
Robust Cache-Aware Quantum Processor Layout
Travis LeCompte, Fang Qi, and Lu Peng

Division of Electrical and Computer Engineering
Louisiana State University

Baton Rouge, LA, 70803, USA
{tlecom3, fqi1, lpeng}@lsu.edu

Abstract—Quantum computation has taken over as one of
the largest current research areas in computer architecture and
information theory. With the potential to make a large number
of factorization-based encryption methods obsolete, companies
and governments around the globe are racing to build the
first large-scale quantum computer. Currently, most quantum
computers are noisy intermediate-scale quantum (NISQ), using
a relatively small collection of unreliable qubits. While error
correction methods exist, they require a large number of ancilla
qubits to protect the data qubits which is not practical for use
on current NISQ machines. However, following the Dowling-
Neven Law, available qubits on a superconducting chip are
growing at an exponential rate similar to Moore’s Law. Looking
toward larger scale quantum machines, we examine a method to
increase usable qubit density of quantum machines implementing
error correction by using quantum caches that utilize simpler
error correction codes. Alternatively, this also allows for the
design of reliable systems while meeting the performance and
qubit requirements for quantum algorithms. We modify the
Qiskit quantum simulation library to work with caches and
investigate the effects of region size and topology on the swap
characteristics of algorithm execution. We also present our results
and discuss recommended topologies for each algorithm. Lastly,
we present mix scale-out simulations to examine the impact of
cache on future large-scale machines. The default central cache
topology gains a maximum performance increase of 2.15 times
compared to the worst topology, which creates a robust cache-
aware quantum processor layout.

Index Terms—Quantum Processor, Cache Layout, Robustness.

I. INTRODUCTION

Interest in quantum computing and information technology
has grown considerably in recent decades. Various companies
including IBM, Google, and Microsoft, along with govern-
ments around the world, have been working to advance
quantum technology. Currently, these quantum chips largely
act as specialized hardware for efficiently executing quantum
algorithms and physical simulations, while a general quantum
computer is far in the distance. However, this does not di-
minish the importance of quantum technologies which already
see use in quantum random number generators and magnetic
imaging devices. Google and NASA recently claimed highly
anticipated quantum supremacy [1], the realization of a chip
that can do in minutes what would take classical computers
thousands of years.

The state-of-the-art quantum processors are classified as
noisy intermediate-scale quantum (NISQ) machines due to
their relatively small number of error-prone qubits. While

these NISQ devices are beneficial research tools, their practical
applications are severely limited by their scale and unrelia-
bility. Traditional error correction methods used in classical
computers via replication cannot apply to qubits due to the
quantum no-cloning theorem, which does not allow for copy-
ing unknown qubit states. Quantum error correction schemes
do exist, but carry an overhead that is not practical on NISQ
machines. This directly connects both the scale and reliability
problems – at an arbitrarily large scale, we can protect qubits
to ensure reliable computation. However, just as Moore’s Law
is reaching its end, one can assume that an infinitely large
quantum computer as predicted by the Dowling-Neven Law
[2] is equally unrealistic. As such, there will always be a
restriction on the number of high-fidelity qubits we can achieve
in a quantum computer, and we would like to waste as few as
possible on error correction.

We investigate the application of quantum caches to mod-
ern superconducting quantum computers in order to achieve
functional error correction for robust quantum computing at
increasingly smaller scales. Unlike classical caches that reduce
execution time by reducing memory latency, these caches
reduce the error correction overhead for protecting cache
qubits by acting as a dedicated memory. By reducing the
number of operations that take use these cache qubits, error
probabilities are decreased and performance requirements are
lowered, thus allowing for lighter error correction schemes.
This results in more usable qubits as fewer are allocated for
error correction, which in turn allows smaller scale devices
to be robust to error while continuing to meet qubit and
performance requirements. However, by restricting operational
regions, we incur a cost as operations must avoid these cache
regions. Through our experimentation we aim to minimize this
overhead while maintaining the benefits of the caches.

To simulate these caches, we modify multiple parts of IBM’s
Qiskit quantum simulator [3]. Specifically, we target the virtual
to physical qubit layout, the physical qubit coupling map,
and the swap passes during compilation. This allows us to
generate different cache layouts within the physical qubit map
and ensure that the simulator can work with these caches
to complete execution. For testing, we examine four cache
layouts and two swap algorithms on five quantum algorithms
and measure the overhead incurred. From our observations we
provide a policy that performs well for all algorithms.

To ensure the validity of our results on large-scale systems
that will implement error correction methods, we extend our

simulations to larger mesh networks. Qiskit is unable to
simulate large meshes due to memory constraints during the
computation of the quantum algorithm. As we are focused
on minimizing the movement of qubits during an arbitrary
program, we can simulate large scale algorithms by removing
the computation component. This enables us to bypass mem-
ory limitations at the cost of algorithm execution. Therefore,
combined with our small-scale observations, we can display
both correct execution and scalability.

The contributions of this work can be listed as follows:
• Our design is the first work, to the best of our knowl-

edge, to apply memory architecture to superconducting
quantum technology.

• Our design explores the design space of possible quantum
computer cache layout using five advanced quantum
algorithms.

• Our design achieves a possible maximum performance
increase at 2.15 times compare to the worst cases while
keeping a robust system.

• Our design is the first work to explore cache architecture
design space at large-scale quantum chip level using
mixed scale-out algorithm.

Fig. 1. Visualization of the Bloch Sphere

II. BACKGROUND

A. Quantum Computation

Quantum information can be represented in multiple ways.
One such representation for qubits, shown in Fig. 1, is the
Bloch sphere [4]. The state of a qubit is represented by a vector
in the sphere. The two states |0〉 and |1〉 form a basis set for the
vector space of all possible states. If we restrict possible values
to the basis set, we effectively have a classical bit. However,
qubits can also take the state of any linear combination of
the basis states with coefficients from the complex numbers,
commonly known as a superposition of states. Operations
analogous to classical gates can be represented as rotations
of the state vector around the Bloch sphere. All operations
can be reduced to a set of universal single- and double-qubit
gates including the Pauli operators, the Hadamard gate, and
the controlled-not (CNOT, also called the CX) gate.

Quantum algorithms perform computation by manipulating
these states individually or in pairs. It is common to transform
the data into a superposition with Hadamard gates, perform
a series of operations, then transforming back using another

Fig. 2. Standard Mesh Network for Superconducting Quantum Computer

series of Hadamard gates. This can be seen in both Fig. 3 and
8, where the square H gates are single-qubit Hadamards, and
the circular gates are CNOTs. Each horizontal line represents a
single qubit with gates applied sequentially from left to right.
The final step of quantum computation is typically to measure
the final states with respect to our basis set described above,
returning to classical bits.

