Environment variables with the highest relative influence when 

predicting Performance 

Variable Rel Inf 

File System 40.567 

CPU Frequency 21.502 

L3 Cache Size 17.014 

RAM Stick Size 10.772 

L2 Cache Size 1.801 

Disk Size 1.446 

Auto-Parallel Enabled 1.218 

RAM Stick Count 1.054 

CPU Cores per Chip 0.829 

L1 Cache Size 0.819 

 

samples is 0.982. The top ten variables with the highest 

relative variable importance when predicting 

performance using only environment variables are 

shown in Table 9.  

 The most influential variable when predicting 

performance using only environment variables is the 

File System type (e.g. NTFS, ext4, ReiserFS, etc.) 

followed by the CPU Clock Frequency. Variables 

relating to memory size are highly influential including: 

L1, L2, and L3 cache sizes as well as the amount of 

RAM (number of sticks * stick count) and the hard disk 

size. Variables relating to parallelism rank slightly lower: 

“Auto-Parallel Enabled”, which allows multithreading, 

and the number of CPU Cores per Chip. SPEC CPU 

2006 benchmarks are a mix of memory bound 

applications (strongly influenced by memory variables) 

and compute-bound applications (strongly influenced by 

parallelism). 

 The correlation is increased to 0.992 when both 

environment and flag variables are used to predict 

performance; the top ten variables are shown in Table 10. 

 Four flag variables are amount the top ten most 

influential variables when predicting performance. The 

most influential variable is the “AVX2” compiler flag 

which enables the use of the AVX2 instruction set, 

which can reduce the total number of instructions. The 

second most influential variable is the “Auto-p32” 

compiler flag which automatically converts 64 bit 

pointers to 32 bits when possible, improving 

performance. The “ParNumThreads” flag is used to 

specify the number of threads to use in a parallel region. 

Table 10. Environment and Flag variables with the highest relative 

influence when predicting Performance. Flag variables are shown in bold. 

Variable Rel Inf 

AVX2 25.207 

File System 20.325 

CPU Frequency 19.745 

L3 Cache Size 12.589 

Auto-p32 8.766 

ParNumThreads=1 2.702 

RAM Stick Size 1.289 

SmartHeap64 1.19 

Auto-Parallel Enabled 0.974 

CPU Cores per Chip 0.928 

 

In the dataset, ParNumThreads is used primarily to 

disable parallelism by setting the number of threads to 1. 

The “SmartHeap64” compiler flag enables the use of the 

64-bit MicroQuill SmartHeap library [31] which can 

improve heap-intensive multi-threaded applications.  

Since the relative variation is highly skewed with 

some extremely large outliers, logarithm is applied to 

make it less skewed. Using on environment variables, 

the correlation of predicted and measured relative 

variations is 0.498. The top ten variables with the 

highest relative information are shown in Table 11. 

 

Table 11. Environment variables with the highest relative influence when 

predicting Relative Variation.  

Variable Rel Inf 

L2 Cache Size 25.851 

File System 13.958 

CPU Chip Count 10.414 

Total RAM Size 8.788 

System State 6.638 

CPU Core Count 5.152 

L3 Cache Size 4.556 

Threads per Core 4.011 

RAM Stick Count 3.995 

Disk Size 3.494 

 

The top ten variables for predicting relative variation 

can be broken down into two key groups. Firstly, 

variables related to the total number of threads, 

including: CPU Chip Count, System State, CPU Core 

Count, and Threads per Core. More threads running in 



 

 

parallel creates more opportunities for interference, 

which can act as a source of randomness and thus 

increase variation. The System State variable indicates 

the runlevel of the operating system; runlevel influences 

the number of OS background threads that may interfere 

with benchmark performance. 

Secondly, variables related to memory, including: L2 

Cache Size, File System, Memory Size, L3 Cache Size, 

RAM Stick Count, and Disk Size. Lower memory tiers 

are shared by more competing threads and thus larger 

sizes can increase the impact of thread interference. 

Similarly, the File System type will influence the quality 

of service for parallel disk accesses.  

Combining the environment and flag variables, the 

correlation of predicted and measured relative variations 

is increased to 0.534. The top ten variables with the 

highest relative information are shown in Table 12. 

 

Table 12. Environment and flag variables with the highest relative 

influence when predicting Relative Variation. Flag variables are shown in 

bold. 

