
Case Studies: Memory Behavior of
 Multithreaded Multimedia and AI Applications

Lu Peng*, Justin Song, Steven Ge, Yen-Kuang Chen,

Victor Lee, Jih-Kwon Peir*, and Bob Liang

* Computer Information Science & Engineering Architecture Research Lab
University of Florida Intel Corporation

 {lpeng, peir}@cise.ufl.edu {justin.j.song, steven.ge, yen-kuang.chen,
 victor.w.lee, bob.liang}@intel.com

Abstract

Memory performance becomes a dominant factor for

today’s microprocessor applications. In this paper, we
study memory reference behavior of emerging
multimedia and AI applications. We compare memory
performance for sequential and multithreaded versions
of the applications on multithreaded processors. The
methodology we used including workload selection and
parallelization, benchmarking and measurement,
memory trace collection and verification, and trace-
driven memory performance simulations. The results
from the case studies show that opposite reference
behavior, either constructive or disruptive, could be a
result for different programs. Care must be taken to
make sure the disruptive memory references will not
outweigh the benefit of parallelization.

1. Introduction

 Multimedia and Artificial Intelligent (AI) applications
have become increasingly popular in microprocessor
applications. Today, almost all the commercial
processors, from ARM to Pentium®, include some type
of media enhancement in their ISA and hardware [1][2].
While there has been much work put into studying
memory performance for general integer and large-scale
scientific applications due to the widening processor-
memory performance gap, this paper focuses on memory
behavior studies for multimedia and AI applications.
 The memory reference behavior study of the emerging
applications is complicated by the fact that general-
purpose processors have begun to support multithreading
to improve throughput and hardware utilization. The new
Hyper-Threading Technology brings the multithreading
idea into Intel architecture to make a single physical

processor operated as two logical processors [3]. Active
threads on each processor have their own local states,
such as Program Counter (PC), register file, and
completion logic, while sharing other expensive
components, such as functional units and caches. On a
multithreaded processor, multiple active threads can be
homogenous (from the same application), or
heterogeneous (from different independent applications).
In this paper, we investigate memory-sharing behavior
from homogenous threads of emerging multimedia and
AI workloads.
 Two applications, AEC (Acoustic Echo Cancellation)
and SL (Structure Learning), were examined. AEC is
widely used in telecommunication and acoustic
processing systems to effectively eliminate echo signals
[4]. SL is widely used in bioinformatics for modeling of
gene-expression data [5]. Both applications were
parallelized using OpenMP [6] and were run on
Pentium® 4 processors with/without Hyper-Threading
Technology [7].
 When multiple threads are running in parallel on a
multithreaded processor with shared caches, their
memory behavior is influenced by two essential factors.
First, the memory reference sequence among multiple
threads can be either constructive or disruptive. The
memory behavior is constructive when multiple threads
share the data that was brought into the shared cache by
one or another [8]. In other words, memory reference
locality exhibits in the original single thread may be
transformed and/or further enhanced among multiple
threads. The memory behavior is disruptive when
multiple threads have rather distinctive working sets and
compete with the limited memory hierarchy resources.
Second, the memory usage or footprint may increase
among multiple threads based on the fact that certain
data structures or local variables may be replicated to
improve parallelism. The increase of memory footprint

alters the reference behavior and demands larger caches
to hold the working set.
 There have been many studies targeting memory
performance for commercial workload [9,10] as well as
media [11] and Java applications [12,13]. In [11],
hardware trace collection and trace-driven simulation is
used to study the memory behaviors of a group of
multimedia applications running on different Operating
Systems including Linux, Window NT and Tru-Unix.
Techniques of using compiler-based, dynamic profile-
based, or user annotation-based methods to improve
cache performance were discussed [14,15,16,17,18].
Instead of inventing new hardware or software
techniques to improve memory reference behavior, this
paper demonstrates a methodology for memory behavior
analysis and shows initial simulation results of the latest
multimedia and AI applications. The detailed analysis
methodology will be described in the next section.
Section 3 compares the memory reference behavior
based on data reuse distances of the multithreaded AEC
and SL. In comparison with the original sequential
program, we found that the reuse distance of AEC
increases with the number of parallel threads. On the
contrary, the reuse distance of SL decreases with the
degree of parallelization. The reasoning for such
opposite memory behaviors will be discussed. Finally,
Section 4 concludes this study.