There are many different technologies to implement qubits
and the associated gates. Ion trap computers construct qubits
using suspended ions, where the basis states are the ground
state and excited states of the ion [5]–[7]. Gates can be
executed by applying lasers to excite the ions and measuring
emitted photons. Ion trap systems have longer decay times and
higher quality qubits [8] compared to some other implementa-
tions while also allowing for any-to-any entanglement between
qubits. Optical quantum computers utilize photon polarizations
as qubits, commonly with a basis of the horizontal and vertical
polarizations [9]. Polarizers and beam splitters act as gates in
these systems, using relatively well-known optical hardware.
More exotic methods also exist, such as nitrogen-vacancy
centers in diamonds that provide high quality qubits [10].
However, most current quantum chips use superconducting
technology [11].

B. Superconducting Quantum Computers

Superconducting quantum computers are built from a col-
lection of Josephson junctions. Each junction is composed of
two superconducting materials separated by a thin barrier. This
allows for the Josephson effect to take place, where electrons
tunnel through the barrier with a phase shift, similar to an
inductor. In combination with capacitors, this becomes an LC
circuit, where the energy levels in the circuit (alternatively, the
flux through the loop) act as the basis states for the qubits.
Gates are performed by exposing the circuit to specific mi-
crowave pulses for certain durations depending on the rotations
the gate carries out. The technology overlaps with traditional
semiconductor production and has proven easier to produce
functional machines. Both IBM and Google have invested into
superconducting quantum systems and have proven successful
in creating systems upwards of 70 qubits [12].

By comparison to ion trap systems, superconducting qubits
are generally lower quality and are more vulnerable to error
and decoherence. Since it relies on superconducting circuits,
the chip must be cooled to extremely low temperatures to
maintain the flow of supercurrent. Additionally, Josephson
junctions cannot be connected in an all-to-all fashion to allow

for entanglement between any two physical qubits, as is
possible with ion trap machines. Instead, the junctions are
connected in a mesh network as shown in Fig. 2, where
the connections identify which qubits can be entangled. This
introduces multiple challenges to the processor design. If an
algorithm requires for two qubits to be entangled, they must
be moved to be adjacent to one another. Due to the quantum
no-cloning theorem, states cannot be copied and thus must
instead be moved into correct positions from physical qubit to
physical qubit through the mesh by swapping adjacent qubits.
Therefore, reducing the number of swaps necessary during
computation becomes an optimization problem [13], [14].

IBM provides the Qiskit library [3] to simulate or connect
to superconducting back-end devices for quantum computation
research. It enables the creation of quantum circuits to exe-
cute algorithms and provides access to various back-ends for
testing. Since it simulates superconducting chips, the abstract
circuits must be compiled to match the physical mesh structure
of the chips. There are three components of the compilation
process that are important to note – the coupling map, the
layout, and the swap algorithm. The coupling map defines
the shape, size, and connectivity of the mesh. The layout is
an initial map for virtual to physical qubits, and the swap
algorithm decides how to move qubits to their necessary
positions to perform entanglement during algorithm execution.
In Section 4 we discuss the necessary modifications to these
stages to enable cache-aware execution.

C. Quantum Error Correction

Error correction mechanisms are critical both in classical
and quantum computing to ensure correct operation. Clas-
sically, errors occur most frequently in the communication
of signals between machines. These errors are caused by
environmental noise affecting the communication channel and
typically appear as bit-flips present in the transmitted data [24],
[25]. Some errors corrupt data into unreadable formats that
make it very clear an error has occurred [26], [29]. Other
errors may not be easily identifiable and can propagate into
future computations [27], [28], [32]–[34]. Correcting these
errors during transmission usually rely on a form of error
correcting code. First, transmitted data is encoded in some
form of error resilient representation [30], [31]. If any errors
are detected on receiving the data, they can be corrected as a
part of the decoding stage.

Most classical error correction codes are built on redun-
dancy. Data is duplicated into multiple redundant copies and
transmitted as a single logical bit. Errors can then show up
as a bit-flip of an individual physical bit with probability p.
A simple example is the triplication of data, where a 0 is
encoded into three bits as 000 and a 1 as 111. Both classical
and quantum error correction codes will be referred to as the
ratio of data:ancilla (qu)bits, or 1:2 in this case for a total of
3 bits per logical bit. A majority-rules policy is implemented
when decoding the data in an effort to correct any potential
errors. If we receive 101 from the channel, we know at least
a single error has occurred, which would imply the original

value was a 1. Note that it is also possible two errors occurred
in both the first and last bits, which cannot be resolved using
this triplication code. However, provided that we are more
likely to see single errors (p < 0.5), we see an improvement
in total error rates. To handle multiple errors, one can simply
extend the code from triplication to possibly 5 or 7 bits and
maintain the majority-rules policy. The probability threshold
then depends on the number of errors we hope to protect
against and the total number of bits in the encoding. This
also demonstrates that the minimum number of redundant bits
necessary to protect against errors depends on the probability
of error.

One may think we can merely apply the same classical
replication techniques to qubits to achieve similar error de-
tection and correction capabilities. However, qubits have two
major features that complicate the error correction process.
First is that qubits are not quantified into only two states
like classical bits. One of the powerful features of quantum
information is that a qubit can take one of an infinite number of
states represented as a superposition of the two basis states.
This impacts how errors can appear within a qubit. Qubits
can experience two kinds of discrete errors known as bit
and phase flips. These can be represented as the X and Z
Pauli operators respectively, which flip the state of the qubit
around the respective axis. In addition to these flips, in the
worse case, an error on a qubit can turn the state a|0〉+ b|1〉
into a completely random state c|0〉+ d|1〉. Thus the form of
quantum errors is more complex than classical bit-flips. The
second major limitation is the quantum no-cloning theorem,
which states than we cannot make copies of an arbitrary
quantum state. This prevents us from duplicating the state for
redundancy as in the previous error correction methods, nor
can we measure the state to prepare a copy without collapsing
the state and destroying the superposition of basis states.