Variable Rel Inf 

L2 Cache Size 20.976 

CPU Chip Count 8.647 

File System 7.818 

Total Memory Size 6.724 

Par Num Threads = 1 4.427 

CPU Core Count 4.364 

System State 3.751 

Threads Per Core 3.688 

HugeTLBFS-link=BDT 3.228 

Memory Stick Count 3.066 

 

When using all variables for predicting relative 

variation, only two flag variables appear in the top ten. 

“Par Num Threads = 1” disables parallelism when used, 

removing some threads that may cause interference. The 

“HugeTLBFS-link=BDT” flag instructs Linux’s 

RAM-based filesystem to store BSS, initialized data, 

and text into huge pages. Huge pages may increase the 

likelihood of inter-thread interference by moving more 

data into shared memory space. 

From this investigation, we see that while performance can 

be explained almost completely by the environment and flag 

variables used – relative variation can only be explained in 

part.  Our results suggest that the primary source of 

variation is intra-thread interference given that significant 

environment variables relate to the number of active threads 

and the size of shared memory.  Flag variables were found 

to be less significant than environment variables when 

prediction variation, with the most significant flag variable 

being disabling parallelism for some benchmarks. We do 

not have variables relating to the number of OS threads 

running in the background or certainty that the SPEC 2006 

was run as the only application, which could explain the 

remainder of the variation.   

 

8  The Sampling Size 

 

Due to the performance variability, we usually measure 

the performance score more than once for each 

benchmark. Hence, it remains a question that how many 

measurements (performance scores) for each benchmark, 

m, we should take. Generally, the size of m depends on 

two factors:  

1) The size of the performance variability. If there is no 

performance variability, then measuring once, m=1, 

gives an accurate performance score. On the other hand, 

if the performance variability is large, then we need m be 

large to have a good estimation of performance.  

2) The quality of the statistical inference. Hypothesis 

testing and estimation are the two major branches of 

statistical inference. A good test procedure should have a 

high probability to detect the deviation from the specified 

null hypothesis (i.e. high statistical power) when the null 

hypothesis is not true. On the other hand, the width of the 

confidence interval and the mean squared error (MSE) of 

an estimated parameter (e.g. speedup), gives us some 

idea about how uncertain we are about the unknown 

parameter. The smaller the width of a confidence interval 

(with fixed confidence level, e.g. 95%) and MSE, the 

more precise the estimate is. Hence, the statistical power, 

MSE and the width of confidence interval are widely 

used to examine the quality of statistical inference. 



 

 

Here, we redo the Monte Carlo simulation study on 

power, described in Section VI.A, with L=1 on the 

commodity computer (AMD Opteron CPU 6172 @ 

2.10GHz,  2 processors, each with 12 cores, with 12GB 

DDR3 RAM(1333 MHz)) using different sizes of m, 

m=3, 5, 7, 10, 15, 20, 30, 50, 100. The top panel of the 

proposed bootstrap estimate with different sizes of m. 

The vertical grey bar indicates the standard deviation of 

MSE. We see that the size of MSE (the smaller the MSE, 

the more accurate the estimate is) and its standard 

deviation decreases with the increase of m. Sometimes 

we may constrain the width of the confidence intervals. 

For example, we want to have a 95% confidence interval 

with width (i.e. upper limit – lower limit) no greater than 

0.03. Notice that the smaller the width, the more 

consistency the estimate has. The bottom panel of Figure 

12 shows the width of 95% confidence interval with 

different size of m. The vertical grey bar indicates the 

standard deviation of width. Similar to MSE, we see that 

the width of confidence interval decreases as m increases. 

The above study shows the statistical properties of the 

proposed methods by increasing the size m. However, in 

practice we usually don’t know the truth. Hence, the 

power of the test and MSE are unknown. A common way 

to determine the size of m is by setting the width of the 

confidence interval in advance. Figure 13 shows the 

flowchart of selecting the size of m in practice based on 

the predetermined width of confidence interval ∆. 

Basically, we need specify an initial value of m, usually a 

small value like 3, and a threshold for the width of 

confidence interval ∆. Then we sample m measurements 

for each benchmark and computer. We calculate a 

bootstrapping confidence interval based on the sample 

data. If the width of confidence interval is greater than 

the threshold Δ, then we increase the size of m and 

sample more measurements for each benchmark and 

computer. Then we recalculate the confidence interval. 

We stop sampling when the width of confidence interval 

is no greater than the predetermined threshold ∆. 

For the example below, we use two computers: A and 

C described in section VI.C. We would like to find the 

size of m by restricting the width of the bootstrapping 

confidence interval of the ratio of geometric means 

performance speedups to be no greater than 0.015. Table 

13 shows the bootstrapping confidence intervals and 

corresponding width with various sizes of m. We see that 

the sample size of m should be at least 16 under the 

restriction. 

