
BPU: A Blockchain Processing Unit for Accelerated Smart
Contract Execution

Tao Lu and Lu Peng
Division of Electrical & Computer Engineering, Louisiana State University

Abstract—Modern blockchains use smart contracts to implement
automatic and decentralized programs, which are the foundations of
Decentralized Applications (DApp). The poor performance on general
purpose computers has become the bottleneck that limits the blockchain
and smart contracts from being widely used. In this paper, we present
BPU, a high-performance modularized blockchain processing unit. BPU
aims at bringing performance and flexibility to the blockchain and DApp
processing. Our design achieves significant speedup compared against the
software implementation on an Intel CPU.

Index Terms—Blockchain, Transaction Processing, Smart Contract,
Accelerator

I. INTRODUCTION

Blockchain is a cutting-edge technology that was first introduced
along with the invention of Bitcoin [1]. Ever since then, the unique
features of its decentralization [2] and anonymity [3] have drawn
much attention from both academia and industry. Soon after, the
concept of Smart Contract (SC) was introduced by another blockchain
project Ethereum [4] that enabled blockchain to process more so-
phisticated functions and logic in an automatic and decentralized
manner. Due to this add-on feature, blockchain technology gained
the potential to be applied in well-expanded fields such as supply
chain [5], Internet of Things (IoT) [6] and Financial Industries [7].

Smart contracts [8] are the executable code stored on blockchain
that are programmed to be executed automatically when triggered.
To trigger the functions in SC, users need to broadcast a transaction
to the network targeting the contract account. In blockchain, these
transactions are collected by all the participating nodes and executed
locally in a distributed manner. This procedure is called the transac-
tion processing.

Transaction processing is very time consuming and inevitable for
all full nodes in blockchain. When a new node joins the network, it
needs to sync all the blockchain history from peers and re-exeute all
the transactions locally in order to build up its own history copy. This
syncing process usually takes several weeks even on a well equipped
workstation with high-end CPU, SSD and gigabit ethernet. On the
other hand, once the synchronization is done, the node continues
to process new blocks received in the network as a maintainer. At
this time, its poor performance on processing transactions also limits
the throughput of the whole system, which prevents blockchain from
replacing current established centralized systems.

Researchers have been exploring ways to improve the processing
performance of blockchain. Until now, many works have been done
at the software or the protocol level [9]–[12]. Meanwhile, hardware
approaches have also been proposed to boost blockchain performance.
However, most of the efforts are limited on improving the mining
performance by using ASIC or FPGA [13], [14]. Hardware acceler-
ators for time-consuming blockchain transaction processing remain
as a blank. To our knowledge, this is the first work to explore
the architectural design for smart contract execution and blockchain
processing.

In this paper, we present BPU, a modularized processor for smart
contract execution and blockchain processing. BPU out-performs

the current software implementation on CPU with the help from
architectural optimization. We then measure the performance of
BPU’s submodules and study the SC execution pattern by analyzing
the operation frequencies using real-case benchmarks. Finally, we
implement and evaluate our design on a Xilinx’s FPGA platform.

Our contributions can be summarized as follows:
• We proposed a modularized architecture using pipeline opti-

mization to improve the performance of blockchain processing,
especially the SCs execution.

• We adopted application-oriented optimization to design co-
processors, and implement an ERC20Core for Ethereum, which
gains up to x191 speedup compared to Intel i7-7700k CPU.

• We applied detailed analysis on the execution trace in order to
understand the pattern of blockchain execution.

• We implemented our design on a Xilinx’s Zynq-7000 platform
and evaluated the hardware utilization and performance.

II. BACKGROUND AND MOTIVATION

A. Block Processing and its Challenge

The blockchain can be viewed as a distributed ledger which
records the consensus states of all accounts. The transactions can
be viewed as changes to these states. Block processing is also
the procedure of applying these state changes when appending a
new block to the current blockchain. For example, a token transfer
transaction will change the account balance and a SC transaction
will modify the state of the contract storage. Compared to token
transfer transactions, smart contract transactions are much slower and
more computationally intensive. Meanwhile, the proportion of smart
contracts in a block is increasing as the time goes. Inevitabley, more
and more DApps will be built as blockchain technology becomes
more popular and technically capable. However, current blockchain
designs has experienced less-optimal behavior in processing these
smart contracts.