For some time, it was argued that reliable quantum com-
puting and quantum error correction may be an intractable
problem. However, Shor’s code [15] proved that it was possible
to correct arbitrary quantum errors using ancilla qubits using a
method built upon classical redundancy methods. Shor’s code
follows a similar idea to the classical error correction but
avoids both copying and collapsing the arbitrary state. The
code works in two stages to correct both the bit and phase-
flip errors that can occur. First, to address bit-flip errors, we
add two ancilla qubits for redundancy and entangle them with
the data qubit by using CNOT gates. Note that this does not
involve any copying or extraction of data from the initial state.
However, the triplication of the basis states looks and acts
similar to the classical error correction method. If an error
occurs, it is likely to be a single qubit bit-flip, meaning it can
be resolved with a majority-rules policy as in the classical
setting. To detect any present errors, we can measure the
qubits with a special set of measurements dubbed the error
syndromes. These syndromes provide information of where the
errors occurred without destroying the states, which allows one
to undo the bit-flip error. A similar method exists for correcting
phase-flips.

Fig. 3. Encoding and Decoding Circuit of the Shor Code

These two methods can be combined into a 1:8 error cor-
rection code that allows for the correction of arbitrary single-
qubit errors. The circuit for realizing this error correction
code is shown in Fig. 3. The vertical dashed line denotes
the potential occurrence of an error during computation or
transmission of data. Similar to the classical error correction
methods, this provides a benefit in total error rates so long as
the probability of error p < 0.5. It is possible to continue
concatenating the codes to increase resilience and correct
multi-qubit errors, though the number of qubits necessary
quickly outgrow currently available technology.

There have since been many additional codes suggested for
quantum error correction [16]–[18]. Some are modifications
of Shor’s code, such as the Steane code [19]. Others take a
different approach, such as surface codes. These codes lay
out the ancilla qubits on a surface (both 2D and toric codes
are popular [20]) and take advantage of geometry to allow
for error detection and correction. Logical zeros and ones are
encoded by laying out patterns either in loops on the grid or
in lines across or down the surface. In effect, this produces
a situation where an error would have to manipulate many
qubits to disrupt the logical value of the encoded qubit. Each
of these codes require a considerable number of ancilla qubits
which limits their applicability to current NISQ machines that
operate with a smaller number of qubits.

D. Quantum Caches

In a previous work [21], Thaker et al. discuss the possibil-
ity of multiple levels of encoding at various overheads for
computation, cache and memory regions in ion trap based
quantum computers. While traditional cache designs provide
performance increases by holding frequently used data in high-
speed memory regions, the quantum cache design focuses on
decreasing chip area when deploying error correction codes.
By utilizing two error codes, they avoid wasting a large
number of qubits for error correction on qubits that are less
frequently used or less prone to error (the cache qubits). This
allows for slower or less precise error correction methods in
memory regions that are used less frequently, while deploying
faster error correction in computation regions that must be
applied after each operation. They also include code conver-

sion circuits for transferring qubits in one encoding to another,
allowing for fast transfer between cache and computation
encodings.

An interesting effect of this design is that it also increases
the number of usable qubits available if we are operating with
a fixed number of physical qubits. Here we define usable qubits
as the number of physical qubits in the system that are not
allocated for error correction purposes. This is equivalent to
the number of logical qubits the system can represent. For
NISQ systems that operate with a limited number of qubits,
this technique may enable smaller-scale systems to execute
more demanding algorithms by providing a larger number of
usable qubits.

III. MOTIVATION

In the previously mentioned quantum caches, the authors
implement 8:1 and 1:2 encodings in their compute and cache
regions, providing a large improvement in the number of qubits
necessary for error correction. The main source of this im-
provement is taking advantage of ion trap quantum computers’
long coherence times, which can be on the order of multiple
seconds and possibly even minutes in certain configurations
[22]. As the previous proposed cache is designed for ion trap
systems, they do not face the mesh connectivity problems that
superconducting systems experience. This becomes the major
design question we must address when porting this concept to
superconducting technology.

Fig. 4. Scaling of Usable Qubits with and without Cache

Superconducting technology cannot take advantage of co-
herence times when considering multiple error correction
codes. Current superconducting coherence times are typically
on the order of milliseconds. However, we can still take
advantage of varying levels of encoding to save qubits where
possible. Although we do not have the large coherence times,
superconducting gate times, the time necessary to perform a
gate operation on a qubit, are substantially shorter (order of
nanoseconds) than ion trap machines (order of microseconds).
This difference in gate time makes up for the difference in
coherence times and results in comparable number of gate
operations per coherence time. This allows us to follow a sim-
ilar multi-level encoding structure. By having both ”compute”
and ”cache” regions, we can also deploy faster but more costly

error correction in compute regions, and a more qubit-efficient
encoding in the cache region. Two simple codes to choose to
employ are the Shor code for compute regions (1:8) and the
Steane code for cache regions (1:6). In total this is a reduction
of 2 qubits per data qubit, or a 9−7

9 = 22% reduction for the
cache regions.

Figure 4 shows the concept of saving qubits as we increase
cache size. Here, usable qubits are defined as the sum of both
computation and cache qubits (basically all non-ancilla qubits
reserved for error correction). Naturally, the line y = x acts as
our absolute boundary. If we did not need to implement error
correction at all, our device would lie along this line, though
such a perfect machine does not currently exist. All other lines
can be drawn following N = pn

c1
+ (1−p)n

c2
where N is the

number of usable qubits, n is the number of physical qubits
in the machine, p is the cache percentage, and c1 and c2 are
the number of qubits necessary for the error correction codes
for the cache and compute regions respectively. The dashed
line represents marking every qubit as a cache qubit – this
is impractical as we do not have any qubits for computation,
but it provides an upper bound on our design as it would
apply the less costly error correction code to the entire system.
Similarly, the red line denotes having no memory, and thus
having the most costly error correction code apply to all
qubits. This results in the most qubits allocated for error
correction. Therefore, when choosing a cache size, we fall
somewhere between these two lines – shown here is an even
split between cache and computation qubits. We can guide
our choice of cache size by the number of qubits required
for an algorithm. By maximizing the cache percentage p
while maintaining enough usable qubits to execute the desired
algorithms, we waste fewer qubits on error correction while
meeting functional requirements.

An alternative perspective is to consider that we are enabling
error correction on a system that cannot otherwise support
error correction codes while meeting the performance and
qubit requirements for a given algorithm. For example, if we
wish to use Shor’s code for an algorithm that requires n logical
qubits, we would effectively need 9n physical qubits when
adding the ancilla qubits for error correction. By comparison,
using a 50% cache size with the Shor and Steane codes as
discussed above, we can implement error correction with only
9n
2 + 7n

2 = 8n qubits. While we could simply apply the Steane
code to every qubit, there may be limitations that prevent
this, such as performance requirements or differences in the
reliability of individual qubits.