 

9  Applicability to Other Means 

 

As a generic framework, our proposed methods can be 

directly applied to arithmetic and harmonic means while 

the HPT framework cannot apply since it uses rank 

instead of any performance metric. We applied the 

propose methods using these three means on an example 

in which we compare SPEC scores of two machines: 

IBM System x3500 M3 with Intel Xeon E5530, and 

CELSIUS R570 with Intel Xeon X5560, which are 

 

Figure 12. The sample size effect on the statistical power, MSE and the 
width of confidence interval under various sizes of m.  
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Figure 13. Flowchart of choosing the sample size based on the width of 
confidence interval.  

Table 13. An illustration of choosing the sample size (m) based on the width of confidence interval. 

m 3 5 7 10 13 15 16 

Bootstrap CI [1.203, 1.228] [1.204, 1.223] [1.207, 1.227] [1.212, 1.228] [1.216, 1.231] [1.216 1.232] [1.217, 1.232] 

CI Width 0.0256 0.0198 0.0194 0.0166 0.0153 0.0155 0.0149 

 



 

 

obtained from SPEC website [30]. Table 15 shows the 

confidences and confidence intervals using three metrics 

on the example. We see that both harmonic mean and 

geometric mean identify the difference between two 

computers while arithmetic mean cannot. This is because 

the arithmetic mean is subject to extreme values. For 

example, among 29 benchmarks, CELSIUS R570 has 25 

benchmarks with a larger mean performance score than 

their counterparts for IBM System x3500 M3. However, 

IBM System x3500 M3 has much higher performance 

scores in the libquantum and bwaves benchmarks than 

their counterparts in CELSIUS R570. If the two 

benchmarks are eliminated from the data, then changes in 

the confidence and confidence interval using the 

arithmetic mean are much larger than the ones using the 

geometric and harmonic means. 

 

10  Applicability to Big Data Benchmarks 

 

In this section we study the effectiveness of the proposed 

sampling methods on Big Data benchmarks [27], which 

have been demonstrated to be different from traditional 

CPU benchmarks like SPEC or PARSEC. Big Data 

Analytics is an emerging field that is driven by the need 

to find trends in increasingly large data sets. Applications 

include search engines, social networking, e-commerce, 

multimedia analytics, and bioinformatics. Big Data 

applications require extra layers in the software stack due 

to the use of distributed storage and processing 

frameworks, such as Apache Hadoop, thus creating 

additional opportunities for variance. We find the 

execution-time-variance of Big Data applications 

(calculated as the standard deviation divided by the 

mean) to be about twice as large as that of spec 

benchmarks; this is due to these additional virtualization 

layers used by the Big Data Bench (i.e. Hadoop, Spark, 

Java).  

As listed in Table 14, a set of seven Big Data 

benchmarks were chosen from the spark implementation 

of the BigDataBench version 3.1.1 [29] and executed on 

five separate machines listed in Table 16. Each 

benchmark was executed 1000 to 2000 times on each 

machine and the execution time was measured. The 

larger variance of Big Data application performance 

makes naïve comparisons of machine performances 

impractical and mandates a sampling method such as the 

one proposed.  

We ran three studies using the big data described 

above. Study 1 & 2 are both based on the random 

sampling of Machine 3 and Machine 4. Namely, for 

each benchmark from each computer, five execution 

times are randomly selected without replacement. Then 

we (1) compare the two computers using HPT, t-test and 

proposed randomization test; (2) estimated the ratio of 

the geometric means through the proposed 

bootstrapping confidence interval, t-test confidence 

interval and HPT speedup-under-test estimate based on 

the randomly selected subset of data. Both studies were 

repeated 100 times. (3) For Study 3, we applied a new 

visualization tool called a Biplot [13] to visually 

examine the performance of many computers and 

benchmarks simultaneously.  

