
Computer Communications 33 (2010) 390–397
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom
Expediating IP lookups with reduced power via TBM and SST supernode caching

Ying Zhang a, Lu Peng a,*, Wencheng Lu b, Lide Duan a, Suresh Rai a

a Department of Electrical & Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
b Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL 32611, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 February 2009
Received in revised form 12 August 2009
Accepted 14 October 2009
Available online 27 October 2009

Keywords:
Tree bitmap (TBM)
Shape shifting trie (SST)
IP lookup
Supernode
Caching
0140-3664/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.comcom.2009.10.006

* Corresponding author.
E-mail addresses: yzhan29@lsu.edu (Y. Zhang)

wlu@cise.ufl.edu (W. Lu), lduan1@lsu.edu (L. Duan), s
In this paper, we propose a novel supernode caching scheme to reduce IP lookup latencies and energy
consumption in network processors. In stead of using an expensive TCAM based scheme, we implement
a set-ssociative SRAM based cache. We use two different algorithms, tree bitmap (TBM) and shape shift-
ing trie (SST), to organize an IP routing table as a supernode tree composed of a group of supernodes. We
add a small supernode cache in-between the processor and the low-level memory containing the IP rout-
ing table in a tree structure. The supernode cache stores recently visited supernodes of the longest
matched prefixes in the IP routing tree. A supernode hitting in the cache reduces the number of accesses
to the low-level memory, leading to a fast IP lookup. According to our simulations, up to 72% memory
accesses can be avoided by a 128 KB TBM supernode cache for the selected three trace files, and up to
78% memory accesses can be reduced while using a same size of SST supernode cache. Average TBM
and SST supernode cache miss ratios are as low as 4% and 7%, respectively. Compared to a TCAM with
the same size, the TBM and SST supernode caches can both reduce 77% of energy consumption.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Packet routing is a critical function of network processors. An IP
router determines the next network hop of incoming IP packets by
destination addresses inside the packets. A widely used algorithm
for IP lookup is Longest Prefix Matching (LPM). The adoption of a
technique Classless Inter-Domain Routing (CIDR) [1] had made ad-
dress allocation more efficient. In an IP router with CIDR, a hroute
prefix, prefix lengthi pair denotes an IP route, where the prefix
length is between 1 and 32 bits. For every incoming packet, the
router determines the next network hop in two steps: First, a set
of routes with prefixes that match the beginning of the incoming
packet’s IP destination address are identified. Second, the IP route
with the longest prefix among this set of routes is selected to route
the incoming IP packet.

IP routing table organization and storage is a challenging design
problem for routers with increasingly large tables. Many commer-
cial network processors [2,3,4] achieve wire speed IP routing table
lookup through high speed memories such as Ternary Content
Addressable Memories (TCAMs) and specialized hardware. TCAMs
have an additional ‘‘don’t care” bit for every tag bit. When the
‘‘don’t care” bit is set the tag bit becomes a wildcard and matches
anything. TCAM’s fully associative organization makes it parallelly
search all the routes simultaneously, leading to low access latency.
ll rights reserved.

, lpeng@lsu.edu (L. Peng),
rai@lsu.edu (S. Rai).
However, its high cost and high power consumption [5,6] hamper
TCAM being widely used.

IP caching has been extensively studied in [7,8,9], where caches
are leveraged to provide a fast path for IP lookup to improve the
average lookup time. Recently, researchers proposed the replace-
ment of TCAMs by relative less expensive SRAMs. With well orga-
nizations, SRAMs can also achieve high throughput and low latency
for IP routing table lookup [6,10,11] . In this paper, we propose a
supernode based caching scheme to efficiently reduce IP lookup la-
tency in network processors. We utilize two different strategies,
tree bitmap and shape shifting trie, to construct two types of
supernode trees. Tree bitmap (TBM), which is proposed in [12],
organizes an IP routing table to a regular shaped supernode tree.
In a 32-level binary tree, we represent it by an 8-level supernode
tree if we compress all 4-level subtrees, whose roots are at a level
that is a multiple of 4 (level 0, 4,. . ., 28), to be supernodes. On the
other hand, shape shifting trie (SST) [13] generates a supernode
tree composed of irregular shaped supernodes, which optimized
the worst case IP address lookup performance. Lu and Sahni [14]
further reduced memory requirement and lookup time for supern-
ode tree. We add a small TBM or SST supernode cache in-between
the processor and the low-level memory containing the IP routing
table in a tree structure. The supernode cache stores recently vis-
ited supernodes of the longest matched prefixes in the IP routing
tree. A supernode hitting in the cache reduces the number of acces-
ses to the low level memory, leading to a fast IP lookup. In [15], we
demonstrated that a small cache for regular shaped TBMs can sig-
nificantly reduce the memory accesses and power consumption. In

http://dx.doi.org/10.1016/j.comcom.2009.10.006
mailto:yzhan29@lsu.edu
mailto:lpeng@lsu.edu
mailto:wlu@cise.ufl.edu
mailto:lduan1@lsu.edu
mailto:srai@lsu.edu
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

Fig. 1. Prefixes and corresponding binary trie.

Y. Zhang et al. / Computer Communications 33 (2010) 390–397 391
this paper, we further extend the supernode cache to work for not
only regular shaped TBMs, but irregular shaped SSTs. We also pres-
ent more descriptions and experimental results in this version.