Fig. 5. Cache Forced Swaps

IV. DESIGN

In order to simulate quantum caches on superconducting
chips, we modify each of the three main parts of the Qiskit
library – the coupling mesh, the initial layout, and the swap
algorithms. We add a list to the mesh to keep track of the
included cache nodes. This provides a base from which to
enforce gate restrictions and make the execution cache-aware.
The initial layout is modified to prioritize non-cache qubits to
avoid unnecessary swaps. The swap algorithms must be aware
of the cache qubits to enforce swaps in and out of the cache
in addition to its traditional job of ensuring that qubits are
adjacent for entanglement.

Beyond simulating on small scale superconducting chips
around 20 qubits, we also extend Qiskit to perform large-scale
quantum circuits on large-scale superconducting chips, around
100 qubits level. To perform this task, we modify the Qiskit
library to allow large-scale circuit compilation and propose
a scale-out algorithm to generate these circuits. We modify
the simulation process to only perform swap mapping while
discarding data operations such as single-qubit gates. This
allows us to circumvent the library restrictions and makes
simulation feasible. For the scale-out algorithm, we extract
circuit characteristics directly from real quantum applications
and feed them into the mixed scale-out algorithm, which aims
to run on classical computers with high fidelity relative to the
real large-scale circuit.

Fig. 6. Four Basic Cache Topologies

A. Coupling Mesh and Cache Topology

The first necessary step is to add the concept of a cache to
the simulator. We add a list to hold all nodes that are in the
cache. This is used by the layout and swap algorithms to iden-
tify which nodes should be prioritized for mapping and swap-
ping. We additionally construct a separate mesh with cache
nodes removed to allow for easy swap path identification.
The swap algorithms rely heavily on shortest path algorithms,
so it is beneficial to have a pre-made separate graph limited
to only data qubits to prioritize non-cache swapping where
beneficial. Lastly, we add functions to generate the various
cache topologies used in our experiments.

In the previous work examining the quantum memory
hierarchy, the system is implemented using ion trap technology
[21]. Due to its arbitrary qubit entanglement capabilities, there
is little distinction between data and cache qubits. However,
there is a major difference when using superconducting qubits
because the connectivity between qubits is limited, and we
cannot simply operate on any two qubits at will. Choosing

which qubits to place in the cache thus has an impact on the
swaps the algorithm must perform to complete the algorithm.
As shown in Fig. 5, the two marked qubits are adjacent and
therefore should be available for operation. However, with the
highlighted cache placement, one of the qubits falls within
the cache and thus is not valid for use. To complete the
operation and continue with algorithm execution, the qubit
must be moved out of the cache, creating more swaps.

Given n physical qubits there are 2n potential cache layouts
to consider. In order to avoid searching this whole space,
we instead focus on four different topologies, two contiguous
and two distributed, as shown in Fig. 6. The two contiguous
methods, a straight split and a central cache, allow for larger
contiguous cache and computation areas. The two distributed
methods are the four corners of the mesh and a tiled version
that spreads the cache equally throughout the mesh. The corner
topology also allows for a large contiguous region of compu-
tation but divides the cache into parts, while the tile method
instead opts to intersperse both cache and compute qubits.
These four methods together provide a variety of options to
consider for cache design based on algorithm characteristics.

Fig. 7. Four Qubit Initial Layout

B. Layout

The initial layout of the algorithm maps the required virtual
qubits to the physical qubits in the mesh, as shown in Fig.
7. Similar to the previous discussion about cache topology,
a number of compiler passes directly involving the physical
qubits need to be modified to account for the cache, including
this initial layout. Poor initial qubit placement can result in
additional swaps. It is not as critical as the swap algorithm
since it is only the initial state of the system, but it can have
considerable impact on shorter algorithms.

Typical layout passes examine both the mesh and the
algorithm to decide on qubit placement. First, identify the
most and least heavily connected qubits in the mesh. Second,
look ahead through the gates that must be executed to identify
the order in which qubits must be operated on. Using this
information one can map the qubits that are used together
to be nearby in the mesh. However, adding the concept of a
cache changes this process, as an unaware layout may map
virtual qubits to cache qubits and add unnecessary swaps. We
modify this process to also reference the list of cache qubits in
the mesh and prioritize non-cache qubits before cache qubits.
This allows us to retain the benefits of the pre-existing layouts
while avoiding as many unnecessary swaps due to the cache
as possible.

C. Swap Algorithms

The last major part of the compilation process that we
must modify are the swap algorithms. These algorithms are
responsible for ensuring that qubits are adjacent to each other
whenever two qubits are operated on together. As discussed
previously, it is critical for the swap algorithm to be cache-
aware for the algorithm to complete execution. Otherwise,
the simulation would attempt to operate on qubits when it
cannot due to the cache, leading to failures. In this sense it
is also the responsibility of the swap algorithm to enforce
these additional restrictions on the qubits’ positioning within
the mesh. While there are many different swap algorithms that
have been studied to minimize swaps or maximize reliability,
we present two different cache-aware swap algorithms and
compare their properties and behaviors.

In general, the swap algorithms examine the list of opera-
tions that must be executed and insert swap operations that
move the qubits to their necessary positions in the mesh.
With no cache, single qubit operations do not require any
swaps as they can be executed locally at any qubit position.
The only operations that force qubit movement are two qubit
operations such as the CNOT. Three or more qubit operations
do exist, but can be unrolled into a combination of one and
two qubit operations in the basis set. Upon locating a two-
qubit operation, the swap algorithm checks whether they are
adjacent. If not, it finds a shortest path from one qubit to
the other and inserts swaps along that path. It is possible
for the movement of one qubit to possibly move other qubits
further from their goal locations. Some algorithms implement
look-ahead mechanisms to address this problem and increase
system-wide efficiency, while others implement probabilistic
methods to avoid interference.