In Study 1, for a significance level of 0.05, HPT fails 

to reject null hypothesis as the two machines generally 

have the same performance in terms of the geometric 

mean, 69% of times, while t-test and our randomization 

test both are 0% (i.e. reject all 100 times). When the 

significance level is 0.01, since HPT uses nonparametric 

test, their p-value in this case cannot go below 0.01. The 

t-test fails to reject the null hypothesis 4% of the time, 

Table 14. Summary of Selected Big Data Workloads 

ID Domain Operations or Algorithm Types Data Sets 

a Social Networks Connected Components Offline Analytics Facebook Social Network 

b Social Networks Kmeans Offline Analytics Facebook Social Network 

c Search Engine Sort Offline Analytics Wikipedia Entries 

d Search Engine Grep Offline Analytics Wikipedia Entries 

e Search Engine Word Count Offline Analytics Wikipedia Entries 

f E-Commerce NaiveBayes Interactive Analytics Amazon Movie Reviews 

g Search Engine Page Rank Offline Analytics Google Web Graph 

 
Table 15. Summary of comparing geometric, harmonic and arithmetic 

means on confidence and confidence interval (CI). 

 G-Mean H-Mean A-Mean 

Confidence >0.99 >0.99 0.492 

CI [0.913, 0.920] [0.887, 0.892] [1.019, 1.031] 

Confidence* >0.99 >0.99 >0.99 

CI* [0.882, 0.889] [0.881, 0.886] [0.880, 0.889] 

* Confidence and confidence interval after eliminating the libquantum 

and bewaves benchmarks. 



 

 

while our test still rejects all 100 times.  

Figure 14 shows the results of Study 2. The black 

solid line in the center is the observed geometric means 

based on 100 simulations. The blue solid lines show the 

95% bootstrapping Confidence intervals. The green 

solid lines show the 95% t-test confidence intervals. The 

red dash line shows the HPT speed-up estimates. Based 

on the figure, we can see that the t-test confidence 

interval is consistently wider than the bootstrapping 

confidence interval and that the HPT speedup estimates 

are highly variable bouncing up and below and far away 

from the observed Geometric means.   

 

11  Biplots for the Visualization of 

Benchmark Effectiveness 

 

Finally, we use a Biplot visualization tool [13] for 

computer performance comparisons. Biplot is a useful 

tool to visualize the projections of high-dimensional 

data onto a low dimensional space through principal 

component analysis. In this section, we will first briefly 

describe the principal component analysis technique and 

introduce the Biplot method through an illustrative 

example. Then we will apply the Biplot method to the 

performance results of all five machines used in section 

IX with seven Big Data benchmarks and explain the 

results that may shed new insights on comparing 

computer performance.  

Principal component analysis is a time-honored 

method for dimension reduction and data visualization. 

Figure 15 shows a randomly generated dataset with 

1000 points from a bivariate Gaussian distribution. 

Figure 15(a) shows the raw data with the two principal 

components. The first principal component (PC1), 

shown as the red arrow in the plot, is the direction in 

feature space (e.g. X1 and X2 in this case) along which 

projections have the largest variance. The second PC 

(PC2), shown as the blue arrow in the plot, is the 

direction which maximizes variance among all 

directions orthogonal to the first PC. The principal 

components are the linear combination of all the 

features. The value of the coefficients for the PC is 

called the loading vector of the corresponding PC. The 

value for the sample point of the PC is called the score 

for the corresponding PC. For example, PC1 is equal to 

0.996X1+0.258X2; hence the loading vector for PC1 is 

 

 

 

 

 

 

 

 

Figure 14. The 95% bootstrapping confidence intervals (solid blue lines), measured ratios of geometric means (solid black line within the confidence 

interval), 95% t-test confidence intervals (solid green lines) and 0.95-speedups from HPT test (red dash lines) based on 100 random replications. 

 

Table 16. Summary of Selected Computers 

ID Configurations 

1 Intel Xeon CPU E5-2630 @ 2.6 GHz, 2 processors, each with 12 cores, 192GB DDR3 RAM (1600 MHz) 

2 Intel Xeon CPU X5530 @ 2.40GHz, 2 processors, each with 4 cores, 12GB DDR3 RAM (1333MHz) 

3 Intel Core i7 CPU 3820 @ 3.6  GHz, 1 processor with 8 cores, 24GB DDR3 RAM (1600 MHz) 

4 Intel Core i7 CPU 960 @ 3.20 GHz, 1 processor with 4 cores (Hyperthreading enabled), 10GB DDR3 RAM(1333MHz) 

5 AMD Opteron CPU 6172 @ 2.1GHz, 2 processors, each with 12 cores, with 12GB DDR3 RAM(1333 MHz) 

 

 



 

 

(0.996, 0.258). For a sample point with X1=1 and X2=0, 

the PC1 score is equal to 0.996×1+0.258×0=0.996.  