While worst case lookup performance is critical to deal with
malicious users who attempts to flood network with packets, aver-
age lookup performance is another important metric for power
consumption and general Internet router throughput. Hence, one
category of literature [7,8,9] has been focusing on the average per-
formance metrics. For network processor manufacturers, power
dissipation is a first-order concern in processor design. Previous
studies [16,17,18] show that persistent high power consumption
tends to rapidly heat the processor, and thus largely degrade its
reliability and lifetime due to the high temperature, which will
introduce serious problems to the processor, such as wear-out of
the critical hardware. Reducing average memory accesses is an effi-
cient method to decrease power consumption and improve general
Internet router throughput [19,20]. Therefore, we focus on reduc-
ing average power consumption and the average number of mem-
ory accesses because they can better contribute to a cool network
processor.

In our simulation, we compared the TBM and the SST supernode
caching scheme with another two caches: a simple set-associative
IP address cache and a fully associative TCAM. Several results can
be summarized from our experiments: (1) average 69%, up to
72%, of total memory accesses can be avoided by using a small
128 KB tree bitmap supernode cache for the selected three IP trace
files, and up to 78% memory accesses can be reduced while using a
same size of shape shifting trie supernode cache. (2) A 128 KB of
our proposed supernode cache outperforms a same size of set-
associative IP address cache 34% in the average number of memory
accesses while organizing the IP routing table as a tree bitmap. (3)
Compared to a TCAM with the same size, both the TBM and SST
supernode cache saves 77% of energy consumption.

The left of this paper is organized as follows. Section 2 intro-
duces related concept of the tree bitmap structure and the shape
shifting trie. Section 3 explains the proposed supernode caching
scheme. Section 4 lists our experiment results. Section 5 makes a
conclusion. Through the paper, we sometimes use the term subtree
to indicate a supernode.
2. Related work and background

Many of the data structures developed for the representation of
a forwarding table are based on the binary trie structure [21]. A bin-
ary trie is a binary tree structure in which each node has a data
field and two children fields. Branching is done based on the bits
in the search key. A left child branch is followed at a node at level
i (the root is at level 0) if the ith bit of the search key (the leftmost
bit of the search key is bit 0) is 0; otherwise a right child branch is
followed. Level i nodes store prefixes whose length is i in their data
fields. The node in which a prefix is to be stored is determined by
doing a search using that prefix as key.

Fig. 1(a) shows a set of 5 prefixes. The * shown at the right end
of each prefix is used neither for the branching described above nor
in the length computation. So, the length of P2 is 1. Fig. 1(b) shows
the binary trie corresponding to this set of prefixes. Shaded nodes
correspond to prefixes in the rule table and each contains the next
hop for the associated prefix. In this paper, we utilize two different
optimized trees for the proposed supernode caching.
Fig. 2. TBM for binary trie of Fig. 1.
2.1. Tree bitmap (TBM)

Tree bitmap (TBM) [12] has been proposed to improve the look-
up performance of binary tries. In TBM we start with the binary trie
for our forwarding table and partition this binary trie into subtries
that have at most S levels each. Each partition is then represented
as a (TBM) supernode. Fig. 2(a) shows a partitioning of the binary
trie of Fig. 2(b) into 4 subtries W–Z that have 2 levels each.
Although a full binary trie with S = 2 levels has three nodes, X
has only 2 nodes and Y and Z have only one node each. Each par-
tition is represented by a supernode (Fig. 2(b)) that has the follow-
ing components:

1. A (2S � 1)-bit bit map IBM (internal bitmap) that indicates
whether each of the up to 2S � 1 nodes in the partition contains
a prefix. The IBM is constructed by superimposing the partition
nodes on a full binary trie that has S levels and traversing the
nodes of this full binary trie in level order. For node W, the
IBM is 110 indicating that the root and its left child have a prefix
and the root’s right child is either absent or has no prefix. The
IBM for X is 010, which indicates that the left child of the root
of X has a prefix and that the right child of the root is either
absent or has no prefix (note that the root itself is always pres-
ent and so a 0 in the leading position of an IBM indicates that
the root has no prefix). The IBM’s for Y and Z are both 100.

2. A 2S-bit EBM (external bit map) that corresponds to the 2S child
pointers that the leaves of a full S-level binary trie has. As was
the case for the IBM, we superimpose the nodes of the partition
on a full binary trie that has S levels. Then we see which of the
partition nodes has child pointers emanating from the leaves of
the full binary trie. The EBM for W is 1011, which indicates that
only the right child of the leftmost leaf of the full binary trie is
null. The EBMs for X, Y and Z are 0000 indicating that the nodes
of X, Y and Z have no children that are not included in X, Y, and
Z, respectively. Each child pointer from a node in one partition
to a node in another partition becomes a pointer from a supern-
ode to another supercode. To reduce the space required for
these inter-supernode pointers, the children supernodes of a
supernode are stored sequentially from left to right so that
using the location of the first child and the size of a supernode,
we can compute the location of any child supernode.

3. A child pointer that points to the location where the first child
supernode is stored.

4. A pointer to a list NH of next hop data for the prefixes in the par-
tition. NH may have up to 2S � 1 entries. This list is created by
traversing the partition nodes in level order. The NH list for W

Fig. 3. An SST and its representation.

392 Y. Zhang et al. / Computer Communications 33 (2010) 390–397
is H1 and H2. The NH list for X is H3. While the NH pointer is
part of the supernode, the NH list is not. The NH list is conve-
niently represented as an array.

