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Abstract 

 
Memory performance becomes a dominant factor for 

today’s microprocessor applications. In this paper, we 
study memory reference behavior of emerging 
multimedia and AI applications. We compare memory 
performance for sequential and multithreaded versions 
of the applications on multithreaded processors. The 
methodology we used including workload selection and 
parallelization, benchmarking and measurement, 
memory trace collection and verification, and trace-
driven memory performance simulations. The results 
from the case studies show that opposite reference 
behavior, either constructive or disruptive, could be a 
result for different programs. Care must be taken to 
make sure the disruptive memory references will not 
outweigh the benefit of parallelization.  

 
 
1. Introduction 
 
    Multimedia and Artificial Intelligent (AI) applications 
have become increasingly popular in microprocessor 
applications. Today, almost all the commercial 
processors, from ARM to Pentium®, include some type 
of media enhancement in their ISA and hardware [1][2]. 
While there has been much work put into studying 
memory performance for general integer and large-scale 
scientific applications due to the widening processor-
memory performance gap, this paper focuses on memory 
behavior studies for multimedia and AI applications. 
    The memory reference behavior study of the emerging 
applications is complicated by the fact that general-
purpose processors have begun to support multithreading 
to improve throughput and hardware utilization. The new 
Hyper-Threading Technology brings the multithreading 
idea into Intel architecture to make a single physical 

processor operated as two logical processors [3]. Active 
threads on each processor have their own local states, 
such as Program Counter (PC), register file, and 
completion logic, while sharing other expensive 
components, such as functional units and caches. On a 
multithreaded processor, multiple active threads can be 
homogenous (from the same application), or 
heterogeneous (from different independent applications). 
In this paper, we investigate memory-sharing behavior 
from homogenous threads of emerging multimedia and 
AI workloads. 
    Two applications, AEC (Acoustic Echo Cancellation) 
and SL (Structure Learning), were examined. AEC is 
widely used in telecommunication and acoustic 
processing systems to effectively eliminate echo signals 
[4]. SL is widely used in bioinformatics for modeling of 
gene-expression data [5]. Both applications were 
parallelized using OpenMP [6] and were run on 
Pentium® 4 processors with/without Hyper-Threading 
Technology [7].  
    When multiple threads are running in parallel on a 
multithreaded processor with shared caches, their 
memory behavior is influenced by two essential factors. 
First, the memory reference sequence among multiple 
threads can be either constructive or disruptive. The 
memory behavior is constructive when multiple threads 
share the data that was brought into the shared cache by 
one or another [8]. In other words, memory reference 
locality exhibits in the original single thread may be 
transformed and/or further enhanced among multiple 
threads. The memory behavior is disruptive when 
multiple threads have rather distinctive working sets and 
compete with the limited memory hierarchy resources. 
Second, the memory usage or footprint may increase 
among multiple threads based on the fact that certain 
data structures or local variables may be replicated to 
improve parallelism. The increase of memory footprint 



alters the reference behavior and demands larger caches 
to hold the working set.   
    There have been many studies targeting memory 
performance for commercial workload [9,10] as well as 
media [11] and Java applications [12,13]. In [11], 
hardware trace collection and trace-driven simulation is 
used to study the memory behaviors of a group of 
multimedia applications running on different Operating 
Systems including Linux, Window NT and Tru-Unix. 
Techniques of using compiler-based, dynamic profile-
based, or user annotation-based methods to improve 
cache performance were discussed [14,15,16,17,18]. 
Instead of inventing new hardware or software 
techniques to improve memory reference behavior, this 
paper demonstrates a methodology for memory behavior 
analysis and shows initial simulation results of the latest 
multimedia and AI applications. The detailed analysis 
methodology will be described in the next section. 
Section 3 compares the memory reference behavior 
based on data reuse distances of the multithreaded AEC 
and SL. In comparison with the original sequential 
program, we found that the reuse distance of AEC 
increases with the number of parallel threads. On the 
contrary, the reuse distance of SL decreases with the 
degree of parallelization. The reasoning for such 
opposite memory behaviors will be discussed. Finally, 
Section 4 concludes this study. 
 