To make things worse, special events can also boost the SC
proportion significantly during a short period of time and drag down
the performance significantly. Using Ethereum as an example, the
well-known Initial Coin Offering (ICO) bubbles and the blockchain
game Crypto-kitties, at its popularity peak, both pushed stress of
computation burden on the blockchain and revealed the bottleneck
of blockchain processing. As more attentions have been drawn to
improve the performance, along with the boosting investment on
financial technologies (FinTechs), we have reasons to believe the
future proportion of smart contracts will be higher, thus it is urgently
required to improve the performance of processing smart contracts.

B. Standardized Smart Contracts and Templates

Different from software, SCs on blockchain are often templated
and standarized. There are several standard SCs existing in the
blockchain ecosystem. They act as public standard libraries and
design references. Their existence reduces the burden of developing
complicated DApps and the cost of re-inventing the wheel. More

1

importantly, they are widely accepted and used in reality. For exam-
ple, in Ethereum, one of the most well-known standardized smart
contracts is the ERC20 contract [15], which defines a series of
essential functions to launch user-customized cryptocurrency. This
template has been widely adopted ever since its proposal in 2015. In
Sept. 2018, the entire set of 64,393 ERC20 token networks capture
19.45 million unique addresses, which corresponds to nearly 45.9% of
all addresses on the Ethereum blockchain [16]. At the current time of
Nov. 2019, there have already been 227,048 ERC20 contracts existing
on Ethereum, according to Token Tracker from etherscan.io [17].

On the other hand, these standard templates are developed and
well tested with the concern of security. In the past, the DAO attack
[18], a less-securely designed non-standard smart contract, resulted
in $60M loss of money and the hard fork of Ethereum Classic (ETC).
Thus, we believe the standardized smart contract and libraries will
be hugely needed in the future. Therefore, it is well worth applying
optimization for these predominant smart contracts.

C. Generalized Smart Contract

Diverse blockchains usually define their own instruction set archi-
tecture (ISA) and runtime environment to support their SC execution.
Even though the coding languages are different, the philosophy and
dataflow behind it are quite similar. SCs can be viewed as the hard-
coded rules to modify blockchain states if specific requirements
meet. Having this vision, all SCs can be treated as a condition
checking logic and a state updating method, even though they could
be implemented differently. Therefore, without loss of generality,
we use the most well-known blockchain Ethereum as an example
to explore the potential optimization. Furthermore, based on this
observation, we propose the generalized dataflow optimization, which
will be introduced in next section.

III. DESIGN AND ARCHITECTURE

In this section, we introduce the design and architecture of BPU,
which has the configurable and modularized components to be gener-
alized on different blockchain platforms. In this paper, we target BPU
at the most well-known SC blockchain Ethereum, and implement
App Engine as ERC20 engine and GSC engine as Ethereum Virtual
Machine (EVM) engine. Note that the BPU design can be also
applied to other blockchains. In the following sections, we will
introduce BPU’s components first and discuss the multi-core design
and transaction level parallelism.

A. BPU Design

Figure 1 describes the components and dataflow of BPU archi-
tecture. At a high level, BPU will read data from Input Buffer via
a Scheduler, process the transactions in the Transaction Processor
(TP), and finally write the result to the Receipt Buffer. The essential
parts of TP are an Application Engine and an General Smart Contract
(GSC) Engine. The former is deeply optimized to accelerate specific
applications or standardized SCs, and the latter handles the general-
purpose SCs. In addition, BPU can be configured into either single-
core mode or multi-core mode.

1) Input Buffer and Data Structure: The Input Buffer holds all
the raw data fed into the BPU. It is composed of two parts: The
Transactions Buffer (TransBuf) and the State Database (StateDB).
TransBuf stores the transactions to be executed, which contains a
series of fixed-length parameters, such as the 160-bits address, the
80-bits value etc., and an arbitrary length byte array Inputdata.
We stored the fixed-length part and variable-length part separately
in Transaction information buffer (TransInfo) and transaction input

Fig. 1: BPU architecture

buffer(TransInput) respectively. This enables us to concatenate the
fixed-length data together and read them as a single piece at one cycle.
On the other hand, we can save space when allocating dynamically
for the variable-length Inputdata. Meanwhile, it also makes it possible
for App Engine to read both sections concurrently.