The NH list (array) of a supernode is stored separately from the
supernode itself and is accessed only when the longest matching
prefix has been determined. We now wish to determine the next
hop associated with this prefix. If we need b bits for a pointer, then
a total of 2S+1+2b � 1 bits (plus space for an NH list) are needed for
each TBM supernode. Using the IBM, we can determine the longest
matching prefix in a supernode; the EBM is used to determine
whether we should move next to the first, second, etc. child of
the current supernode. If a single memory access is sufficient to re-
trieve an entire supernode, we can move from one supernode to its
child with a single access. The total number of memory accesses to
search a supernode trie becomes the number of levels in the
supernode trie plus 1 (to access the next hop for the longest match-
ing prefix).

2.2. Shape shifting trie (SST)

For dense binary tries, the TBM algorithm is space efficient.
However, for binary tries in which the nodes are distributed spar-
sely, TBM is not flexible enough to make the best use of the mem-
ory space. Song et al. [13] propose an innovative strategy called
shape shifting trie (SST) to organize an IP routing table. SST can
efficiently use the memory space for sparse binary tries and largely
improve the worst case performance of IP lookups. Several meth-
ods can be used to construct an SST from a given binary trie; and
the one generated by the breadth-first pruning (BFP) algorithm
has the minimum height for a given binary trie. In our work, we
use the BFP algorithm to construct an SST.

For a given binary trie, we first traverse all the nodes in the
breadth-first-order. Each time when we access a node x, we calcu-
late the number of its descendants. Suppose S(x) denotes this num-
ber, which also represents the amount of nodes of the subtree
rooted at x. We also define a fixed value as the maximum number
of nodes that can be contained within an SST supernode, assuming
K indicates this bound. If S(x) is less than or equal to K, we assign x
and all of its descendants to a new SST supernode and prune these
nodes from the original binary trie. We repeat this procedure until
all the nodes in the binary trie are assigned. Assume H + 1 passes of
BFP execution is needed to classify all the nodes of the given binary
trie into SST supernodes, then the SST height is H. Like a TBM
supernode, an SST supernode also contains necessary information
for IP lookup. For an SST node including K binary nodes, the follow-
ing components are contained:

1. IBM (internal bitmap). It indicates whether a binary node in a
supernode contains a valid prefix. A binary node that contains
a prefix is considered to be valid. This bitmap has exactly the
same meaning with that of a TBM supernode. An SST supernode
with K nodes needs K bits to record its IBM.

2. SBM (shape bitmap). It describes the shape of a supernode. To
encode the SBM of a supernode, we consider the supernode as
an independent tree and augment it with additional dummy
nodes. We then assign a bit to each node in the augmented tree,
including the dummy nodes. Specifically, we assign a ‘‘1” to an
original node and a ‘‘0” to a dummy node. For example, in Fig. 3,
the SBM of the supernode W, which is composed of a, c, f, is 01
01 00. The first pair (0, 1) is corresponding to node a. It means
that the left child of node a is a dummy child and the right child
is an actual one. The second pair (0, 1) corresponds to node c
which has the same meaning as the first pair. As for the last
pair, (0, 0) indicates that both the left child and right child of
node f do not belong to this SST supernode. We can see that
each binary node in an SST supernode needs a pair of bits to
represent its children information, so 2K bits are indispensable
to record the SBM of an SST supernode containing K nodes.

3. EBM (external bitmap). It gives information of the potential exit
points from a supernode. Here, the meaning of the EBM of an
SST supernode is different from that of a TBM supernode. We
can get the exact information of the EBM by referring to the
SBM of this supernode at the same time. Consider the example
in Fig. 3, the EBM of the supernode W is 1011. The first ‘‘1” indi-
cates that node b, the left child of node a, is an exit point from
this supernode. To get this information, we access the SBM of
supernode W. Since the first bit of the SBM is ‘‘0”, we know that
the left child of node a does not belong to W. This means that
node b is an exit point from supernode W. Furthermore, we also
know that node b is an actual binary node because a ‘‘1” in EBM
indicates an actual node while a ‘‘0” means a dummy node. The
second bit of EBM indicates that the left child of c is an exit
point which is a dummy node. We can also observe that each
0 in SBM implies a potential exit path in EBM. The last two
‘‘1”s imply that node g and h are both actual exit points. We
need K + 1 bits to encode the EBM for a K-node SST supernode.

4. A child pointer. It points to the first children SST node of the
given supernode.

5. A next hop pointer. It points to the next hop information for the
first valid binary node within the SST supernode. In order to use
the memory efficiently, the children and the next hop informa-
tion of a given SST node are stored sequentially. This allows the
access to all the SST children supernodes and the next hop
information entries by using only the pointer to the first chil-
dren supernode and hop information entry.

In Section 2.1, we have calculated that a total of 2S+1 + 2b � 1
bits are needed for a TBM supernode with a stride of S. Specifically,
we use 2S � 1 bits for IBM, 2S bits for EBM and 2b bits for pointers.
However, if we consider the S-stride subtree to be an SST supern-
ode, an additional 2�(2S � 1) bits are required to store the SBM.
Therefore, we need 2S+2 + 2b � 3 bits in all to represent an SST
supernode. In this paper, we assume that both TBM and SST super-
nodes have the same size of memory block. Consequently, an SST
supernode containing K binary nodes should satisfy the following
condition:

2Sþ1 þ 2b� 1 ¼ Kþ Kþ 1þ 2� Kþ 2b

In practice, different sized padding bits may be used to fit the
supernode structure in a memory block. Here, we assume that the
padding bits for both structures have the same size. From the above
equation, K should be approximately no more than 2S�1. Therefore,
if we set the stride of a TBM supernode to be S, the maximum num-
ber of binary nodes in an SST supernode will be accordingly set to
2S�1.