Algorithm 1 Baseline Swap Algorithm
Input: A list L of all gates and their operating qubits q, v

1: for all gates in L do
2: if single qubit gate and q in cache then
3: swap along shortest path to nearest available non-

cache qubit
4: end if
5: if two qubit gate then
6: if both q and v in cache then
7: swap q out to nearest available non-cache qubit
8: swap v to nearest available non-cache neighbor of

q
9: else if only one of q and v in cache then

10: swap along shortest path to non-cache neighbor of
v or q respectively

11: else if neither q or v in cache and they are not
adjacent then

12: swap v to nearest available non-cache neighbor of
q

13: end if
14: end if
15: end for

When incorporating a cache, the first modification involves
single-qubit gates as they can no longer be executed on any
qubit in the mesh. Instead, they are now capable of forcing
movement if a single-qubit operation is set to take place
on a cache qubit. By definition of the cache, operations
should not act on cache qubits wherever possible to increase
system reliability. As such, even single-qubit gates may require
moving out of the cache to a non-cache region. For two qubit
operations, as previously discussed, both qubits must be out
of the cache and adjacent with each other for the operations
to be successful. Both algorithms presented follow Algorithm
1, but act differently when selecting the paths to take to move
qubits together. The first algorithm acts as a baseline, here
referred to as the BaselineSwap (BSwap). It finds the direct
shortest path between two qubits and routes them together,
ensuring their final positions are not within cache qubits. This
ensures correct execution of the algorithm, but allows for
swaps through the cache. The second swap algorithm aims
to minimize the number of swaps occurring within a cache,
here referred to as the NoCache Swap (NCSwap). By utilizing
the previously mentioned reduced mesh that does not contain
cache qubits, the algorithm can easily find the direct shortest
path using only non-cache qubits. In the case that either qubit
is in the cache itself, it first moves them out to a non-cache
region, then routes them together avoiding cache qubits. The
only modification necessary is to use this modified mesh that
does not contain the cache qubits when finding the shortest
paths in lines 3, 8, 10 and 12. This algorithm does not work
if the compute region is not contiguous, as the mesh then
becomes disconnected, though it can be modified to simply
fall back to BSwap in these circumstances.

Impact on Performance and Reliability. Implementing the
cache adds data movement as we must swap qubits in and
out of the cache and avoid transferring through cache regions
where possible. The cache shape, size and swap algorithms
can effect this performance overhead. Our design aims to
minimize the number of swaps at various cache shapes and
sizes, which we treat as our main performance metric in the
following evaluations. Reducing the number of added swaps
reduces execution time and increases reliability by reducing
the number of total gate operations on the qubits, in addition
to enabling the error correction codes at smaller scales.

D. Large-Scale Implementation

Due to the inherent exponential growth of quantum al-
gorithms, using classical computers to simulate complete
quantum circuit generation and computation at large scale is
infeasible and would otherwise contradict quantum supremacy.
However, observing the behavior of a real application on
a large-scale circuit is one of the critical components for
assisting large-scale quantum computer design. Therefore, it is
necessary to find a feasible solution which generates a large-
scale quantum circuit based on the small-scale algorithm using
a classical computer with high fidelity compared to the real
large-scale circuit.

By inspecting the circuit growth of real applications on
the small-scale Deutsch-Jozsa algorithm, shown as Fig. 9, we
observe the number of total gates, CX gates, and CX gates
per qubit are growing at consistent exponential rates. After
studying this growing trend, we have found an inherent growth
behavior of a quantum algorithm that within one quantum
algorithm, different stages follow a strict sequence order, and
some stages grow at an exponential rate while others only
grow linearly. A simple Quantum Fourier Transform (QFT)
circuit, shown as Fig. 8, will be used to illustrate this behavior,
with circuit implementation from [23]. As Fig. 8 (a) shows,
the QFT algorithm can be separated into sequences of stages
based on its functionality, which is true for many algorithms.
The stage 1 boxed in blue performs on every qubit a sequence
of one Hadamard gate followed by a series of UROT gates
applied to all higher indexed qubits. Similar to the CX gate,
the UROT gate is a two-qubit controlled rotation gate that
requires target and control qubits to be adjacent in the mesh.
Stage two and three are swap and measurement stages, which
request three CX gates and one measurement gate for each
operation respectively. Based on the behavior of each stage
shown as the table of Fig. 8 (b), it is clear that stage 1 has
an exponential scaling n2, but stage 2 and stage 3 will have
a linear scaling with n

2 and n respectively.
Therefore, as shown in Fig. 8, a large-scale implementation

of QFT would follow the same sequence of execution stages
as small-scale while using more qubits. The number of gates
necessary for some stages may scale linearly with the number
of qubits, such as stage 2, while others may scale exponen-
tially. This general trend is proved in Fig. 9. This exponential
growth quickly becomes impossible to compile and simulate
on a classical computer, preventing direct scaling. However, it
is still possible to approach similar qubit movement behavior
using the Mixed Scale-out Algorithm presented next.

1) Mixed Scale-out Algorithm: A mixed scale-out algo-
rithm will enlarge each stage of a real small-scale algorithm
with a constant rate of n copies of gates from the target stage
using a random mixed fashion. Following this rule, the circuit
produced by a mixed scale-out algorithm will have the same
stage sequence as the real large-scale quantum algorithm. For
the gate number difference, the resulting circuit will only be
different at stages that require exponential scaling, which are
projected to a constant rate n. Since this paper focuses only
on the swap mapping and swap count difference between
different cache layouts, only 2-qubit gates will be extracted
and used. Using the QFT circuit as an example, assume that
the small-scale circuit has 6 qubits and that the target large-
scale circuit has 120 qubits. A mixed scale-out algorithm
will make a copy of the small-scale algorithm 20 times, and
aggregate all the gates into corresponding stages. For stage
2 and 3, this enlarging process will be very close to the
real large application. Stage 1 will have 62 ∗ 20 = 1, 240
swap paths generated by the mixed scale-out algorithm, while
the real large-scale circuit will have 1202 = 14, 400 swap
paths. The mixed scale-out algorithm successfully reduces the
complexity of the swap path generation from O(n2) to O(n)

Fig. 8. n-qubit Quantum Fourier Transform(QFT) circuit. (a) QFT circuit separated by stage. (b) Table of gate diagram with the number of qubits involved.

with all the created swap paths belonging to the real large-scale
circuit. Therefore the mixed scale-out algorithm perfectly suits
the purpose of exploring the path behavior in the large-scale
quantum chip with a balance between feasibility and fidelity.