StateDB contains the state before the transactions get processed,
including all the related accounts and target contracts. Each account
has four fields: balance (fixed size), nonce (fixed size), code field (any
size), and storage field (any size). For the same reason of seperating
fixed-length and variable-length parts, we have the Code and Storage
buffers and AccountInfo buffer seperately.

2) Scheduler: The Scheduler is a module that reads data from the
input buffer and fills the Local Buffer (LocalBuf) with the appropriate
format. More importantly, it will identify the function being called
and distribute the transaction to either EVM Engine or Application
engine. As we introduced in the background, the first eight bytes
of the input data is the identifier of the function. The scheduler will
firstly retrieve a transaction and get the input data. Then it will decode
the identifier from the input data and compare with a series of pre-
defined identifiers to distinguish the general SC and optimized SC.
For example, in our experiment, we use constant value “0xa9059cbb”
as the identifier for optimized ERC20 transaction, which is the same
as standard transfer() function in ERC20 contracts.

Meanwhile the scheduler will search for the target account in
StateDB and retrieve the target code field and storage field. Finally,
the scheduler will save these data to the LocalBuf in order to set up
the local copy for Transaction Processor (TP). In multi-core mode,
there will be multiple TPs running in parallel. The scheduler will also
handle the way transactions are dispatched to different TPs, which
will be introduced in next section.

3) Local Buffer and Transaction Processor: Local Buffer is a
piece of cache that saves a copy of the target contract. It is com-
posed of two parts: Transaction Information Buffer (TIB) and Local
Database (LDB). TIB holds the current transaction being executed,
which provides the target information such as contract address, sender
address and input argument. LDB serves as a copy of the pre-
processing state. During the execution, any temporary changes of the
state are written to LDB. After the execution, only if the transaction
is executed successfully, LDB will overwrite the StateDB. Or if any
error happens during the execution, LDB will be discarded so that
StateDB is unchanged, which is also called “revert”.

TP is where transactions get processed. At the transaction level,
TP is fed by the scheduler one transaction at a time. Only after the
previous one retires, the next transaction can be read in TP. In single-
core mode, better performance comes from the micro-architecture
optimization in EVM Engine and App Engine. In next section, we

2

Fig. 2: Structure of EVM engine

Name Opcode Bytecode
Stack PUSH, DUP, SWAP, POP, BYTE 0x60 ... 0x9f,

0x50, 0x1a
Arith ADD, MUL, SUB, DIV, SDIV, MOD,

SMOD, ADDMOD, MULMOD, EXP,
SIGNEXTEND

0x01 ... 0x0b

Logic LT, GT, SLT, SGT, EQ, ISZERO, AND,
OR, XOR, NOT

0x10 ... 0x19

Env Address, Balance, Origin, Caller, Cal-
lvalue, Calldataload, Calldatasize, Call-
datacopy, Codesize, Codecopy, Gasprice,
Extcodesize, Extcodecopy, Returndata-
size, Returndatacopy

0x30 ... 0x3e

Block Blockhash, Coinbase, Timestamp, Num-
ber, Difficulty, Gaslimit

0x40 ... 0x45

Memory Mstore, Mstore8, Mload 0x51 ... 0x53
Storage Sload, Sstore 0x54, 0x55
System Return, Revert, Invalid, Selfdestruct 0xfc ... 0xff

TABLE I: Submodules of EVM engine

discuss the multi-core design targeting at parallelism at the transaction
level.

B. General SC Engine - EVM

EVM is the kernel execution model of Ethereum, which is a stack-
based state machine as defined in [4]. In this paper, we implement
our GSC as an EVM engine. As Figure 2 shows, it is composed of
a local Stack, a local Memory, a Fetch Unit, a Decoder, a SHA3
engine and an Interpreter. Among them, the stack and memory save
the local volatile data; the Fetch Unit fetches the code and handles
the branches; the Decoder decides which one of the submodules in
the Interpreter should be sent the current instruction; SHA3 engine is
a stand-alone module specifically optimized for hash function, which
will be introduced in the next section. The Interpreter is a collection
of multiple submodules which handle different operations;

1) Submodules and Pipeline: Table I lists out the names of EVM
submodules, also called units, and their supported operations. These
units implement the ISA defined in [4] and thus are fully compatible
with the current Ethereum architecture. Our highly modularized
design of EVM Engine enables us to apply the pipeline optimization
to achieve better performance. We design an in-order pipeline on
the EVM Engine as shown in Figure 3. The execution is divided
into four stages. Namely, operation fetching, decoding, execution and
writeback to stack or memory. There are registers that carry the data
between the stages.