Y. Zhang et al. / Computer Communications 33 (2010) 390–397 393
3. Supernode caching

We assume that the supernode tree is stored in a low-level
memory. According to our analysis in Section 2, the number of
memory accesses is largely dependent on the length of the longest
prefix match (LPM). Therefore, we introduce a small supernode
cache to reduce the number of low-level memory accesses. Similar
to a traditional cache in a PC, the proposed supernode cache locates
in-between the processor and the low-level memory. Fig. 4 illus-
trates the overview of our design. A cache hit marked by a dash line
will save a number of memory accesses to supernodes. We com-
press the binary routing table tree into a TBM supernode tree
which is stored in the low level memory. If a supernode corre-
sponds to a 4-level subtree, a 32-level binary tree is compressed
into an 8-level TBM supernode tree. Assume that each supernode
access takes one memory access, the maximum number of mem-
ory accesses for an IP lookup is 9: it reads seven supernodes plus
the root nodes and searches the next hop for the longest matching
prefix. When the root supernode is always held in cache, this num-
ber becomes 8. Obviously, maintaining a small cache will help to
reduce the number of memory accesses. The situation for SST cach-
ing is the same with that of TBM.

Fig. 5 depicts the working procedure of the proposed cache for
both TBM and SST. We assume that the TBM or the SST of an IP
routing table has been constructed and stored in the low level
memory. The cache data array stores pointers to the locations of
the corresponding Supernode. For all supernodes whose address
is less than or equal to 8 bits, we store them in a separate fully
associative cache. This is practical because there are at most
29 � 1=511 addresses. Other supernodes are stored in the cache
depicted in the above figure. There is a mask field which is associ-
ated with each tag entry and records the number of bits for each
tag. For example, a 21-bit tag will have its related mask value 21.
The number of mask bits is 5 because the longest tag has 24 valid
bits. Note that the number of mask bits can be reduced to be 3 for
an 8-level TBM supernode tree because only 5 types of TBM super-
nodes with length 12, 16, 20, 24 and 28 will be stored into this
cache. For an incoming destination IP address, the working proce-
dure of the cache is as follows.

(1) Set identification by the left most 8 bits. This step works as
the index selection in a cache. Our design is slightly different
from a normal cache in that we use the left most 8 bits of an
address as the index for the purpose of the longest prefix
match searching,.

(2) For each entry in the selected set, we extractits mask field
and convert it to a 24-bit mask and send it to a mask regis-
ter. The value of the mask field will determine the number of
‘‘1” bits in left most. Other bits will be filled as ‘‘0” bits. For
Fig. 4. High-level architecture of the
example, a mask field stores a value of 21, then the con-
verted results has 21 ‘‘1” bits in the left most and 3 ‘‘0” bits
for the remainder bits.

(3) Filter out unused bits in the destination IP address by bit-
and operation between the IP address and the mask register,
and then compare the result with the tag entry. This can find
potential matched supernodes stored in the cache.

(4) After the tag comparison, we select the data entry corre-
sponding to a matched tag with the largest mask value. This
ensures the longest IP prefix matches. The data entry stores
the address of the supernode in memory. A cache hit can
save the number of memory accesses to the supernode.
The search continues from the matched supernode in mem-
ory and proceeds downwards until the longest matched pre-
fix is found. If the supernode containing the longest matched
prefix is found in the cache, we only need one memory
access for the next hop.

To better demonstrate the working procedure of our design, we
show the search process of an arbitrary IP address, take
192.168.20.11 for example, in a router with the proposed supern-
ode cache. For simplicity, we convert the IP address to binary for-
mat as 11000000.10101000.00010100.00001011. Suppose the
cache is configured to two-way set-associative. In step one de-
picted above, 11000000 is chosen as the set index, which corre-
sponds to a specific set in the cache. We assume the two entries
in the selected set are already filled by previous cache update. Thus
in step two, the convertor will generate two bit streams for each
entry individually based on their mask values. Without loss of gen-
erality, we assume the mask field values of these two entries are 15
and 20, respectively. As a result, the 8th to the 22nd bits of the des-
tination IP address are selected to compare with the tag of entry
one (15 valid bits), while the 8th to 27th bits are filtered out for en-
try two (20 valid bits). Suppose both of the two groups of selected
bits match the tags, then the entry with 20 as its mask value is con-
sequently selected for further process since it means a potential
longer matching prefix. Therefore, the address of the correspond-
ing supernode is obtained immediately from the data entry and
the lookup will continue by accessing the supernode in the low-le-
vel memory. If the search ends in the current supernode, the next
hop information is available promptly from the supernode data
structure; otherwise, deeper supernodes will be accessed to get po-
tential longest matching prefix in the low level memory.

A cache miss will result in cache update and replacement. We em-
ploy an LRU replacement policy: we replace the least-recently-used
entry with the longest matched prefix’s supernode. Consider the
above example, if none of the tag array entries in the selected set
(according to the index bits) matches the tag bits for the incoming
IP address (192.168.20.11), a cache miss occurs. This will lead to
design with supernode cache.

Fig. 5. Design of the supernode cache for both TBM and SST.