Instead of plotting the data on its raw scales, an 

alternative way to visualize the data is to project the data 

onto PC1 and PC2. In this example, since the data 

contains only two variables, X1 and X2, projecting onto 

PC1 and PC2 is equivalent to rotating the data to use 

PC1 and PC2 as the horizontal and vertical axes. This is 

shown in Figure 15(b). For each point, the projected 

value on the horizontal axis is its PC1 score, while the 

projected value on the vertical axis is its PC2 score.  

A Biplot graph, which is shown in Figure 15(c), 

presents not only the PC scores but also the loading 

vectors in a single display. The red arrow shows the 

coefficient values for X1 on the PC1 and PC2 loading 

vectors. As can be seen, the coefficient value for X1 in 

PC1 (i.e. 0.966) is larger than its counterpart in PC2 (i.e. 

0.258) and the coefficient value for X2 in PC2 is 

negative (i.e. -0.966), with its absolute value being 

larger than its counterpart in PC1. Hence, we can see 

PC1 reflects mainly the variation in the X1 direction, 

and PC2 mainly reflects variation in the X2 direction.  

Figure 15(d) shows the proportion of variance that is 

explained by each PC. Since the data has only two 

variables, there are at most two PCs. The first PC 

explains about 95% of the total variance of the data, 

while PC2 explains the remaining 5%. 

Figure 16 shows the Biplot of the performances of all 

five machines used in section IX with all seven Big Data 

benchmarks. Note that for each machine and each 

benchmark, we have measured about 1000 times. To 

create the Biplot in Figure 16, we use the median value 

of the performance measure for each benchmark and 

machine. The median values for all five machines and 

all seven Big Data Benchmarks are listed in the Table 17. 

Since we have five machines and seven benchmarks, 

there are up to five PCs. The right panel of Figure 16 

shows the proportion of total variance explained by each 

PC. As we can see, the first two PCs explained more 

than 99.7% of the total variance. Hence, using the 

leading two PCs in the Biplot keeps almost all the 

information in the data. Based on the Biplot, which is 

shown on the left panel, we have the following remarks.  

1) We see that the benchmark b has the largest impact 

(i.e. coefficient value) on the PC1. This indicates 

that PC1 roughly reflects the performance measure 

on benchmark b. This can be verified by the 

dominant value of the loading coefficient for 

benchmark b in PC1 (i.e. equal to 0.91).   

 

Figure 15. Illustrative example for principal component analysis and biplot: 

(a) raw data with PC1 and PC2; (b) PC scores on the PC1 and PC2; (c) 

Lower left: biplot of the data.(d) proportion of total variance explained by 

PC1 and PC2.  
 

 

 

 

Figure 16. Biplot on big data benchmark example: (a) Biplot on PC1 and PC2 

together with the loading values for seven benchmarks; (b) proportion of total 

variance explained by five PCs.  
 

Table 17. Median values of all five machines on seven  

big data benchmarks 

 a b c d e f g 

1 12746 53600 14182 12785 14473 13292 19774 

2 7265 53581   9157   7427   9154   7718 14602 

3 10945 44492 12101 10894 12379 11184 16028 

4 11499 47084 12318 11205 13062 11444 16997 

5 18429 92291 18867 16448 18915 17429 29271 
 

 

Table 18. Pairwise correlation among all seven big data benchmarks 

 a b c d e f g 

a 1.00 0.82 1.00 0.99 1.00 1.00 0.96 

b 0.82 1.00 0.83 0.76 0.80 0.78 0.94 

c 1.00 0.83 1.00 0.99 1.00 1.00 0.97 

d 0.99 0.76 0.99 1.00 1.00 1.00 0.93 

e 1.00 0.80 1.00 1.00 1.00 1.00 0.95 

f 1.00 0.78 1.00 1.00 1.00 1.00 0.95 

g 0.96 0.94 0.97 0.93 0.95 0.95 1.00 
 

 



 

 

2) For PC2, the remaining six benchmarks measures 

are clustered together and have about the same 

impact (i.e. coefficient value). This indicates that 

these six measures (from benchmark a, c, d, e, f, g) 

are highly correlated to each other and PC2 mainly 

reflects the average performance on these six 

benchmarks. Table 18 shows the pairwise 

correlation among all seven benchmarks. We see 

that most of the pairwise correlations among 

benchmarks a, c, d, e, f, g are over 0.95 (shown in 

red fonts).  

3) The PC1 score for machine 5 is far greater than the 

other four machines. This is due to its higher 

performance on all seven benchmarks and 

particularly on benchmark b (i.e. 92291). 