Before the execution, the scheduler will move the target data from
Input Buffer into the local buffer. When the execution starts, the
controller will fetch the target code using Program Counter (PC) and
apply a pre-decoding check. The STOP code (0x00) will terminate the
execution immediately. If the execution continues and the Decoder
is ready, the controller pushes the instruction into the decoding

stage. The Decoder will then decode the operation and choose the
appropriate submodule of interpreter to send. Then in the Interpreter,
the operation will be executed, and the temporary result is latched
and stored to the Stack and Memory in the writeback stage. Finally,
when the EVM Engine decides to terminate, it will generate an EVM
receipt based on the status of the local memory and stack, and return
to the Receipt Buffer.

In addtion, we apply special optimization on these opcode exe-
cutions in order to achieve better performance. In early versions of
Ethereum ISA, there is no bit shifting operations. Such operations
are always implemented by 256-bit division (DIV) operation. For
example, a typical procedure at the beginning of execution is to
fetch the function identifier, which is a 32-bits integer locating as
the first eight bytes of the input section. Due to the lack of shifting,
compilers often implement these by using the 256-bit integer divided
by constant value 2224, in order to get first 8 bytes. Similarly,
when the first 16 bytes are needed, another constant value 2192

is needed. Such big constants are not pre-calculated but usually
generated by exponent (EXP) operation at runtime. In practice, such
big number division and exponent operation is very time consuming if
implemented by dividers and multipliers, so we optimize such special
cases using bit shifting registers, which significantly saves the time
and reduces the additional cost. Nevertheless, the general-purpose
division and exponent is still necessary because EVM is intended to
support Turing complete computations.

2) SHA3 Submodule: We also design a special SHA3 unit to do the
time consuming SHA3 operation (bytecode 0x20). We need to point
out that the SHA3 here is NOT the standard SHA3 algorithm (defined
by FIPS 202 [19]). Instead, it refers to the Keccak-256 algorithm
[20], which uses different parameters in calculation. In this paper,
we use the conventional name “SHA3” but all of them represent the
Keccak-256 algorithm.

In Ethereum, SHA3 is often used to calculate the 256-bit key of
the storage index in order to get the current state from the storage.
It will firstly pad the input into fixed length data (1088-bits long)
and feed it into the sponge function. Our SHA3 engine has a 64-bit
input paired with a valid signal. When the valid signal is set, SHA3
engine will start reading the input continually and save them in the
buffer. It takes up to nine cycles to fill up the 1088-bits buffer, and
then this big value will be consumed all at once to do the sponge
function. Another “last byte” control signal is used to stop feeding
ahead of schedule if needed. The SHA3 algorithm does 24 rounds
of calculation on the sponge function and result will be saved in
the output buffer and ready to be read. Inspired by the design [21],
we implemented a two rounds per cycle design at the hardware level,
which reduces the execution time of the sponge function to 12 cycles.

To summarize, our EVM Engine has full support for Ethereum’s
defined Turing complete operations. We optimized several time
consuming operations, such as SHA3, DIV and EXP, and implement
pipeline optimization for better performance.

C. Application Engine - ERC20

As we introduced in the background, a majority of SCs are
templated and limited to some certain functions (libraries). This
important feature enables us to do deep optimization as long as
we define the function’s dataflow clearly. In this paper, we propose
a general dataflow optimization targeted at maximizing parallelism
and explore the potential benefits for such optimization using the
Ethereum ERC20 template as an example.

1) Dataflow Template: As we introduced in the background, many
SCs can be treated as an assertion logic and a state changing method.