394 Y. Zhang et al. / Computer Communications 33 (2010) 390–397
the lookup to be restarted in the low-level memory. If the longest
matched prefix has 26 bits and the ending supernode has a length
of 24 (either for TBM or SST), we update the cache as follows. First,
we store bits 9-24 (10101000.00010100) to the tag entry, then we
update the mask field with a value 24 � 8 = 16. Finally, the location
of the supernode in the low-level memory will be stored into the cor-
responding data entry of the cache. Note that this procedure is the
same for both TBM and SST cache.

By leveraging the above cache design, we directly jump to a
supernode in the search path of the bitmap tree, skipping over
its ancestor supernodes along the path. However, we may fail to
find the longest matching prefix if it exists in one of these ancestor
supernodes. For example, consider the tree bitmap in Fig. 2 and an
incoming packet with the destination address 001*. We start the
search of cache, if the address of supernode X is found, then the
search continues at X and returns no match, though prefix 0* of
binary node b should be returned. We use the covering prefix strat-
egy as proposed in [22] to solve this problem by pushing to the
underlying binary root of each supernode a valid prefix from its
lowest ancestor binary node. In this case, 0* of b is pushed down
to d, and the search of X will successfully return 0* for the longest
match of the destination address 0001*.
Fig. 6. Average memory accesses of 1.5 million IP addresses from each trace file.
4. Experimental results

To evaluate the proposed supernode caching scheme, we down-
load a routing table RS1221 from [23] and download three trace
files from routers ipls, svl and upcb in the website [24]. In the fol-
lowing experiments, we collect statistics of first 1.5 million IP ad-
dresses whose longest prefix is larger than zero, i.e, matching an
inner node in the IP prefix tree. Totally, we implement five
schemes with the longest prefix matching algorithm for IP routing:
(1) without cache; (2) with an IP address cache; (3) with a TCAM;
(4) with a TBM supernode cache; (5) with an SST supernode cache.
For each scheme, we count the average memory access time. If
there is a cache, we also measure miss ratios. In addition, we sim-
ulate energy consumption for each cache scheme.

In our experiments, we assume a 4-bit stride tree bitmap, and
set the maximum number of the binary nodes that can be held
in an SST supernode to be 8, according to the previous discussion
in Section 2.2. In the no cache scheme, we use different methods
to calculate the memory access time for TBM and SST respectively,
since they are constituted with distinct shaped supernodes. For
TBM, assuming that L denotes the number of steps taken to find
the longest prefix node, the number of memory access for an IP
lookup in the no cache scheme is L/4 + 1. For SST, if X supernodes
are needed to be visited along the search path of the address, then
X þ 1 memory accesses are necessary for the no cache scheme of
SST. In the second scheme, we design an IP address cache which
contains the next hop information pointer in each entry. It can eas-
ily be implemented as a set-associative cache by selecting part of
the IP address bits as the set index and left bits as the tag. If an
incoming IP address matches an entry in the IP address cache, it re-
quires only one memory access to obtain the next hop. Otherwise,
it needs L/4 + 1 memory access. In the third scheme, we assume
that there exists a Tenary CAM. If an incoming IP address matches
an entry in the TCAM, it requires only one memory access to obtain
the next hop. Otherwise, it needs L/4 + 1 memory access. In the
forth scheme, if the TBM supernode cache hits, it takes
ðP � CÞ=4d e þ 1 memory accesses. Here P denotes the length of

the longest prefix and C denotes the length of TBM supernode pre-
fix hit in the cache. Otherwise, if the supernode cache misses, it re-
quires L/4 + 1 memory accesses. In the fifth scheme, suppose that it
is necessary to access M supernodes to get the longest prefix in the
no cache scheme and we find the Nth supernode is in the cache,
then it takes M � N + 1 memory accesses to get the longest prefix
for a given address. Here the Nth node is either an ancestor of
the Mth node or the Mth node itself. In all of our experiments,
we don’t prefetch the routing tables into cache. Therefore, compul-
sory misses will be also included as misses.

As stated in Section 1, we focus on reducing average power con-
sumption and the average number of memory accesses because
they can better contribute to a cool network processor. Fig. 6

Y. Zhang et al. / Computer Communications 33 (2010) 390–397 395
shows the average numbers of memory accesses for the three se-
lected trace files. Among the three files, IPLS has the smallest aver-
age number of memory accesses while SVL has the largest number.
To understand the details, we further collect distributions of lon-
gest prefix matching (LPM) in Fig. 7. Two observations can be made
from it: (1) most LPM hit the range from prefix length 8 to length
24. There is no matching for prefix length less than 8, therefore we
do not show this range, while there are only a very few LPM hit
prefixes longer than 24. (2) Three trace files show different distri-
bution. IPLS has the largest group with prefix length 8 while SVL
and UPCB have the largest two groups with length 16 and 17.
One can expect that the proposed supernode caching scheme will
have more performance benefits for SVL and UPCB than for IPLS be-
cause more relatively long supernode prefixes can be found from
the supernode cache, resulting in less memory accesses.

According to Fig. 6, we find that the average search time of SST
are longer than that of TBM though its worst case performance is
better than that of TBM. SST can generate a trie with the minimum
height, indicating that the maximum number of memory accesses
in SST is better than that in other tries. However, the average mem-
ory accesses are not necessary superior. To give an example, con-
sider a destination address which exactly matches an entry with
the prefix length of 32. In TBM, we have to visit 8 supernodes to
get this prefix, but only 6 or 7 supernodes need to be accessed in
SST. From the distribution shown in Fig. 7, we know that most
LPM has the length of 8, 16 and 17, which implies that most of
the memory accesses in TBM are less than 5. However, in SST,
the binary nodes which contain valid prefixes with the length of
8, 16 and 17 may locate in the supernodes with depth more than
5, resulting in a larger average number of memory accesses.