2. Methodology for Memory Behavior 
Studies 
 
    Execution-driven, whole-system simulation method 
has become increasingly popular for studying memory 
reference behavior of multithreaded applications. In this 
paper, we use Simics [19], a whole system simulation 
tool, which is capable of running unmodified commercial 
operating system and applications. We first select 
interesting, emerging media and AI applications as the 
workload for our studies. The selected applications are 
parallelized using OpenMP and run on Pentium® 4 
systems for performance measurement. After 
demonstrating performance advantages, the parallelized 
applications are ported and run on the Simics simulation 
environment.  
    A precise, cycle-based memory model can be built and 
integrated with Simics virtual machine to drive the 
simulation. However, in order to obtain fast performance 
approximations over a large design space, we decided to 
apply trace-driven simulations based on the trace 
collected from the Simics simulation environment. The 
generic cache model in the Simics tool set was modified 
for trace collection. The characteristics of the collected 
trace is compared and verified with the measurement 
results. Detailed trace-driven simulations are followed 

based on various cache sizes, topologies and degrees of 
parallelization. The above steps are described below.  
 
Workload Selection and Parallelization:  We selected 
two emerging applications, AEC (Acoustic Echo 
Cancellation) and SL (Structure Learning), in this study. 
First, beside video communication, audio is also an 
important component in an interactive communication; 
for example, audio glitch is often more annoying than 
video glitch. While many studies have been working on 
video related workload, limited studies have been done 
on audio communication. To make sure that future 
processors deliver good acoustic quality, we select AEC 
[4] as the first workload. Second, beside multimedia 
communication, modern processors start to play an 
important role in the bioinformatics studies, e.g., 
estimating certain expressions by transcription (amount 
of mRNA made from the gene). Often the best clue to a 
disease or measurement of successful treatment is the 
degree to which genes are expressed. Such data also 
provides insights into regulatory networks among genes, 
i.e., one gene may code for a protein that affects 
another’s expression rate. We select SL [5], which 
models gene-expression profile data, as the second 
workload. 
    The selected applications are parallelized with 
OpenMP and compiled with Intel compiler 7.1 release 
[20]. In this environment, the OpenMP master thread 
automatically creates and maintains a team of worker 
threads; each executing specific tasks assigned by the 
master thread. All worker threads will not exit until the 
end of process, thus forming a pool of active threads. 
Basically, the main parallelization for both workloads is 
done on for-loops. For-loop parallelization can be 
specified using the OpenMP specification. Task queue 
based parallelization is also applied, which allows do-
while style parallelization. The first parallel region 
hitting thread enqueues parameters needed by worker 
threads, and other threads fetch parameters in stack and 
begin execution. With the task queue mode, dynamic 
execution of threads does not have to be identical. 
 
Benchmarking and Measurement:  The parallelized 
applications first run on Pentium® 4 systems. To avoid 
excessive overheads associated with thread scheduling, 
we only run the parallelized programs with the number of 
workers less than or equal to the capacity of the physical 
system. For example, in our studies on a Quad 2.8GHz 
Pentium® 4 Xeon™ MP machine with 2GB DDR 
SDRAM, a maximum of 4 worker threads are generated. 
We use VTune™ performance analyzer [21] to collect 
statistics including execution clock ticks, number of 
instructions, number of memory references, cache 
hits/misses, etc. From these measurement results, 
information, such as speedups and the total memory 



references among sequential and parallel executions of 
the applications can be calculated. Furthermore, we use 
the Windows-based Perfmon [22] to collect page-fault 
information for calculating the memory usage. Since 
physical memory is much larger than the maximal 
memory requirement of both applications, once a page 
comes into working set, it will not be swapped out. In 
other words, this counting should provide a reasonable 
estimation for the pages needed by the applications. 
There are two important examinations: 
(1) The total memory usage and the total memory 

references for the single and multiple threaded 
versions of each application are compared. These 
measurement results are then verified against what 
presents in the sequential and parallel source code.  

(2) The execution time and speedup of the single and 
multiple threaded versions of the application are also 
compared against the potential speedup exhibited in 
the source code. 

    Various problem sizes are tested to understand 
parallelization overheads and memory hierarchy 
limitations associated with the program. Proper problem 
sizes are selected for memory behavior studies with the 
following considerations. First, the problem size must be 
reasonable large to be practical for real applications. 
Large problem sizes present significant demand on 
memory hierarchy for our studies. Large problem sizes 
can also amortize overheads paid to initialize and 
synchronize multiple threads. Second, the problem size 
should not be too big to create distortions due to cache 
limitations on both the measurement and the simulation 
environments. In addition, large problem sizes may 
increase the simulation time and make it difficult to 
handle for trace-driven simulations. 
 