3

Fig. 3: Pipeline of EVM engine

(a) General data flow template

(b) ERC20 transfer function data flow

Fig. 4: Application Engine data flow template

Based on this observation, we propose the optimized dataflow tem-
plate as shown in Figure 4a. The whole design is composed of a series
of basic units: Read, Hash, DB Read, DB Write, Arithmetic Logic
Unit (ALU) and Receipt. These input units will read not only from the
input data of the transaction, but also from the local buffer to achieve
transaction information such as the sender’s address. Figure 4b shows
an example of mapping ERC20 transfer function to our template.
Two input units will read the 160-bits receiver’s address and sender’s
address respectively, and then calculate the corresponding keccak256
hash value. The other input unit will read the transaction data field and
get the amount of tokens to be transferred. The ALU will calculate
the output value. The Assertion unit is used to revert the execution
by discarding the current state changes, if specific conditions do not
meet. In this case, it needs to guarantee the sender has enough tokens
to be transferred (no less than the amount). Finally results will be
passed to the DBWrite unit and Receipt generation unit to finalize the
transaction. All the above modifications are done to the local database
and if everything goes well, the world state will be overwritten at the
last step.

Our design divides the dataflow based on their dependency and
takes advantage of the parallelism. The two input module reads from
different location. One is from the variable length data segment, and
another is from fixed length transaction information segment, which
contains sender’s address, to address, etc. These segments are stored
in different buffers in order to enable concurrent reading and other
benefits, which will be introduced in next single-core section.

2) Optimization and App Engine: The conventional EVM imple-
ment for smart contract is usually less-optimal and lack of support
for parallelism, which does not take fully advantage of the modern
hardware. For example, when compiled with solidity v0.5.13, it takes

more than 200 operations to implement a simple transfer function. A
lot of them are redundant data pushing, duplication and swapping on
the stack. Therefore, we implement App Engine using our proposed
dataflow to achieve better performance.

In our design, we fully parallelize the three dataflow and merge
them only at the ALU because they do not have dependencies on
each other. For simplicity and the trade-off between the performance
and hardware area, our ALU in App Engine only supports the ADD
and multiplication (MULT) operations. However, more complicated
computation can be done using the companion EVM Engine and pass
to the assertion unit to approve the transaction.

D. Multi-core Design and Transaction-Level Parallelism

In our design, the BPU can be configured to have multiple TPs
running in parallel in order to enhance the performance. In this
scenario, the transactions may be processed out of order. If two
transactions try to call the same contract, there will be possible Read-
after-Write (RAW) and Write-after-write (WAW) dependency issues.
Furthermore, a transaction will possibly trigger any other transaction.
There is no way to learn the target contract of the triggered transaction
except by processing the first one. Therefore, it is impossible to
determine the dependency before the actual execution. The paper
[9] proposed a speculative execution to solve this issue by saving the
miner’s execution sequence in the block as supporting information.

In this paper, we profile the target block and determine the
transaction level dependencies in advance and save such information
in the InputBuf. In multi-core mode, we use the Scheduler to dispatch
dependent transactions to the same TP in the right timing sequence.
Independent transactions, on the other hand, can be distributed to any
available TP and processed out of order. We can benefit from this
design in two aspects. Firstly, it will guarantee the data dependency
to be resolved. Secondly, processing the dependent transactions in
the same TP will remove the redundant loading from the database. If
these transactions are executed separately, TPs must writeback to the
world state first, and load their LocalDB again. Using our distribution
strategy, the TP can reuse its LocalDB as the up-to-date state.

IV. METHODOLOGY AND RESULTS

A. Platform

We implement the BPU on a Xilinx’s Zynq-7000 ZC706 evaluation
kit [22]. All modules of BPU, except the stand-alone SHA3 engine,
are coded in C/C++ and synthesized into Vivado IPs using High
Level Synthesis (HLS). The exception, the SHA3 engine, is coded
using Verilog directly in order to apply direct control on the timing
for optimization. At last, Vivado IPs are integrated and tested on the
FPGA. The clock frequency of the overall design is 100MHz. In
terms of input buffers, Block RAMs (BRAM) are ideal for storing
large arrays. In our design, we used 692 (out of 1090 available)
on-board BRAM-18K to compose the input buffer, storing the state
database and the transactions. These BRAMs are configured as dual
port ROMs so that data can be accessed by two cores at the same
time.

We run the software implementation of Ethereum as baseline,
which is coded in C/C++ and compiled using GCC version 8.1.
The CPU we used is an Intel i7-7700k quad-core at 4.2GHz. A
multi-run averaged execution time is measured and compared against
BPU performance on the target FPGA. Meanwhile, BPU is set up
with different configuration in order to evaluate individual engines as
shown in Table II.