2. Methodology for Memory Behavior
Studies

 Execution-driven, whole-system simulation method
has become increasingly popular for studying memory
reference behavior of multithreaded applications. In this
paper, we use Simics [19], a whole system simulation
tool, which is capable of running unmodified commercial
operating system and applications. We first select
interesting, emerging media and AI applications as the
workload for our studies. The selected applications are
parallelized using OpenMP and run on Pentium® 4
systems for performance measurement. After
demonstrating performance advantages, the parallelized
applications are ported and run on the Simics simulation
environment.
 A precise, cycle-based memory model can be built and
integrated with Simics virtual machine to drive the
simulation. However, in order to obtain fast performance
approximations over a large design space, we decided to
apply trace-driven simulations based on the trace
collected from the Simics simulation environment. The
generic cache model in the Simics tool set was modified
for trace collection. The characteristics of the collected
trace is compared and verified with the measurement
results. Detailed trace-driven simulations are followed

based on various cache sizes, topologies and degrees of
parallelization. The above steps are described below.

Workload Selection and Parallelization: We selected
two emerging applications, AEC (Acoustic Echo
Cancellation) and SL (Structure Learning), in this study.
First, beside video communication, audio is also an
important component in an interactive communication;
for example, audio glitch is often more annoying than
video glitch. While many studies have been working on
video related workload, limited studies have been done
on audio communication. To make sure that future
processors deliver good acoustic quality, we select AEC
[4] as the first workload. Second, beside multimedia
communication, modern processors start to play an
important role in the bioinformatics studies, e.g.,
estimating certain expressions by transcription (amount
of mRNA made from the gene). Often the best clue to a
disease or measurement of successful treatment is the
degree to which genes are expressed. Such data also
provides insights into regulatory networks among genes,
i.e., one gene may code for a protein that affects
another’s expression rate. We select SL [5], which
models gene-expression profile data, as the second
workload.
 The selected applications are parallelized with
OpenMP and compiled with Intel compiler 7.1 release
[20]. In this environment, the OpenMP master thread
automatically creates and maintains a team of worker
threads; each executing specific tasks assigned by the
master thread. All worker threads will not exit until the
end of process, thus forming a pool of active threads.
Basically, the main parallelization for both workloads is
done on for-loops. For-loop parallelization can be
specified using the OpenMP specification. Task queue
based parallelization is also applied, which allows do-
while style parallelization. The first parallel region
hitting thread enqueues parameters needed by worker
threads, and other threads fetch parameters in stack and
begin execution. With the task queue mode, dynamic
execution of threads does not have to be identical.

Benchmarking and Measurement: The parallelized
applications first run on Pentium® 4 systems. To avoid
excessive overheads associated with thread scheduling,
we only run the parallelized programs with the number of
workers less than or equal to the capacity of the physical
system. For example, in our studies on a Quad 2.8GHz
Pentium® 4 Xeon™ MP machine with 2GB DDR
SDRAM, a maximum of 4 worker threads are generated.
We use VTune™ performance analyzer [21] to collect
statistics including execution clock ticks, number of
instructions, number of memory references, cache
hits/misses, etc. From these measurement results,
information, such as speedups and the total memory

references among sequential and parallel executions of
the applications can be calculated. Furthermore, we use
the Windows-based Perfmon [22] to collect page-fault
information for calculating the memory usage. Since
physical memory is much larger than the maximal
memory requirement of both applications, once a page
comes into working set, it will not be swapped out. In
other words, this counting should provide a reasonable
estimation for the pages needed by the applications.
There are two important examinations:
(1) The total memory usage and the total memory

references for the single and multiple threaded
versions of each application are compared. These
measurement results are then verified against what
presents in the sequential and parallel source code.

(2) The execution time and speedup of the single and
multiple threaded versions of the application are also
compared against the potential speedup exhibited in
the source code.

 Various problem sizes are tested to understand
parallelization overheads and memory hierarchy
limitations associated with the program. Proper problem
sizes are selected for memory behavior studies with the
following considerations. First, the problem size must be
reasonable large to be practical for real applications.
Large problem sizes present significant demand on
memory hierarchy for our studies. Large problem sizes
can also amortize overheads paid to initialize and
synchronize multiple threads. Second, the problem size
should not be too big to create distortions due to cache
limitations on both the measurement and the simulation
environments. In addition, large problem sizes may
increase the simulation time and make it difficult to
handle for trace-driven simulations.