Memory Trace Collection:  Trace-driven simulation 
with sequential and parallel versions of the source code 
is applied to study memory behavior. Memory traces are 
collected under Simics. Based on the VTune™ 
measurement, proper problem sizes are selected. Both 
sequential and parallel versions of the program are 
running on the Simics environment for trace collections. 
To mimic hardware-collected traces, a memory hierarchy 
model with a generic cache is integrated to enable 
execution-driven simulations. The memory model is 
invoked whenever a memory instruction is executed. A 
search through the generic cache is performed. Upon a 
miss, the thread will be delayed a specific cycles 
assigned a priori that matches the real hardware delay on 
the experimental system to provide more accurate 
reference sequence among multiple threads. 
    The trace-driven simulation has two advantages over 
the execution-driven simulation. First, it is possible to 
post-processing traces for ease of study of block reuse 
distances, optimal replacement policy, etc. Second, it is 

much faster to simulate traces off-line comparing with 
on-the-fly, execution-driven simulation on Simics. This 
fast simulation speed allows us to exploit bigger design 
space and to quickly grasp the general behavior; and thus 
permits more accurate simulations to limited interesting 
design points. The collected memory traces are verified 
against the VTune™ and Perfmon measurement results. 
Two important parameters, the total number of memory 
references and the memory usage are compared. Due to 
the diversity between the measurement and the simulated 
environments, we pay more attention to the relative 
behavior among sequential and parallel versions of the 
applications. A closely match indicates that the memory 
traces are representative to the real hardware traces. 
 
Trace-driven simulations:  To compare memory 
reference behavior of single and multiple threads, the 
traces from various parallelization configurations are 
used for off-line cache simulations. In this step, a 
functional cache model is developed. Several parameters, 
such as block reuse distances, memory footprint size, 
cache hit/miss ratios, etc. are collected and compared.  
The block reuse distance between consecutive references 
to the same block provides the key insight in comparison 
of memory reference behavior. The hit/miss ratios of 
various cache sizes and set-associativities with different 
degrees of parallelization summarize the performance 
comparison results. 

 
3. Performance Evaluation 
 
    Memory performance comparisons between single- 
and multi-threaded versions of AEC and SL are given in 
this section. We will first show the parallelization and 
measurement results that will be followed by the reuse 
distances and cache hit/miss results. It is interesting to 
observe that the memory reuse distance for the SL goes 
down with the degree of parallelization, while the 
distance for the AEC goes up with the degree of 
parallelization. 
 
3.1.  Parallelization and Measurement 
 
    Both AEC and SL are computational-intensive and 
demand large memory space. The hard real-time 
requirement of AEC and the stringent search requirement 
of SL make parallelization of these applications a viable 
approach on current Pentium® 4 systems to achieve 
faster execution time. AEC employs the algorithm of 
frequency-domain RLS (Recursive Least Square) [23]. 
The AEC’s computational complexity is ( )nknO log , 

where k is the number of channels and n is the block 
size. We select a large block size (1024 sample points 
per sample unit) and multiple channels (12 microphone 



arrays and 2 reference channels) to maintain high echo 
cancellation quality. With the audio sampling frequency 
192KHz that is necessary for digital audio editing, AEC 
must finish processing of each block within 5.3ms for 
maintaining the hard real-time requirement. Our 
experiment shows that with 1K block size, 12 input and 2 
reference channels, and with the constraint that CPU 
utilization ratio must be no more than 10% (because 
AEC processing is often used as a preprocessing 
component for other applications or in the driver), the 
hard real-time requirement cannot be met on a 3.0GHz 
Pentium® 4 CPU with dual-channel DDR400 memory. 
SL uses greedy hill-climbing algorithm to search state 
space of a Bayes Network. The SL’s computational 
complexity is ( )2knO , where k is the number of iteration 
samples and n is the number of nodes in a Bayes 
Network. Our experiments use only 37 nodes in a Bayes 
Network with 3000 samples. The running time on a 
3.0GHz Pentium® 4 CPU with dual channel DDR400 
platform is 3.4 seconds. For practical problem solving, 
the number of nodes and samples can be increased 
tremendously. 
    Figure 1 shows the flowchart of AEC and SL 
processing. We highlight regions where parallelization is 
adopted. These regions are identified as execution 