4

Config # of EVM # of App Used in test
SimpleCore 1 0 u-bench, real-bench
ERC20Core 1 1 u-bench, real-bench
ERC20Duo 2 2 real-bench

TABLE II: BPU configuration in experiments

Bench Block# Txs ERC Gnrl SC ETH ERC/SC
B1 6653186 190 31% 13% 56% 70%
B2 6653197 102 29% 29% 41% 50%
B3 6653232 115 46% 13% 41% 78%
B4 6653208 78 22% 42% 36% 34%
B5 6653220 90 33% 33% 33% 50%
B6 6653209 159 40% 18% 43% 69%
B7 6653205 16 38% 6% 56% 86%
B8 6653205 80 38% 6% 56% 86%

TABLE III: Details of real-case benchmarks

B. Benchmarks

1) Real-case benchmarks: In our study, we use real-case blocks
retrieved from Ethereum’s history record as our benchmarks. We
carefully select the blocks with various numbers of transactions and
smart contracts in order to satisfy generality and universality as shown
in Table III. We also count the number of total transactions, ERC20
transactions, General SC (non-ERC20 SC), ETH token (non-SC) and
ratio of ERC20 within SCs as shown in the columns respectively. The
real block data were retrieved from the Etherscan.io [17] website via
API, and saved into the input buffer.

2) Micro-benchmarks: We also use micro-benchmarks to test the
performance of different submodules which are discussed in EVM
Engine section. Each of these micro-benchmarks will only target one
specific type of operation. To improve the accuracy, we repeat the
same kernel code 1000 times, as presented in Table IV. In addtion,
as shown in the bottom half of Table IV, we also add three block
level micro-benchmarks to test the performance of App engine. The
EMPTY is an empty SC without computation, which stands for the
overhead of loading SC to BPU. For 100% ETH, we package 20
non-SC ETH transfers. The major ETH operation is global database
search and modification. For 100% ERC20 benchmark, we select
one ERC contract and generate 20 ERC20 transfers to call the
transfer() function. These transactions are compute-bounded and can
be benefited from hardware acceleration.

3) Operations analysis: In order to recognize the behavior of
smart contracts, we analyzed the processing trace of all benchmarks
and calculate the frequency of each type of operations. As the
Table V presents, we categorize the operations into different groups
depending on which submodule handles the bytecode, which is the
same relationship defined in Table I.

C. Results

In our experiments, we equipped the BPU with different number
of EVM engines and App engines and test in different sections, as
illustrated in Table II. Note that the SimpleCore and ERC20Core are
both in single-core mode and the ERC20Duo is in duo-core mode
with a scheduler to distribute transactions.

1) Micro-benchmarks Results: In this section, we tested the EVM
Engine performance using SimpleCore. Figure 5 provides the speedup
for different operation types. We can see that the speedup of MEM-
ORY operations is very high (x70). This is because the CPU Intel i7-
7700K has only 8MB last level cache [23] and our FPGA platform has
18M on-chip BRAM. Our Memory micro-benchmark generates more
on-chip cache misses in CPU than BPU. In addition, the STORAGE
benchmark has a bottleneck in off-chip database search. This limits

Name Description
PUSH 1000 PUSH
STACK 1 PUSH, 1000 DUP, 1000 POP
ARITH 1000 ADD, 1001 PUSH
LOGIC 1000 PUSH, 1000 AND
STORAGE 1000 PUSH, 1000 SLOAD
MEMORY 1000 PUSH, 1000 MLOAD
EMPTY Empty transaction with only ”return 0”;
100% ERC20 20 Transaction calling ERC20 Transfer() function
100% ETH 20 Ethereum token ETH transfer (not a SC)

TABLE IV: Details of micro-benchmarks

Fig. 5: Speedup of operation level micro-benchmarks

Fig. 6: Speedup of block level micro-benchmarks

Fig. 7: Speedup of BPU against CPU

the performance advantages of the fast BPU and results in a low
speedup (x3.6).