Fig. 9. DJ gate growing rate

Algorithm 2 Mixed Scale-out Algorithm
Input: A list of Quantum Gates C, scale-out ration n
Output: A list of Quantum Gates C ′

for each gate 0 ≤ g ≤ |C| do
if gate ! = measurement && gate! = barrier then

add the gate in C ′

end if
end for
for each gate 0 ≤ g ≤ |C| do

Duplicate each gate n times
Rename every Quantum Register of each new gates
Save the new gates into C ′

end for
enable random qubit allocation

2) Enabling Large-scale Qiskit Library for Mixed scale-
out Algorithm: The large-scale Qiskit library inherits features
of the three implementations in the preceding subsections.
Compared with the original Qiskit library, the large-scale
Qiskit library only performs the circuit construction and
compiling processes while discarding the simulation part for
computation. Meanwhile, the memory defined limitation of
the largest number of physical qubits has been removed to
allow mapping of the virtual qubits to physical qubits with
any given size. This isolated process releases the potential
of the library to be able to measure the swap count with

any given input size. The proposed mixed scale-out algorithm
shown as Algorithm 2, aims to generate circuits on a large
scale and keep the balance between feasibility and fidelity. The
algorithm extracts the circuit from a small algorithm and feeds
it into the filters that filter out the barriers and measurement
operations that influence combination with another circuit. The
duplication procedure will rename the quantum registers to
avoid mismatching. For executing each gate within the target
stage from different small circuits, the algorithm adopts the
round-robin policy to execute each gate of the circuits. After
the generation of the circuit, the algorithm will enable the
random qubits allocation procedure to avoid the qubits from
the same copy to aggregate.

V. RESULTS

For our experimentation, we test five quantum algorithms:
Shor’s factorization algorithm [35], Grover’s search algorithm
[36], Simon’s algorithm [37], the Deutsch-Josza (DJ) algo-
rithm [38], and the Bernstein-Vazirani (BV) algorithm [39].
These algorithms cover a variety of quantum computation
tasks. BV, DJ and Simon’s algorithm are three of the first quan-
tum algorithms used to demonstrate the benefit of quantum
computers over classical computers. Grover’s search algorithm
searches a set of quantum data to identify matching queries.
Shor’s algorithm, likely the most well known of the set, is a
polynomial time factoring algorithm whose security concerns
interest governments worldwide. Each of these algorithms are
tested on all four cache topologies at various cache sizes. The
number of swaps are recorded to show the swaps incurred by
each cache topology. The overhead in the number of swaps
can be used to approximate the overhead in computation time
following the function f(ns) = 3 ∗ ns ∗ tcnot, where ns is
the swap overhead and tcnot is the average time necessary to
execute a single CNOT gate. Results for both the BSwap and
NCSwap algorithms are shown to provide comparisons under
all settings.

A. Small Scale
For these small scale simulations, we implement the cache

and swap algorithms on sizes that can be executed with cur-
rent technology without error correction enabled. We cannot
actually implement error correction for testing purposes, as
it would require more qubits than can be feasibly simulated.
Instead, we are working directly with the qubits and assuming
that error correction would be implemented at a larger scale.

Fig. 10. Baseline Swap Results, Small Algorithms

Fig. 11. Baseline Swap Results, Large Algorithms

Baseline Swap Results. The results for the BSwap algo-
rithm are split into two figures, Fig. 10 and 11. The larger
algorithms (Shor and Grover) are separated from the smaller
algorithms (BV, DJ, Simon) because we use two separate
methods for manipulating the cache size. For the larger al-
gorithms, taking a percentage of the total mesh size as cache
works with no problem, as there are enough qubits to select
from. However, the smaller algorithms use a smaller mesh,
resulting in rounding issues when using cache percentages.
To provide more clear results about the effects of increasing
cache size, we instead directly increase the number of cache
qubits rather than relying on a percentage.

The smaller algorithms exhibit relatively similar behavior
for all of the cache topologies. At most cache sizes, either
the corner or center topology performs best depending on the
algorithm, though the tile and split topologies do not perform
much worse. As expected, the number of swaps trends upwards
as cache size increases, as more qubits must be moved out of
the cache.

The larger algorithms also show a general trend upwards in
swaps as cache size increases, though Shor’s algorithm shows
somewhat more complex behavior. Grover’s algorithm stands
out as the only one that benefits mostly from the tile topology,
and the split topology at higher cache sizes. By comparison,
Shor’s algorithm is has consistently low number of swaps with
the central topology at all cache sizes except for the largest
cache size. We will discuss why we believe the algorithms
display these behaviors in the following discussion section.

Best and Worst-Case Overhead. In order to underscore
the importance of choosing the correct cache topology, we
identify the best and worst cache topology at each cache
size for each benchmark and calculate the overhead difference

between the best and worst topologies. Based on the previous
observations in Figs. 10 and 11, we choose to treat the central
cache as our default choice as it consistently performs best on
the smaller algorithms, and the larger cache sizes for Shor’s
algorithm. Fig. 13 displays the minimum, maximum, and mean
overhead figures for each benchmark. As shown, the difference
between minimum and maximum ratios can be very large,
with the greatest difference being roughly 147% for Grover’s
algorithm. When examining only the default central topology,
we similarly find the greatest difference of 115%, or a 2.15x
improvement. There is also typically a sizable difference
between the average and minimum overhead, ranging from
roughly 9-30% overhead over the best choice of topology. The
large differences between the maximum and mean topologies
indicate the impact of cache topology on performance. If one
were to blindly choose a cache topology for a given algorithm
and cache size, they could suffer these large increases in the
number of swaps and therefore execution time. As such, our
recommendation is to profile a given test program to identify
which cache topology is optimal, but the central cache is a
consistent choice for all of our tested algorithms.

No-Cache Swap Results. In addition to the previous results
for the baseline swap algorithm, we also include results for
the second NCSswap algorithm. This algorithm was created
to minimize the number of cache-influenced swaps (a swap
where one or both of the qubits were in the cache) during
execution. The swap results are shown in Fig. 12. For brevity,
only DJ is shown from the smaller class of algorithms,
along with Shor’s and Grover’s algorithm. We chose these
three algorithms as our sample because DJ, BV and Simon’s
algorithm show fairly similar behavior and can be represented

Fig. 12. Nocache Swap Results

Fig. 13. Best, Mean and Worst case performance between topologies of each
benchmark at all cache sizes

by one representative.
As seen with BSwap, for DJ the center and corner topolo-

gies typically perform better. However, Shor and Grover show
very different behavior. The most prevalent observation is
that not all cache topologies can be run at higher cache
sizes, namely center and corner, which had performed best
with the baseline swap algorithm. The cause of this is the
requirement that the algorithm must not swap through the
cache, except when one or both qubits originate in the cache.
If distinct compute regions are isolated from one another by
a cache region, qubits cannot move across the boundary and
the computation cannot finish. This explains why the center
topology is the first to fail, as it grows to divide the mesh in
half. It is possible in this case to fall back on the baseline
swap algorithm, but it is interesting to observe at which point
the topologies begin to fail. Only the split topology is capable
of completing both algorithms, which is sensible as it results
in a large contiguous compute region. The tile configuration
also performs well, and for the Grover algorithm also has the
minimum number of swaps.