To illustrate the effect of supernode cache, we simulate differ-
ent cache sizes ranging from 8 KB to 128 KB. We assume each
cache entry has a four-byte width which can only store one unit
because no spatial locality for IP addresses streams [10][25]. We
assume that all 8-bit supernodes are stored in a separate small
cache. This is reasonable because the maximum size of this addi-
(a) LPM Distribution - IPLS

0

5
10

15
20

25

30
35

40

8 10 12 14 16 18 20 22 24

Prefix Length

LP
M

 H
its

 P
er

ce
nt

ag
e

(b) LPM Distri

0

5

10

15

20

25

30

8 10 12 14

Prefix

LP
M

 H
its

 P
er

ce
nt

ag
e

Fig. 7. LPM distributions o

(a) Average Memory Access - IPLS

1.4

1.6

1.8

2.0

2.2

2.4

2.6

8 16 32 64 128
Cache Size (KB)

IP Address Cache

TCAM

TBM Cache

SST Cache

(b) Average Memo

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

8 16 32

Cache

IP Address Cache

TCAM

TBM Cache

SST Cache

Fig. 8. Average memory acces
tional cache is 256 * 4 = 1 KB for TBM and 512 * 4 = 2 KB for SST.
We use the mask field in the cache tag array to find the longest pre-
fix matching. This implementation makes all supernode caches
have fixed 256 sets. When the total cache size increases, we in-
crease the set size instead of increasing the number of sets. In
the TBM scheme, there are five types of supernodes with different
lengths will store in this cache: 12, 16, 20, 24 and 28. In the SST
scheme, the supernodes with lengths from 9 to 32 are all possibly
stored in the cache. We distinguish the different length of super-
nodes by the mask bits. To make the comparison consistent, we
also design the same total sizes and set sizes of IP address caches.

Fig. 8 illustrates average numbers of memory access with three
caching schemes for each trace file. In general, all caching schemes
reduce the average number of memory accesses. For SVL, a 32 KB IP
address cache, TCAM and TBM supernode cache reduce the average
number of memory accesses from 4.73 to 2.11, 2.08 and 1.57, rep-
resenting 55%, 56% and 67% reduction respectively. In this case, the
TBM supernode cache outperforms the IP address cache 34% and
the TCAM 32%. The average memory access reductions of the three
caching schemes with 32 KB are 50%, 51% and 62% separately for
the selected three trace files. On the other hand, for SVL, the SST
supernode cache can reduce the average number of memory acces-
ses from 7.16 to 1.97 which represents 72%, and it reduces 69% of
the accesses for the three trace files in average. The TBM supernode
cache shows the best performance among these caching schemes
in all cases. When the cache size reaches 128 KB, the TBM supern-
ode caching scheme’s average memory access numbers for the
three trace files are 1.51, 1.31 and 1.46, which means that 65%,
72% and 69% memory accesses are reduced. The average memory
access reductions of the caching schemes are 52%, 54% and 69%,
respectively for the selected three trace files with a 128 KB cache
size. The SST supernode cache reduces the accesses to 1.77, 1.54
and 1.65, representing 75%, 78% and 74%.

We also collect cache miss ratio information and present them
in Fig. 9. Several observations can be made: (1) the supernode ca-
ches, both TBM and SST, have smaller miss ratios than another two
bution - SVL

16 18 20 22 24

 Length

(c) LPM Distribution - UPCB

0

5

10

15

20

25

30

35

8 10 12 14 16 18 20 22 24

Prefix Length

LP
M

 H
its

 P
er

ce
nt

ag
e

f the three trace files.

ry Access - SVL

64 128

 Size (KB)

(c) Average Memory Access - UPCB

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

8 16 32 64 128

Cache Size (KB)

IP Address Cache

TCAM

TBM Cache

SST Cache

s of the three trace files.

(a) Miss Ratio - IPLS

0%

5%

10%

15%

20%

25%

30%

35%

40%

8 16 32 64 128

Cache Size (KB)

IP Address Cache

TCAM

TBM Cache

SST Cache

(b) Miss Ratio - SVL

0%

5%

10%

15%

20%

25%

30%

35%

40%

8 16 32 64 128

Cache Size (KB)

IP Address Cache

TCAM

TBM Cache

SST Cache

(c) Miss Ratio - UPCB

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%
50%

8 16 32 64 128

Cache Size (KB)

IP Address Cache

TCAM

TBM Cache

SST Cache

Fig. 9. Miss ratios of three caching schemes for each trace file.