Memory Trace Collection: Trace-driven simulation
with sequential and parallel versions of the source code
is applied to study memory behavior. Memory traces are
collected under Simics. Based on the VTune™
measurement, proper problem sizes are selected. Both
sequential and parallel versions of the program are
running on the Simics environment for trace collections.
To mimic hardware-collected traces, a memory hierarchy
model with a generic cache is integrated to enable
execution-driven simulations. The memory model is
invoked whenever a memory instruction is executed. A
search through the generic cache is performed. Upon a
miss, the thread will be delayed a specific cycles
assigned a priori that matches the real hardware delay on
the experimental system to provide more accurate
reference sequence among multiple threads.
 The trace-driven simulation has two advantages over
the execution-driven simulation. First, it is possible to
post-processing traces for ease of study of block reuse
distances, optimal replacement policy, etc. Second, it is

much faster to simulate traces off-line comparing with
on-the-fly, execution-driven simulation on Simics. This
fast simulation speed allows us to exploit bigger design
space and to quickly grasp the general behavior; and thus
permits more accurate simulations to limited interesting
design points. The collected memory traces are verified
against the VTune™ and Perfmon measurement results.
Two important parameters, the total number of memory
references and the memory usage are compared. Due to
the diversity between the measurement and the simulated
environments, we pay more attention to the relative
behavior among sequential and parallel versions of the
applications. A closely match indicates that the memory
traces are representative to the real hardware traces.

Trace-driven simulations: To compare memory
reference behavior of single and multiple threads, the
traces from various parallelization configurations are
used for off-line cache simulations. In this step, a
functional cache model is developed. Several parameters,
such as block reuse distances, memory footprint size,
cache hit/miss ratios, etc. are collected and compared.
The block reuse distance between consecutive references
to the same block provides the key insight in comparison
of memory reference behavior. The hit/miss ratios of
various cache sizes and set-associativities with different
degrees of parallelization summarize the performance
comparison results.

3. Performance Evaluation

 Memory performance comparisons between single-
and multi-threaded versions of AEC and SL are given in
this section. We will first show the parallelization and
measurement results that will be followed by the reuse
distances and cache hit/miss results. It is interesting to
observe that the memory reuse distance for the SL goes
down with the degree of parallelization, while the
distance for the AEC goes up with the degree of
parallelization.

3.1. Parallelization and Measurement

 Both AEC and SL are computational-intensive and
demand large memory space. The hard real-time
requirement of AEC and the stringent search requirement
of SL make parallelization of these applications a viable
approach on current Pentium® 4 systems to achieve
faster execution time. AEC employs the algorithm of
frequency-domain RLS (Recursive Least Square) [23].
The AEC’s computational complexity is ()nknO log ,

where k is the number of channels and n is the block
size. We select a large block size (1024 sample points
per sample unit) and multiple channels (12 microphone

arrays and 2 reference channels) to maintain high echo
cancellation quality. With the audio sampling frequency
192KHz that is necessary for digital audio editing, AEC
must finish processing of each block within 5.3ms for
maintaining the hard real-time requirement. Our
experiment shows that with 1K block size, 12 input and 2
reference channels, and with the constraint that CPU
utilization ratio must be no more than 10% (because
AEC processing is often used as a preprocessing
component for other applications or in the driver), the
hard real-time requirement cannot be met on a 3.0GHz
Pentium® 4 CPU with dual-channel DDR400 memory.
SL uses greedy hill-climbing algorithm to search state
space of a Bayes Network. The SL’s computational
complexity is ()2knO , where k is the number of iteration
samples and n is the number of nodes in a Bayes
Network. Our experiments use only 37 nodes in a Bayes
Network with 3000 samples. The running time on a
3.0GHz Pentium® 4 CPU with dual channel DDR400
platform is 3.4 seconds. For practical problem solving,
the number of nodes and samples can be increased
tremendously.
 Figure 1 shows the flowchart of AEC and SL
processing. We highlight regions where parallelization is
adopted. These regions are identified as execution