Cache-Influenced Swaps. To provide more insight into
the impact of the no-cache swap algorithm, we measure how
many swaps occur where at least one of the two qubits are
present in the cache. We then calculate the difference between
the percentage of these swaps for the baseline and no-cache
swap algorithms. We expect that no-cache swap will display a
substantial reduction in the frequency of these cache involved
swaps as we actively avoid swapping through the cache where

possible. We again calculate the geometric mean over the
various cache sizes and topologies to present the total effect of
the no-cache swap algorithm regardless of chosen topology or
cache size, though it is worth noting that both algorithms have
similar performance at the largest cache sizes as it becomes
impossible to avoid swapping through the cache.

Fig. 14. Reduced Percentage of Cache-Involved Swaps

The results of these measurements for each benchmark
are shown in Fig. 14. As expected, the no-cache swap al-
gorithm reduces the number of cache involved swaps in
every benchmark regardless of cache size or topology. Shor’s
algorithm shows the greatest improvement at nearly 21%, with
a minimal improvement of roughly 2% on DJ. Across all five
benchmarks, the no-cache swap algorithm provides a mean
9.85% reduction in the number of cache-involved swaps. Note
that this reduction does come at an overhead in total number
of swaps, as can be seen by comparing Figs. 10, 11 and 12.
However, reducing the number of swap operations involving
the cache further reduces the number of error correction
operations that would be necessary in the cache.

B. Large Scale

As Fig. 15 showed, the results come from feeding DJ
benchmark into the large-scale Qiskit with baseline swap using
96 physical qubits. After comparing with its smaller version,
the overall behavior of the different topologies is similar. The
rankings of the layouts at large-scale are stable that centers
perform best, and split as the worst. One of the reasons that
split takes the most swaps to execute might be that split has
the longest path of the max possible distance between one

pair of cache and non-cache qubits, which becomes even more
pronounced as the mesh increases in size. This demonstrates
that the policy will be applicable for scale-out large quantum
algorithm. As shown in the figures, for different layouts at
a different size, a wise policy can reduce the number of
swap operations by one order of magnitude for switching
between the optimal layout in different cases. The large scale
results also support the assumption that with a very aggressive
memory-dense design as 80%, the policy can keep the extra
swap overhead within 2 times range and achieve a 3 times
reduction on quantum chip size.

Fig. 15. Large-Scale Results of the DJ Benchmark

C. Discussion

In order to provide insight into the behavior of the algo-
rithms we tested, we present here a small discussion on their
properties and how they influence our observations. First, each
of the smaller algorithms are relatively similar. They begin
with a set of Hadamard gates to create superpositions of the
qubits, perform a sequence of operations that depend on the
given oracle the circuit is made to execute, then end with
another set of Hadamard gates and measurements to extract the
results. The cache mostly impacts multi-qubit gates as qubits
must be moved to adjacent positions. These three algorithms
benefit from larger contiguous compute regions, though not
extremely as they do not implement many multi-qubit gates
depending on the oracle.

By comparison, both Shor’s and Grover’s algorithm are
more complex and rely on a larger number of multi-qubit
gates. Shor’s algorithm in particular shows a considerable
difference between cache topologies at large cache sizes likely
due to the large number of multi-qubit gates. Center and corner
cache topologies provide contiguous compute regions without
having to move as across the entire graph as often to meet
adjacency requirements. Grover’s algorithm stands apart from
all of the others, actually benefiting most commonly from the
tile topology. This is likely due to the implementation of the
input oracle, which happens to execute in a way that benefits
from the tile topology.

VI. CONCLUSION

In order to execute important quantum algorithms, it is
necessary to increase the number of available qubits in a
quantum computer. Quantum caches are one such method by

reducing the number of ancilla qubits necessary for imple-
menting quantum error correction codes. We have extended
this concept from ion trap computers to superconducting
meshes and modified the Qiskit quantum simulator to accom-
modate quantum caches. With these modifications, we have
examined various cache sizes and topologies on five different
quantum algorithms. Our observations show that central caches
typically minimize the number of swaps added by the cache
during algorithm execution, but it is optimal to profile each
individual algorithm. We proposed an alternative cache-aware
swap algorithm that reduces the cache disturbance caused
by swapping qubits, further reducing cache operations and
increasing reliability. In combination, these methods will in-
crease the number of usable qubits on systems that implement
error correction.

VII. ACKNOWLEDGEMENT

We appreciate the invaluable comments from the shepherd
Marko Vukolic and anonymous reviewers who help us finalize
the paper. This work is supported in part by NSF Grants
1422408, 1527318, 1946626, and 2020446. Travis LeCompte
is supported by a Louisiana Board of Regent Fellowship.

REFERENCES

[1] Arute, Frank, et al. ”Quantum supremacy using a programmable super-
conducting processor.” Nature 574.7779 (2019): 505-510.

[2] Dowling, Jonathan P. ”On The Dowling-’Neven’ Law.” Quantum Pundit.
11 July 2019. http://quantumpundit.blogspot.com/2019/07/on-dowling-
neven-law.html

[3] Cross, Andrew. “The IBM Q experience and QISKit open-source quan-
tum computing software”, APS Meeting Abstracts, 2018.

[4] Goyal, Sandeep K., et al. ”Geometry of the generalized Bloch sphere
for qutrits.” Journal of Physics A: Mathematical and Theoretical 49.16
(2016): 165203.

[5] Kielpinski, David, Chris Monroe, and David J. Wineland. ”Architecture
for a large-scale ion-trap quantum computer.” Nature 417.6890 (2002):
709.

[6] Monroe, Christopher, and Jungsang Kim. ”Scaling the ion trap quantum
processor.” Science 339.6124 (2013): 1164-1169.

[7] Kreger-Stickles, Lucas, and Mark Oskin. ”Microcoded architectures
for ion-tap quantum computers.” 2008 International Symposium on
Computer Architecture. IEEE, 2008.