In Figure 6, we presents the result of block level micro-
benchmarks. The speedup for SimpleCore on ETH benchmark is
relatively low (x9.8) due to the heavy off-chip database searches.
However, it has a x25.5 speedup on 100% ERC benchmark due to the
benefit from pipeline optimization. When equipped with additional
ERC20 engine, the ERC20Core boosts up the speedup to over x300
on 100% ERC benchmark. This proves the significant advantage of
applying such application level optimization on App engine.

2) Real-benchmarks Results: Figure 7 illustrates the overall per-
formance of BPU in all three configurations. We use the CPU
version as our baseline and show the FPGA speedup. For SimpleCore
configuration, it does not have high speedup on B5, B7, and B8. This
is due to the fact of high rate of Storage operation (shown in Table
V) and its poor acceleration (shown in Figure 5).

However, ERC20Core has a good performance on B7, B8 with
x84, x96 speedup respectively. This result is because these blocks
contain a higher proportion of ERC20 transactions (shown in Table

5

SHA3 Push Stack Arith Logic Jump Mem Strg Env Block Others total count
B1 0.46% 36.73% 18.77% 2.91% 15.81% 16.20% 2.70% 0.63% 2.98% 0.02% 2.79% 14281
B2 0.26% 28.32% 25.04% 5.39% 16.27% 16.94% 1.65% 0.54% 1.66% 0.00% 3.92% 21063
B3 0.44% 36.50% 19.84% 2.57% 15.67% 16.53% 2.48% 0.67% 2.72% 0.03% 2.54% 9801
B4 0.14% 37.37% 19.86% 2.12% 17.61% 17.89% 1.57% 0.36% 1.51% 0.14% 1.44% 11558
B5 0.72% 34.33% 21.59% 5.09% 14.06% 13.16% 3.77% 1.32% 2.75% 0.00% 3.23% 16720
B6 0.40% 37.10% 19.73% 2.74% 16.64% 16.23% 2.33% 0.52% 1.87% 0.01% 2.42% 13499
B7 1.00% 32.18% 23.10% 4.82% 14.25% 13.35% 3.63% 1.77% 2.68% 0.09% 3.13% 2203
B8 1.00% 32.18% 23.10% 4.82% 14.25% 13.35% 3.63% 1.77% 2.68% 0.09% 3.13% 11015

TABLE V: Instruction breakdown of benchmarks

Design LUT FF DSP BRAM Power (Watt)
SimpleCore 61202 67344 402 25 5.956
ERC20Core 65517 72464 402 25 6.104
ERC20Duo 137717 153841 806 50 6.892

TABLE VI: Hardware Utilization and On-Chip Power

III) and they benefit a lot from the App Engine. Even though B3 has a
relatively high ERC20 proportion, we discover there are several time-
consuming 256 bits division operations that slow down the overall
performance.

When configured in duo-core mode, ERC20Duo achieves a better
performance up to x151 on B7 and the best x191 on B8, almost
doubled the single-core performance. The benefit of duo-core over
single-core depends on the content of the block’s transactions. More
accurately, it is how well the scheduler can distribute the task evenly.
B8 is a perfect example of this situation. We duplicate the transactions
in B7 into B8, so that the scheduler can distribute B8 onto two cores
evenly. This results in a x1.97 speedup against single-core and x191
against CPU baseline.

3) Other Results: Table V demonstrates the operation breakdown
of each benchmark, which describes the diversity between smart
contracts and explains their different performance. As we can see, B7
and B8 have a higher proportion of Storage and SHA3 operations.
These are the typical signs of higher rate of ERC20 transactions,
which can be accelerated using App engine. On the other hand, B2
has a higher rate of Arithmetic and Stack operations, and lower rate
of Storage and SHA3. This means that B2 does not contain many
ERC20 transfers (also shown in Table III), thus cannot benefit a lot
from ERC20Core. However, it is computation bounded and achieves
a x20 speedup from SimpleCore. In addition, the utility of resources
and power consumption is also shown in Table VI.

V. CONCLUSION

In this paper, we proposed BPU, a flexible and high-performance
architecture design for blockchain processing. This design relies on
a variety of modules to accelerate the execution of transactions,
especially the smart contract transactions. At the micro-architecture
level, we have applied pipelining and other optimization techniques
to improve the performance. At the system level, BPU can also be
configured as either single-core or multi-core mode in order to benefit
from parallelism and achieve better performance.