hotspots with Intel VTune™, and are worth efforts of 
parallelization. The main parallelization for both 
workloads is done on for-loops. Every channel is 
processed as an iteration of the for-loops. For SL, 
besides for-loops parallelization, a task-queue based 
parallelization is also applied for the region of 
calculating the score for all valid moves. The first 
parallel region hitting thread enqueues parameters 
needed by all worker threads, and then other worker 
threads fetch parameters in stack and begin execution.  
    The speedups, the total memory references, and the 
total memory usages for AEC and SL with the chosen 
parameters are plotted in Figure 2. The sequential 
programs as well as the parallel versions with 1 to 4 
workers are executed on a quad Pentium® 4 Xeon™ MP 
system for collecting the statistics. We can make several 
observations.  
1. Both workloads show performance improvement up 

to 4 workers. For SL, part of data is shared by all the 
threads. Simultaneous accesses to the shard data 
incur large amount of inter-processor traffic (e.g. 
MESI-coherence invalidations). For Quad Pentium® 
4 Xeon™ MP system, the 4 processors are sharing 
one front-side bus (FSB), so the large MESI 
coherence traffic saturates FSB, and thereby limiting 
its speedup. For AEC, each channel processing is 
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Figure 1.   AEC and SL Flowchart and Parallelization Regions 



executed in parallel with little cache interference. 
The access of the input channel data is initiated at 
the program initiation phase and memory bandwidth 
requirement is not a problem. This is the main 
reason that AEC displays much better speedup than 
SL. Figure 3 shows the FSB activity of SL and AEC 
on Quad Pentium® 4 Xeon™ MP system without 
using the Hyper-Threading Technology. Note that 
cache coherence traffic can be eliminated if the 
parallelized SL is running on a single multithreaded 

processor with shared caches. Instead of 1.3x 
speedup of 2-worker SL on quad Pentium® 4 without 
Hyper-Threading Technology, our experiment with 
2-worker SL on a single Pentium® 4 system with 
Hyper-Threading Technology has shown 1.6x 
speedup. This is because SL’s shared data are 
maintained as one copy in Hyper-Threading’s shared 
cache and updates the shared data do not generate 
extra front-side bus traffic.  

2. The parallel versions of both programs show 
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moderate overheads in terms of the total number of 
memory references. This is because of extra data 
structures such as the thread queues and OpenMP 
aware thread control blocks. Besides, worker threads 
need to replicate certain data structures, operate on 
the data, and copy them back and forth from/to the 
shared data area.  

3. The total memory usage increases slightly with 
parallel versions. The memory usage goes up with 
the number of worker thread because worker threads 
have their own replicated private data set. OpenMP 
clauses, e.g. “reduction” and “captureprivate” also 
require worker threads to operate on temporary 
variables from the OpenMP stack.   

 
3.2. Memory Trace Collection and Verification 
 
    Memory reference traces collected from execution-
driven simulations of sequential and parallel versions of 
AEC and SL on Simics are used to drive off-line cache 
models. The Simics virtual machine is configured to the 
same as that of the Pentium® 4 used for measurement. 
The applications running on both environments are 
carefully tuned to start and end at identical points. A 
generic L1/L2 cache model is integrated with Simics 
simulations for approximating the correct sequence of 
memory references. We simulate a direct-mapped, I/D 
split, 8KB L1 with 2-cycle access, and a combined, 8-
way, 512KB L2 with 7-cycle access. L2 misses are 
charged for 200 cycles. L1 miss penalty is processor-
design specific, and we measured L2 miss penalty with 
Vtune. Note that in both environments, only the user 
threads are counted. The system threads represent less 
than 5% of the overall memory references.  
    In Figures 4 and 5, the simulated results show that 
both the total memory references and the memory usage 
increase slightly with the degree of parallelization similar 
to that from the measurement results. 

(1) For memory references, VTune™ counts the total 
committed loads and stores, which is slightly less 
than the memory references from the Simics 
reference traces. Through detailed analysis, we 
found that Simics may increase the total references 
by repeating a cache miss at a second time. As a 
result, the collected trace (unfiltered) could exhibit a 
slightly better cache behavior.  