4) The PC2 score for machine 2 is the smallest among 

all. This is due to its lower performance on 

benchmark a, c, d, e, f, g, for which is has the 

lowest values among all five machines, and 

relatively large value on benchmark b, which for 

which it has the third largest value among all.  

5) Overall, machines 1, 3 and 4 have similar 

performance over all seven benchmarks. Machine 5 

has the highest overall performance, while machine 

2 has the lowest overall performance.     

 

12  Related Work 

 

Over decades, the debate over the method and metrics for 

computer performance evaluation has never ended 

[5][16][20]. Fleming and Wallace [10] argued that using 

geometric mean to summarize normalized benchmark 

measurements is a correct approach while arithmetic 

mean will lead to wrong conclusions in this situation. 

Smith [26], however, claimed that geometric mean 

cannot be used to describe computer performance as a 

rate (such as mflops) or a time by showing counter 

examples. Furthermore, John [17] advocated using 

weighted arithmetic mean or harmonic mean instead of 

geometric mean to summarize computer performance 

over a set of benchmarks. Hennessy and Patterson [14] 

described the pros and cons of geometrics mean, 

arithmetic mean, and harmonic mean. Eeckhout [7] 

summarized that arithmetic and harmonic means can 

clearly describe a set of benchmarks but cannot apply the 

performance number to a full workload space, while 

geometric mean might be extrapolated to a full 

benchmark space but the theoretic assumption cannot be 

proven. 

Relying on only a single number is difficult to describe 

system variability stemming from complex hardware and 

software behaviors. Therefore, parametric statistic 

methods such as confidence interval and t-test have been 

introduced to evaluate performance [19][1]. 

Nevertheless, Chen et al. [3] demonstrated that these 

parametric methods in practice require a normal 

distribution of the measured population which is not the 

case for computer performance. In addition, the number 

of regular benchmark measurements from SPEC or 

PARSEC is usually not sufficient to maintain a normal 

distribution for the sample mean. Therefore, Chen et al. 

[3] proposed a non-parametric Statistic Hypothesis Tests 

to compare computer performance. As demonstrated in 

the paper, our proposed resampling methods can identify 

smaller differences between two computers even in a 

situation where a single test is not enough to reveal it.  

Oliveira et al. [24] applied quantile regression to the 

non-normal data set and gained insights in computer 

performance evaluation that Analysis of variance 

(ANOVA) would have failed to provide. Our approach 

considers different variation sources (non-deterministic 

or deterministic behaviors) for the fixed computer 

configurations and handles the non-normality by using 

resampling technique such as bootstrapping and 

permutation. 

Patil and Lilja [25] demonstrated the usage of 

resampling and Jackknife in estimating the harmonic 

mean of an entire dataset. Unlike their approach, we 

applied resampling methods on a more complicated 

situation - comparing two computers on multiple 

benchmarks with multiple measurements. Hence, the 

bootstrapping method in our paper is different from the 

one in [25]. Namely, we bootstrap the samples within 

each benchmark instead of on the entire dataset.  

This work is an extension of our prior ISPASS 

publication [17] which was limited in scope to statistical 

resampling methods for measuring computer 

performance on SPEC benchmarks without the use of 

Biplot visualization tools.  



 

 

 

13  Conclusion 

 

We propose a randomization test framework for 

achieving a both accurate and practical comparison of 

computer architectures performance. We also propose a 

bootstrapping confidence interval estimation framework 

for estimating a confidence interval on a quantitative 

measurement of comparative performance between two 

computers. We illustrate the proposed methods through 

both Monte Carlo simulations where the truth is known 

and real applications.  

Interestingly, even though geometric mean as a single 

number cannot describe the performance variability, we 

find that the ratio of geometric means between two 

computers always falls into the range of Boosted 

Confidence Intervals in our experiments.  

In cases where two computers have very close 

performance metrics, we propose using empirical 

distribution to evaluate computer performance and using 

five-number-summary to summarize the computer 

performance. 

We investigate the source of performance variation by 

using hardware and environment descriptions to predict 

performance and relative variation with a predicted and 

measured correlation of 0.992 and 0.5 respectively. The 

best predictors of relative variation are found to be the 

degree of parallelism and the size of amount memory 

space, suggesting performance variation comes in large 

part from thread interference. 

  We demonstrate that the proposed sampling method is 

effective at differentiating the performances of machines 

running Big Data benchmarks, which have higher 

variance than traditional CPU benchmarks. Our analysis 

of Big Data benchmark variance was extended using a 

Biplot to visualize machine performance similarities and 

benchmark correlation.  
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