In addition, we explored the current smart contract behavior on
the Ethereum platform by doing a detailed analysis on the execution
traces. Based on the result, we propose application-oriented opti-
mization, App engine, which achieves a x305 speedup under best
conditions. Finally, we implemented and evaluated the BPU design
on a Xilinx’s Zynq-7000 ZC706 evaluation kit. As shown above,
the BPU design has an up to x96 speedup compared to the CPU
implementation in processing Ethereum transactions. The dual-core
mode can roughly double the performance if scheduled perfectly.

Furthermore, BPU’s modularized design retains the flexibility to
be tuned for different ecosystems or other blockchains other than

Ethereum. The future work will be exploring the feasibility and the
trade-offs between hardware cost and performance.

REFERENCES

[1] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[2] P. De Filippi, “The interplay between decentralization and privacy: the
case of blockchain technologies,” Journal of Peer Production, Issue,
no. 7, 2016.

[3] M. Moser, “Anonymity of bitcoin transactions,” 2013.
[4] G. Wood et al., “Ethereum: A secure decentralised generalised transac-

tion ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32,
2014.

[5] K. Korpela, J. Hallikas, and T. Dahlberg, “Digital supply chain trans-
formation toward blockchain integration,” in proceedings of the 50th
Hawaii international conference on system sciences, 2017.

[6] M. Samaniego and R. Deters, “Blockchain as a service for iot,” in
2016 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pp. 433–436, IEEE, 2016.

[7] S. Singh and N. Singh, “Blockchain: Future of financial and cyber secu-
rity,” in 2016 2nd International Conference on Contemporary Computing
and Informatics (IC3I), pp. 463–467, IEEE, 2016.

[8] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract templates:
foundations, design landscape and research directions,” arXiv preprint
arXiv:1608.00771, 2016.

[9] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen, “Adding
concurrency to smart contracts,” in Proceedings of the ACM Symposium
on Principles of Distributed Computing, pp. 303–312, ACM, 2017.

[10] M. Scherer, “Performance and scalability of blockchain networks and
smart contracts,” 2017.

[11] S. S. Hazari and Q. H. Mahmoud, “A parallel proof of work to improve
transaction speed and scalability in blockchain systems,” in 2019 IEEE
9th Annual Computing and Communication Workshop and Conference
(CCWC), pp. 0916–0921, IEEE, 2019.

[12] C. Riegger, T. Vinçon, and I. Petrov, “Efficient data and indexing
structure for blockchains in enterprise systems,” in Proceedings of the
20th International Conference on Information Integration and Web-
based Applications & Services, pp. 173–182, ACM, 2018.

[13] Y. Sakakibara, K. Nakamura, and H. Matsutani, “An fpga nic based
hardware caching for blockchain,” in Proceedings of the 8th Interna-
tional Symposium on Highly Efficient Accelerators and Reconfigurable
Technologies, p. 1, ACM, 2017.

[14] J. A. Dev, “Bitcoin mining acceleration and performance quantification,”
in 2014 IEEE 27th Canadian Conference on Electrical and Computer
Engineering (CCECE), pp. 1–6, IEEE, 2014.

[15] V. Buterin and F. Vogelsteller, “Erc20 token standard,” URL:
https://theethereum. wiki/w/index. php/ERC20 Token Standard, 2015.

[16] F. Victor and B. K. Lüders, “Measuring ethereum-based erc20 token
networks,” in press, 2019.

[17] https://etherscan.io/.
[18] M. B. Atzei, Nicola and T. Cimoli, “A survey of attacks on ethereum

smart contracts (sok),” 2017.
[19] S.-. S. P.-B. Hash and E.-O. Functions. https://nvlpubs.nist.gov/nistpubs/

FIPS/NIST.FIPS.202.pdf.
[20] https://ethereumclassic.github.io/blog/2017-02-10-keccak/.
[21] https://opencores.org/projects/sha3.
[22] Xilinx. https://www.xilinx.com/products/boards-and-kits/

ek-z7-zc706-g.html.
[23] https://ark.intel.com/content/www/us/en/ark/products/97129/

intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html.

6

https://etherscan.io/
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://ethereumclassic.github.io/blog/2017-02-10-keccak/
https://opencores.org/projects/sha3
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/97129/intel-core-i7-7700k-processor-8m-cache-up-to-4-50-ghz.html