hotspots with Intel VTune™, and are worth efforts of
parallelization. The main parallelization for both
workloads is done on for-loops. Every channel is
processed as an iteration of the for-loops. For SL,
besides for-loops parallelization, a task-queue based
parallelization is also applied for the region of
calculating the score for all valid moves. The first
parallel region hitting thread enqueues parameters
needed by all worker threads, and then other worker
threads fetch parameters in stack and begin execution.
 The speedups, the total memory references, and the
total memory usages for AEC and SL with the chosen
parameters are plotted in Figure 2. The sequential
programs as well as the parallel versions with 1 to 4
workers are executed on a quad Pentium® 4 Xeon™ MP
system for collecting the statistics. We can make several
observations.
1. Both workloads show performance improvement up

to 4 workers. For SL, part of data is shared by all the
threads. Simultaneous accesses to the shard data
incur large amount of inter-processor traffic (e.g.
MESI-coherence invalidations). For Quad Pentium®
4 Xeon™ MP system, the 4 processors are sharing
one front-side bus (FSB), so the large MESI
coherence traffic saturates FSB, and thereby limiting
its speedup. For AEC, each channel processing is

all blocks done?

all channels done?

Signal to F domain

Ref and h(n) conv

Get error signal and to F

Update Su and inversion

SuDD’ and error product

F domain H update

Initialization

end

no

yes

no

yes

for loop parallelization w
ith O

penM
P

start learning

calculate initial score

get all valid moves

calculate the score of all
valid moves

sort the moves by score

apply the move to DAG

update the score

learning finished?

end
yes

no

for loop
parallelization
w

ith O
penM

P

task queue
parallelization
w

ith O
penM

P

1a: AEC 1b: SL

Figure 1. AEC and SL Flowchart and Parallelization Regions

executed in parallel with little cache interference.
The access of the input channel data is initiated at
the program initiation phase and memory bandwidth
requirement is not a problem. This is the main
reason that AEC displays much better speedup than
SL. Figure 3 shows the FSB activity of SL and AEC
on Quad Pentium® 4 Xeon™ MP system without
using the Hyper-Threading Technology. Note that
cache coherence traffic can be eliminated if the
parallelized SL is running on a single multithreaded

processor with shared caches. Instead of 1.3x
speedup of 2-worker SL on quad Pentium® 4 without
Hyper-Threading Technology, our experiment with
2-worker SL on a single Pentium® 4 system with
Hyper-Threading Technology has shown 1.6x
speedup. This is because SL’s shared data are
maintained as one copy in Hyper-Threading’s shared
cache and updates the shared data do not generate
extra front-side bus traffic.

2. The parallel versions of both programs show

0.5
1

1.5
2

2.5
3

3.5

se
qu

en
tia

l

1-
w

or
ke

r

2-
w

or
ke

r

3-
w

or
ke

r

4-
w

or
ke

r

se
qu

en
tia

l

1-
w

or
ke

r

2-
w

or
ke

r

3-
w

or
ke

r

4-
w

or
ke

r

AEC SL

R
at

io

speedup
mem-ref
mem-use

Figure 2. Measurement Results of Sequential and Parallel AEC and SL

 ������������������������	�
��������
����������������������
�����������������������������	�
��������
����������������������
��������������������������

!"
#$
%$
&'
($
)'
*$
+'
,'
!- '

.0/21'3

4

 5�6 75�6 75�6 7

5�6 7
8�9�:�;�<�=�>
?�@�ACB�A�@�D�E�F�G�H8�9�:�;�<�=�>
?�@�A0B�A�@�D�E�F�G�H8�9�:�;�<�=�>
?�@�ACB�A�@�D�E�F�G�H8�9�:�;�<�=�>
?�@�A0B�A�@�D�E�F�G�H

I
J-I
K$I
L$I
M'I
N$I
O'I
P$I
Q'I
R'I
J2I'I

SCTVU'W

X

Figure 3. MT_SL and MT_AEC’s FSB behavior

moderate overheads in terms of the total number of
memory references. This is because of extra data
structures such as the thread queues and OpenMP
aware thread control blocks. Besides, worker threads
need to replicate certain data structures, operate on
the data, and copy them back and forth from/to the
shared data area.

3. The total memory usage increases slightly with
parallel versions. The memory usage goes up with
the number of worker thread because worker threads
have their own replicated private data set. OpenMP
clauses, e.g. “reduction” and “captureprivate” also
require worker threads to operate on temporary
variables from the OpenMP stack.