396 Y. Zhang et al. / Computer Communications 33 (2010) 390–397
schemes, catching the strongest temporal locality in all cases. This
is reasonable because a supernode, representing a subtree, will get
reused if any node inside the subtree appears. The IP address cache
and the TCAM will hit only if the same IP address recurs. For the
three trace files, the miss ratios for a 32 KB TBM supernode cache
are 8%, 10% and 15%, respectively, and that for a same sized SST
supernode cache are 10%, 13% and 20%. When the cache size
reaches 128 KB, the miss ratios for a TBM supernode cache can
be further reduced to 3%, 4% and 5%, while that for an SST cache
are 5%, 6% and 9% separately. The miss ratio for the SST supernode
cache is a bit higher than that of the TBM cache. This is due to the
irregular shape of an SST supernode. To demonstrate this, we as-
sume a TBM and an SST constructed from two identical binary
tries. One can expect that for an S-stride TBM supernode, the root
binary node, denoted by x, and all of its descendants within S � 1
generations, are contained in this supernode. This implies that an
IP address’ search path which passes node x and ends at one of
the following S � 1 bits will hit this supernode cache if it exists
in the cache. However, this cannot be guaranteed in the SST since
any descendant of node x is possible to locate in a different SST
supernode, which results in a larger miss rate for the SST cache;
(2) the slope of the IP address cache and the TCAM cache miss ratio
lines are more flat than that of the TBM supernode cache and SST
supernode cache. This means that temporal locality of the IP ad-
dress streams are limited. The possibility of recurrence of a supern-
ode is larger than that of an IP address. Actually, this is the theory
foundation of that a supernode cache outperforms an IP address
cache.We also performed a sensitivity study for the SST cache.
When the SST supernode size increases, the average search times
can be further reduced. Consequently, the memory block size con-
taining the SST supernodes will also be increased. Fig. 10 demon-
strates the average search times for the three trace files, with a
128 KB cache but different SST supernode sizes. We can observe
Fig. 10. Average memory accesses in SSTs with different supernode sizes.
that the performance benefits from a large SST supernode almost
reach its limit when the size is 24.

To illustrate power efficiency of the proposed supernode cache,
we simulate energy consumption of the four caching scheme. We
use CACTI 4.1 [26] to simulate the IP address cache and the supern-
ode caches because they are set-associative cache. CACTI is firstly
released to help computer architects to model SRAM caches, and
now is a tool widely used to measure cache power, estimate cache
area and other circuit features. For the power issue which we are
interested in this work, CACTI can accurately compute the total dy-
namic read power/energy, write power/energy. It is sensitive to a
group of configuration parameters including cache size, associativ-
ity, tag bits length and manufacture technology, and etc. In our
simulation, we input different sets of parameters that correspond
to each scheme to CACTI and measure the power consumption
individually. Specifically, for the caches used in the four schemes,
we assume they work under a Vdd of 1.7V and 0.18 lm technology.
We configure the cache as set-associative and set the block size to
be 4 bytes. Cache size is increased from 8 KB to 128 KB. To make
comparison fair, we also include power consumption of the small
1 KB fully associative cache which includes all 8-bits supernodes
in the TBM supernode cache scheme and the small 2 KB fully asso-
ciative cache in the SST supernode cache scheme. According to
Fig. 7, the average activity of this small cache is about 20% for all
three trace files. Therefore, in our simulation, we include 20%
power consumption for the fully associative caches. We also simu-
late TCAM’s power consumption using a recent model [27]. Fig. 11
depicts read energy which represents most of energy consumption
of four caching schemes. From this figure, we can see that both the
TBM and SST supernode cache have a little higher energy con-
sumption than the simple IP address cache because 20% additional
searches fall into the small 1 KB or 2 KB fully associative 8-bit
supernode cache. For the supernode caches, the energy consump-
Fig. 11. Read energy comparison of the three caching schemes.

Y. Zhang et al. / Computer Communications 33 (2010) 390–397 397
tions are very close to that of the simple IP address cache. The SST
cache consumes slightly higher power than the TBM cache does.
This is because (1) the SST cache has 2 bits more in its tag array
as discussed in Section 3; (2) the fully associative cache has larger
size (2 KB). However, the supernode caches still demonstrate sig-
nificant advantage comparing to the TCAM. For a 128 KB cache,
the read energy consumptions for TCAM, SST, TBM are 15.64 nJ,
3.64 nJ and 3.61 nJ, respectively, which means both supernode ca-
ches save 77% energy consumption compared with the same size of
a TCAM.
5. Conclusion

In this paper, we propose a novel supernode caching scheme to
reduce IP lookup latencies and energy consumption in network
processors. In stead of using an expensive TCAM based scheme,
we implement a set-associative SRAM based caching scheme. The
proposed supernode cache can work for multiple organizations of
a binary IP routing tree: not only for regular shaped tree bitmaps
(TBMs), but also for irregular shaped shifting tries (SSTs). The
supernode cache, which stores recently visited supernodes of the
longest matched prefixes in the routing table, is placed in-between
the processor and the low level memory which contains the IP
routing table in a tree structure. A supernode hitting in the cache
reduces the number of accesses to low level memory, leading to
a fast IP lookup. When the cache size is set to be 128 KB, a TBM
supernode cache can save an average 69%, up to 72%, of total mem-
ory accesses for the selected three IP trace files, and it ourperforms
a same sized set-associative IP address cache 34% in the average
number of memory accesses. For SST, which is originally proposed
to improve the worst case performance, our supernode caching
scheme greatly improve its average performance: an average
76%, up to 78%, of total accesses can be reduced for the three se-
lected trace files. Compared to a TCAM with the same size, the
TBM and the SST supernode cache can both save 77% of the energy
consumption. The supernode cache works better for a trace file
with larger groups LPM hits in relatively long prefixes. Our results
also illustrate that the supernode caches catch stronger temporal
locality than the other two cache schemes do.
Acknowledgment

This work is supported in part by the Louisiana Board of Regents
grants NSF (2006)-Pfund-80, NSF (2009)-Pfund-136 and LEQSF
(2006-09)-RD-A-10, the Louisiana State University and an ORAU
Ralph E. Powe Junior Faculty Enhancement Award. The authors
thank Dr. Sartaj Sahni for his feedbacks on the draft. Anonymous
referees provide helpful comments.
References

[1] Y. Rekhter, T. Li, An architecture for IP address allocation with CIDR, RFC 1518
(1993). September.