(2) For memory usages, the hardware counters in 
VTune™ cannot record the memory footprint for 
each process. For comparison purposes, we use 
another measurement tool, Perfmon on Windows 
that counts the number of page faults for each 
process. We use the measured total page faults to 
estimate the total memory usage. As shown in Figure 
4, the Perfmon results of memory usages are 
consistently larger than that from the trace results 
(i.e., from virtual address traces simulated with 4KB 
page size). There are two reasons for this 
discrepancy. First, Perfmon measures the total page 
faults including instruction references while the 
collected traces only have data references. Second, 
each virtual page could potentially cause more than 
one page fault. Therefore, we conclude that the 
collected traces should reasonably reflect the real 
hardware behavior. 

 
3.3 Memory Behavior Studies 
 
    The collected memory traces are post-processed to 
insert the reuse distance information to each memory 
request. Table 1 summarizes the distribution of reuse 
distances for sequential and parallel versions of AEC and 
SL. Note that we are focusing on the impact of memory 
references on multithreaded processors where multiple 
threads are likely to share processor caches. Therefore, 
the reuse distance is measured among all the threads. 
Note also that the reuse distance reflects the impact of 
both constructive/disruptive memory reference behavior 
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and changes of memory usage among sequential and 
various parallel versions of the program.  
    The results show opposite memory reference behavior 
of AEC and SL with respect to the parallelization. For 
AEC, the short reuse distance (<1000, that can be fitted 
in a 64KB cache) decreases with the number of workers 
while the long reuse distance (>20000) goes up with the 
number of workers. SL, on the other hand, has more 
shorter reuse distances (<20000) with higher degrees of 
parallelization. Careful examining the source codes, we 
discover the key difference between the two workloads. 
In AEC, each thread’s working set is more independent 
due to replications of a few data structures. Since a 
significant portion of the memory references targets 
private data, larger reuse distances are observed when 
mixing references among multiple threads. In SL, a 
majority of memory accesses from each thread target the 
shared data. By interlaced executions of threads in the 
thread queue causes data to be accessed more closely 
than that in the single-thread SL. 
    The hit ratios of various shared cache sizes of the 
sequential and parallel versions of AEC and SL are 
plotted in Figures 6 and 7 respectively. We can clearly 
see that for AEC, the 4-worker version has the lowest hit 
ratios. The hit ratio increases with decreasing degree of 
parallelization. The low hit ratio may increase memory 

stalls significantly and outweigh the benefit of 
multithreading. Recall that the main reason for this 
memory performance degradation is due to accessing 
independent data in each thread. These largely 
independent working sets compete with limited cache 
space. Misses are almost gone with a 1MB cache, in 
which the entire working set can be held. The original 
sequential program and the parallelized program with a 
single worker have almost identical memory behavior 
indicating a similar memory behavior due to the extra 
code from OpenMP parallelization.  

    SL shows considerable better memory behavior with 
higher degrees of parallelization of 2 or more workers. 
This is due to the fact that data sharing among multiple 
threads makes it possible to prefetch shared data for one 
another. When the cache is smaller than 1MB, the hit 
ratios are almost the same for all configurations. Careful 
analysis of the SL source code discloses that SL operates 
a data block of 64KB for a period before switching to 
another block. The next data block is hard to predict. 
Misses usually occur between block switching unless 
cache size is big enough (2MB) to hold the entire 
working set. The small gap between the original 
sequential program and the parallelized program with a 
single worker indicates a slightly better reference locality 
due to the extra code from OpenMP parallelization. 
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Table 1.  The Reuse Distance Distribution of AEC and SL 
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4.  Conclusion 
 
    As multithreading technology becomes popular in 
today’s microprocessors, this paper studies memory 
behaviors of multithreaded multimedia and AI 
applications. A methodology including workload 
selection and parallelization, benchmarking applications 
on Pentium® 4 systems for performance measurement 
using VTune™ and Perfmon, memory reference traces 
collection and verification using Simics, and trace-driven 
simulation and analysis, has described. The performance 
evaluation indicates a constructive and a disruptive 
memory behavior can both be a result from 
parallelization of the selected applications. Care must be 
taken to avoid disruptive memory reference behavior. 
Our reuse-distance analysis not only can help 
understanding constructiveness/destructiveness behaviors 
of the multithreaded workloads, but can also feedback to 
the programmer for improving program parallelization, 
and/or to the designer for enhancing future memory 
hierarchy designs. 
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