3.2. Memory Trace Collection and Verification

 Memory reference traces collected from execution-
driven simulations of sequential and parallel versions of
AEC and SL on Simics are used to drive off-line cache
models. The Simics virtual machine is configured to the
same as that of the Pentium® 4 used for measurement.
The applications running on both environments are
carefully tuned to start and end at identical points. A
generic L1/L2 cache model is integrated with Simics
simulations for approximating the correct sequence of
memory references. We simulate a direct-mapped, I/D
split, 8KB L1 with 2-cycle access, and a combined, 8-
way, 512KB L2 with 7-cycle access. L2 misses are
charged for 200 cycles. L1 miss penalty is processor-
design specific, and we measured L2 miss penalty with
Vtune. Note that in both environments, only the user
threads are counted. The system threads represent less
than 5% of the overall memory references.
 In Figures 4 and 5, the simulated results show that
both the total memory references and the memory usage
increase slightly with the degree of parallelization similar
to that from the measurement results.

(1) For memory references, VTune™ counts the total
committed loads and stores, which is slightly less
than the memory references from the Simics
reference traces. Through detailed analysis, we
found that Simics may increase the total references
by repeating a cache miss at a second time. As a
result, the collected trace (unfiltered) could exhibit a
slightly better cache behavior.

(2) For memory usages, the hardware counters in
VTune™ cannot record the memory footprint for
each process. For comparison purposes, we use
another measurement tool, Perfmon on Windows
that counts the number of page faults for each
process. We use the measured total page faults to
estimate the total memory usage. As shown in Figure
4, the Perfmon results of memory usages are
consistently larger than that from the trace results
(i.e., from virtual address traces simulated with 4KB
page size). There are two reasons for this
discrepancy. First, Perfmon measures the total page
faults including instruction references while the
collected traces only have data references. Second,
each virtual page could potentially cause more than
one page fault. Therefore, we conclude that the
collected traces should reasonably reflect the real
hardware behavior.

3.3 Memory Behavior Studies

 The collected memory traces are post-processed to
insert the reuse distance information to each memory
request. Table 1 summarizes the distribution of reuse
distances for sequential and parallel versions of AEC and
SL. Note that we are focusing on the impact of memory
references on multithreaded processors where multiple
threads are likely to share processor caches. Therefore,
the reuse distance is measured among all the threads.
Note also that the reuse distance reflects the impact of
both constructive/disruptive memory reference behavior

0

2

4

6

8

10

12

14

sequential 1-worker 2-worker 3-worker 4-worker

M
em

or
y

U
sa

ge
 (M

B
) SL Perfmon

SL Simics
AEC Perfmon
AEC Simics

Figure 5. Memory Usage Comparison Between Perfmon
and Simics

1000

1500

2000

2500

3000

3500

se
qu

en
tia

l

1-
wor

ke
r

2-
wor

ke
r

3-
wor

ke
r

4-
wor

ke
r

N
um

be
r

of
 R

ef
er

en
ce

s
(M

ill
io

n) AEC Simics
AEC VTune
SL Simics
SL VTune

Figure 4. Number of Memory References Comparison
Between VTune™ and Simics

and changes of memory usage among sequential and
various parallel versions of the program.
 The results show opposite memory reference behavior
of AEC and SL with respect to the parallelization. For
AEC, the short reuse distance (<1000, that can be fitted
in a 64KB cache) decreases with the number of workers
while the long reuse distance (>20000) goes up with the
number of workers. SL, on the other hand, has more
shorter reuse distances (<20000) with higher degrees of
parallelization. Careful examining the source codes, we
discover the key difference between the two workloads.
In AEC, each thread’s working set is more independent
due to replications of a few data structures. Since a
significant portion of the memory references targets
private data, larger reuse distances are observed when
mixing references among multiple threads. In SL, a
majority of memory accesses from each thread target the
shared data. By interlaced executions of threads in the
thread queue causes data to be accessed more closely
than that in the single-thread SL.
 The hit ratios of various shared cache sizes of the
sequential and parallel versions of AEC and SL are
plotted in Figures 6 and 7 respectively. We can clearly
see that for AEC, the 4-worker version has the lowest hit
ratios. The hit ratio increases with decreasing degree of
parallelization. The low hit ratio may increase memory

stalls significantly and outweigh the benefit of
multithreading. Recall that the main reason for this
memory performance degradation is due to accessing
independent data in each thread. These largely
independent working sets compete with limited cache
space. Misses are almost gone with a 1MB cache, in
which the entire working set can be held. The original
sequential program and the parallelized program with a
single worker have almost identical memory behavior
indicating a similar memory behavior due to the extra
code from OpenMP parallelization.