[2] EZ Chip Network Processors, Available from <http://www.ezchip.com>.
[3] Intel IXP2850 Network Processor, Available from <http://www.intel.com/

design/network/products/npfamily/ixp2850.htm>.
[4] Network and Communications ICs, Available from <http://www.agere.com/

enterprise_metro_access/network_processors html>.
[5] F. Zane, G. Narlikar, A. Basu, CoolCAMs: Power-Efficient TCAMs for Forwarding

Engines, IEEE INFOCOM, April 2003.
[6] S. Kaxrias, G. Keramidas, IPStash: a power-efficient memory architecture for

IP-lookup, in: Proceedings of the 36th International Symposium on
Microarchitecture, December 2003.

[7] J. Fu, O. Hagsand, G. Karlsson, Improving and analyzing LC-trie performance for
IP-address lookup, Journal of Networks 2 (3) (2007).

[8] B. Talbot, T. Sherwood, B. Lin, IP caching for terabit speed routers, Globecom
(1999).

[9] T. C. Chiueh , P. Pradhan, High-performance IP routing table lookup using CPU
caching , IEEE INFOCOM 1999.

[10] T. Chiueh, P. Pradhan, Cache memory design for network processors, in:
Proceedings of the Sixth International Symposium on High Performance
Computer Architecture, pp. 409–418, Feb. 2000.

[11] T. Sherwood, G. Varghese B. Calder, A pipelined memory architecture for high
throughput network processors, in: Proceedings of the 30th International
Symposium on Computer Architecture (ISCA), June 2003.

[12] W. Eatherton, G. Varghese, Z. Dittia, Tree bitmap: hardware/software IP
lookups with incremental updates, Computer Communication Review 34 (2)
(2004) 97–122.

[13] H. Song, J. Turner, J. Lockwood, Shape shifting tries for faster IP route lookup,
in: Proceedings of the13th IEEE International Conference on Network
Processors, November 2005.

[14] W. Lu, S. Sahni, Succinct representation of static packet classifiers, IEEE/ACM
Transactions on Networking 17 (3) (2009).

[15] L. Peng, W. Lu, L. Duan, Power efficient IP lookup with supernode caching, in:
Proceedings of the 50th IEEE Global Communications Conference (Globecom),
November 2007.

[16] S.H. Gunther, F. Binns, D.M. Carmean, J.C. Hall, Managing the impact of
increasing microprocessor power consumption, Intel Technike Journal Q1
(2001).

[17] K. Skadron, M.R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, D. Tarjan,
Temperature-aware microarchitecture, in: Proceedings of the 30th Intl. Symp.
on Computer Architecture (ISCA), June, 2003.

[18] J. Srinivasan, S.V. Adve, P. Bose, J.A. Rivers, The Case for lifetime reliability-
aware microprocessors, in: Proceedings of the 31st Intl. Symp. on Computer
Architecture (ISCA), June 2004.

[19] X. Fan, C.S. Ellis, A.R. Lebeck, The Synergy between Power-Aware Memory
Systems and Processor Voltage Scaling, in: Power Aware Computer Systems
(PACS’03), Springer-Verlag, December 2003.

[20] Power Saving Techniques, Available from <http://www.book.
opensourceproject.org. cn/embedded/oreillyembed/opensource/0596009836/
id- i_0596009836_chp_14_sect_5.html.>

[21] E. Horowitz, S. Sahni, D. Mehta, Fundamentals of Data Structures in C++, W.H.
Freeman, NY, 1995.

[22] W. Lu, S. Sahni, Low power TCAMs for very large forwarding tables, INFOCOM,
2008.

[23] Available from <http://www.bgp.potaroo.net/as1221/bgptable.txt>.
[24] Available from <ftp://pma.nlanr.net/traces/>.
[25] B. Talbot, T. Sherwood, B. Lin, IP Caching for Terabit Speed Routers,

Globecom’99, pp. 1565–1569, December, 1999.
[26] D. Tarjan, S. Thoziyoor, N.P. Jouppi, CACTI 4.0 Technical Report, Available from

<http://www.hpl.hp.com/techreports/2006/HPL-2006-86.pdf>.
[27] B. Agrawal, T. Sherwood, Modelling TCAM power for next generation network

devices: in Proceedings of IEEE Intl. Symp. on Performance Analysis of Systems
and Software (ISPASS-2006).

http://www.ezchip.com
http://www.intel.com/design/network/products/npfamily/ixp2850.htm
http://www.intel.com/design/network/products/npfamily/ixp2850.htm
http://www.agere.com/enterprise_metro_access/network_processors
http://www.agere.com/enterprise_metro_access/network_processors
http://www.book.opensourceproject.org
http://www.book.opensourceproject.org
http://www.bgp.potaroo.net/as1221/bgptable.txt
http://www.hpl.hp.com/techreports/2006/HPL-2006-86.pdf

	Expediating IP lookups with reduced power via TBM and SST supernode caching
	Introduction
	Related work and background
	Tree bitmap (TBM)
	Shape shifting trie (SST)

	Supernode caching
	Experimental results
	Conclusion
	Acknowledgment
	References