[8] Linke, Norbert M., et al. ”Experimental comparison of two quantum
computing architectures.” Proceedings of the National Academy of
Sciences 114.13 (2017): 3305-3310.

[9] Li, Ying, et al. ”Resource costs for fault-tolerant linear optical quantum
computing.” Physical Review X 5.4 (2015): 041007.

[10] Marcos, D., et al. ”Coupling nitrogen-vacancy centers in diamond to
superconducting flux qubits.” Physical review letters 105.21 (2010):
210501.

[11] Fu, Xiang, et al. ”An experimental microarchitecture for a superconduct-
ing quantum processor.” Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2017.

[12] Kelly, Julian. ”A preview of Bristlecone, Google’s Quantum Processor.”
Google AI Blog. 5 March 2018. https://ai.googleblog.com/2018/03/a-
preview-of-bristlecone-googles-new.html

[13] Tannu, Swamit S., and Moinuddin K. Qureshi. ”Not all qubits are
created equal: A case for variability-aware policies for nisq-era quantum
computers.” arXiv preprint arXiv:1805.10224 (2018).

[14] Lye, Aaron, Robert Wille, and Rolf Drechsler. ”Determining the minimal
number of swap gates for multi-dimensional nearest neighbor quantum
circuits.” The 20th Asia and South Pacific Design Automation Confer-
ence. IEEE, 2015.

[15] Shor, Peter W. ”Scheme for reducing decoherence in quantum computer
memory.” Physical review A 52.4 (1995): R2493.

[16] Michael, Marios H., et al. ”New class of quantum error-correcting codes
for a bosonic mode.” Physical Review X 6.3 (2016): 031006.

[17] Guenda, Kenza, Somphong Jitman, and T. Aaron Gulliver. ”Construc-
tions of good entanglement-assisted quantum error correcting codes.”
Designs, Codes and Cryptography 86.1 (2018): 121-136.

[18] Chao, Rui, and Ben W. Reichardt. ”Quantum error correction with only
two extra qubits.” Physical review letters 121.5 (2018): 050502.

[19] Steane, Andrew. ”Multiple-particle interference and quantum error cor-
rection.” Proceedings of the Royal Society of London. Series A: Math-
ematical, Physical and Engineering Sciences 452.1954 (1996): 2551-
2577.

[20] Barends, R., Kelly, J., Megrant, A. et al. Superconducting quantum
circuits at the surface code threshold for fault tolerance. Nature 508,
500–503 (2014). https://doi.org/10.1038/nature13171

[21] Thaker, Darshan D., et al. ”Quantum memory hierarchies: Efficient
designs to match available parallelism in quantum computing.” ACM
SIGARCH Computer Architecture News 34.2 (2006): 378-390.

[22] Wang, Y., Um, M., Zhang, J. et al. Single-qubit quantum memory ex-
ceeding ten-minute coherence time. Nature Photon 11, 646–650 (2017).
https://doi.org/10.1038/s41566-017-0007-1

[23] Quantum Fourier Transform. 27 July 2020, qiskit.org/textbook/ch-
algorithms/quantum-fourier-transform.html

[24] L. Duan, et al. “Versatile Prediction and Fast Estimation of Architectural
Vulnerability Factor from Processor Performance Metrics,” In Proceed-
ings of the 15th IEEE International Symposium on High-Performance
Computer Architecture (HPCA-15), Raleigh, NC, Feb. 2009.

[25] L. Duan, et al. “Universal Rules Guided Design Parameter Selection
for Soft Error Resilient Processors,” In Proceedings of The 2011 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), Austin, TX, Apr. 2011.

[26] T. LeCompte, et al. “Soft Error Resilience of Big Data Kernels through
Algorithmic Approaches,” Springer Journal of Supercomputing, Vol. 73,
pp. 4739–4772, Nov. 2017.

[27] L. Duan, et al. “Comprehensive and Efficient Design Parameter Selection
for Soft Error Resilient Processors via Universal Rules,” In IEEE
Transactions on Computers, Volume 63, Issue 9, pages 2201 – 2214,
Sep. 2014.

[28] L. Duan,et al. “Predicting Architectural Vulnerability on Multi-Threaded
Processors under Resource Contention and Sharing,” In IEEE Transac-
tions on Dependable and Secure Computing, Vol. 10(2), pages 114-127,
Mar.-Apr. 2013.

[29] Y. Zhang, et al. “Design Configuration Selection for Hard-error Reliable
Processors via Statistical Rules”, In Journal of Microprocessors and
Microsystems, Volume 38, Issue 1, Feb. 2014, pages 22–30.

[30] S. Lim, T. Coy, Z. Lu, B. Ren, and X. Zhang, “NVGRAPH: Enforcing
Crash Consistency of Evolving Network Analytics in NVMM Systems”,
IEEE Transactions on Parallel and Distributed Systems (TPDS), 2020.

[31] S. Lim, Z. Lu, B. Ren, X. Zhang, “Enforcing Crash Consistency of
Evolving Network Analytics in Non-Volatile Main Memory Systems”,
In Proceedings of the 28th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT’19), Seattle, WA, September
2019.

[32] B. Li, et al. “Efficient Microarchitectural Vulnerabilities Prediction
Using Boosted Regression Trees and Patient Rule Inductions,” IEEE
Transactions on Computers, Vol 59(5), pp. 593-607, May 2010.

[33] S. Chen, et al. “Soft Error Resilience in Big Data Kernels through
Modular Analysis,” in Springer Journal of Supercomputing, Vol. 72,
Issue 4, Apr. 2016.

[34] S. Chen, et al. “A Framework For Evaluating Comprehensive Fault
Tolerance Mechanisms In Numerical Programs,” In Springer Journal of
Supercomputing. Aug. 2015.

[35] Shor, Peter W. ”Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer.” SIAM review 41.2 (1999):
303-332.

[36] Grover, Lov K. ”A fast quantum mechanical algorithm for database
search.” Proceedings of the twenty-eighth annual ACM symposium on
theory of computing. 1996.

[37] Simon, Daniel R. ”On the power of quantum computation.” SIAM
journal on computing 26.5 (1997): 1474-1483.

[38] Deutsch, David, and Richard Jozsa. ”Rapid solution of problems by
quantum computation.” Proceedings of the Royal Society of London.
Series A: Mathematical and Physical Sciences 439.1907 (1992): 553-
558.

[39] Bernstein, Ethan, and Umesh Vazirani. ”Quantum complexity theory.”
SIAM Journal on computing 26.5 (1997): 1411-1473.