 SL shows considerable better memory behavior with
higher degrees of parallelization of 2 or more workers.
This is due to the fact that data sharing among multiple
threads makes it possible to prefetch shared data for one
another. When the cache is smaller than 1MB, the hit
ratios are almost the same for all configurations. Careful
analysis of the SL source code discloses that SL operates
a data block of 64KB for a period before switching to
another block. The next data block is hard to predict.
Misses usually occur between block switching unless
cache size is big enough (2MB) to hold the entire
working set. The small gap between the original
sequential program and the parallelized program with a
single worker indicates a slightly better reference locality
due to the extra code from OpenMP parallelization.

90

92

94

96

98

100

64 128 256 512 1024 2048 4096

Cache Size (KB)

H
it

R
at

io
 (%

)

4-worker
3-worker
2-worker
1-worker
sequential

Figure 7. Hit Ratios of Single and Multiple Threaded SL

Table 1. The Reuse Distance Distribution of AEC and SL

AEC Sequential 1-worker 2-worker 3-worker 4-worker
0 ~ 999 Y�Z�[�\]Y�^ � Y�Z�[]_�`�[� Y�Z�[]_�\�a � Y�Z�[]_�b0c � Y�Z�c][�c]^ �

1000 ~ 9999 Y�Z�Y�[�d�_ � Y�Z�Y�[�d�[� Y�Z�Y�[�_�\ � Y�Z�Y�[�_�[� Y�Z�b0a�d�Y �
10000 ~ 19999 Y�Z�Y�b'^�b � Y�Z�Y�b0^�d � Y�Z�Y�b0d�a � Y�Z�Y�b'_�c � Y�Z�Y�b0[�Y �

> 20000 Y�Z�Y�\
b0Y � Y�Z�Y�\�b'd � Y�Z�Y�\�[�Y � Y�Z�Y�\�[�[� Y�Z�Y�^�d]_ �
SL Sequential 1-worker 2-worker 3-worker 4-worker

0 ~ 999 Y�Z�`�d�[�` � Y�Z�`�d�`�\ � Y�Z�`�a�\]` � Y�Z�`�a�\�_ � Y�Z�`�a]_�d �
1000 ~ 9999 Y�Z�Y�Y�d�c � Y�Z�Y�Y�\�_ � Y�Z�Y�Y�`�^ � Y�Z�Y�b0d�\ � Y�Z�Y�b'_�d �

10000 ~ 19999 Y�Z�Y�Y�Y�\ � Y�Z�Y�Y�Y�\ � Y�Z�Y�Y�b'Y � Y�Z�Y�Y�b�b � Y�Z�Y�Y�b'^ �
> 20000 Y�Z�Y�^�c�[� Y�Z�Y�^�_�\ � Y�Z�Y�\�a�\ � Y�Z�Y�\�b'Y � Y�Z�Y�\�Y�Y �

90

92

94

96

98

100

64 128 256 512 1024 2048 4096

Cache Size (KB)

H
it

R
at

io
 (%

)

sequential
1-worker
2-worker
3-worker
4-worker

Figure 6. Hit Ratios of Single and Multiple Threaded
AEC

4. Conclusion

 As multithreading technology becomes popular in
today’s microprocessors, this paper studies memory
behaviors of multithreaded multimedia and AI
applications. A methodology including workload
selection and parallelization, benchmarking applications
on Pentium® 4 systems for performance measurement
using VTune™ and Perfmon, memory reference traces
collection and verification using Simics, and trace-driven
simulation and analysis, has described. The performance
evaluation indicates a constructive and a disruptive
memory behavior can both be a result from
parallelization of the selected applications. Care must be
taken to avoid disruptive memory reference behavior.
Our reuse-distance analysis not only can help
understanding constructiveness/destructiveness behaviors
of the multithreaded workloads, but can also feedback to
the programmer for improving program parallelization,
and/or to the designer for enhancing future memory
hierarchy designs.

5. Acknowledgement

 This work is supported in part by an NSF grant EIA-
0073473 and by research donations from Architecture
Research Lab and China Research Center of Intel Corp.
Anonymous referees provide helpful comments.

6. Reference

1. Intel Corp., Intel® Architecture MMX™ Technology

Developer's Manual, IL: Intel Corporation, Order Number
243006, 1996.

2. Intel Corp., Intel® Architecture MMX™ Technology
Programmer's Reference Manual, IL: Intel Corporation,
Order Number 243007.

3. D. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J.
A. Miller, and M. Upton, “HyperThreading Technology
Microarchitecture and Performance,” Intel Technology
Journal, Q1 2002.

4. J. Song, J. Li, and Y.-K. Chen, “Quality-Delay-and-
Computation Trade-Off Analysis of Acoustic Echo
Cancellation On General-Purpose CPU,” Proc. of Int’l
Conf. on Acoustics, Speech, and Signal Processing, vol.
2, pp. 593-596, Apr. 2003.

5. D. Heckerman, "A tutorial on learning with Bayesian
networks", Microsoft Research tech. report, MSR-TR-95-
06, 1996.

6. OpenMP forum, http://www.openmp.org
7. X. Tian, Y.-K. Chen, M. Girkar, S. Ge, R. Lienhart, and

S. Shah, “Exploring the Use of HyperThreading
Technology for Multimedia Applications with Intel

OpenMP Compiler,” Proc. of Int’l Parallel and
Distributed Processing Symp., Apr. 2003.

8. Y.-K. Chen, R. Lienhart, E. Debes, M. Holliman, and M.
Yeung, "The Impact of SMT/SMP Designs on Multimedia
Software Engineering---A Workload Analysis Study,”
Proc. of Int’l Symp. on Multimedia Software Engineering,
Dec. 2002.

9. L.A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
System Characterization of Commercial Workloads. Proc
of. ISCA 25, pages 3–14, June 1998.

10. R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eri, H.
Nueckel, J. P. Shen, Scaling and Charact rizing Database
Workloads: Bridging the Gap between Research and
Practice, Proc. of MICRO 36, pages 151-164, December,
2003.

11. S. Sohoni, R. Min, Z. Xu, Y. Hu, A study of memory
system performance of multimedia applications, Proc. of
SIGMETRICS 2001, pages 206-215, June, 2001.

12. M. Karlsson, K. E. Moore, E. Hagersten, and D. A.Wood.
Memory System Behavior of Java-Based Middleware,
Proc. of HPCA 9, pages 217-228, February 2003.

13. Y. Luo and L. K. John. Workload Characterization of
Multithreaded Java Servers. Proc. of IEEE International
Symposium on Performance Analysis of Systems and
Software, 2001.

14. S. G. Abraham and D. E. Hudak. “Compile-time
partitioning of iterative parallel loops to reduce cache
coherency traffic”. volume 2, pages 318–328, Jul. 1991.

15. K. Kennedy and K. S. McKinley. “Optimizing for
parallelism and data locality. Proc. of ACM International
Conference on Supercomputing, Jul. 1992.

16. G. Narlikar. “Scheduling threads for low space
requirement and good locality”. Proc. of ACM Symposium
on Parallel Algorithms and Architectures (SPAA), Jun.
1999.

17. M. Steckermeier and F. Bellosa. „Using locality
information in user level scheduling”. Technical Report
TR-95-14, University Erlangen-Nurnberg, 1995.

18. B. Weissman. “Performance counters and state sharing
annotations: a unified approach to thread locality”. Proc.
of ASPLOS-VIII, Oct. 1998.

19. P.S. Magnusson, etc. “Simics: A Full System Simulation
Platform”, IEEE Computer, Feb. 2002, pp50-58.

20. Intel C/C++ Compiler for Windows/Intel platforms,
http://www.intel.com/software/products

21. http://www.intel.com/software/products/vtune/techtopic/a
dvantage_vtune.pdf

22. Perfmon,http://www.microsoft.com/technet/treeview/defa
ult.asp?url=/technet/prodtechnol/winxppro/proddocs/NT_
Command_Perfmon.asp

23. M. Sondhi and D. R. Morgan, “Acoustic Echo
Cancellation for Stereophonic Teleconferencing”, Proc.of
IEEE ASSP Workshop Appls. Signal Processing Audio
Acoustics, 1991.

