Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

3/27/12 CS 3343 Analysis of Algorithms

ALGORITHMS

:‘\:‘;T; Graphs (review)
Definition. A directed graph (digraph)

G = (V, E) Is an ordere

d pair consisting of

» a set V of vertices (singular: vertex),

casetE cV xVofed

ges.

In an undirected graph G = (V, E), the edge

set E consists of unorc

ered pairs of vertices.

In either case, we have |E| = O(|V|?).
Moreover, If G Is connected, then [E|>|V]|— 1.

(Review CLRS, Appendix B.4 and B.5.)

3/27/12 CS 3343 Analysis of Algorithms

ALGORITHMS

=== Adjacency-matrix

~S representation

The adjacency matrix of a graph G = (V, E), where
V=1{1,2,...,n}isthe matrix A[1..n,1..n]

iven b
i AT _{1 if (i,]) e E,
L= 0 06) ¢ E

All 2 3 4

10 1 1 0 O(V]? storage
2/0 010 = dense
310 00 O representation.
410 0 10

3/27/12 CS 3343 Analysis of Algorithms 3

~ &~ Adjacency-list representation

ww\

Anadjacency list of a vertex v € V is the list Adj[v]
of vertices adjacent to v.

Adj[1] = {2, 3}
Ad)[2] = {3}
Ad)[3] = {}
Ad)[4] = {3}

For undirected graphs, |Adj[v]| = degree(V).
For digraphs, | Adj[v] | = out-degree(v).

3/27/12 CS 3343 Analysis of Algorithms 4

ALGORITHMS

:f‘:" ": Adjacency-list representation

Handshaking Lemma:
Every edge is counted twice
 For undirected graphs:
>y degree(v) = 2|E|
» For digraphs:
>,y IN-degree(v) + X, _,, out-degree(v) = 2 | E |

—> adjacency lists use ©(|V| + |E|) storage

—> a sparse representation

— We usually use this representation,
unless stated otherwise

3/27/12 CS 3343 Analysis of Algorithms

ALGORITHMS

m

. Graph Traversal

1\ e
Y \‘

et G=(V,E) be a (directed or undirected)
graph, given in adjacency list representation.

VI=n,|E[=
A graph traversal visits every vertex.

 Breadth-first search (BFS)
* Depth-first search (DFS)

3/27/12 CS 3343 Analysis of Algorithms

r\L GGGGGGGG

\ Breadth-First Search (BFS)

BFS(G (V,E))
Mark all vertices in G as “unvisited” // time=0
Initialize empty queue Q
for each vertex v € V do
If v IS unvisited

\

Visit v // time++
Q.enqueue(Vv)
BFS iter(G)

BFS iter(G)
while Q iIs non-empty do
v = Q.dequeue()
for each w adjacent to v do
If w is unvisited

visitw // time++
Add edge (v,w)to T
Q.enqueue(w)

3/27/12 CS 3343 Analysis of Algorithms 7

ALGORITHMS

= Example of breadth-first
=" search

CS 3343 Analysis of Algorithms

ALGORITHMS

=== Example of breadth-first
«3 " search

ALGORITHMS

=== Example of breadth-first
«3 " search

ALGORITHMS

=== Example of breadth-first
«3 " search

ALGORITHMS

= Example of breadth-first
k"“f\;‘-:iﬁ?ﬁﬂ-f search

ALGORITHMS

=== Example of breadth-first
«3 " search

ALGORITHMS

=== Example of breadth-first
«3 " search

ALGORITHMS

=== Example of breadth-first
«3 " search

ALGORITHMS

=== Example of breadth-first
«3 " search

ALGORITHMS

=== Example of breadth-first
«3 " search

ALGORITHMS

=== Example of breadth-first
«3 " search

CS 3343 Analysis of Algorithms

=== Example of breadth-first
~*Y © gearch

CS 3343 Analysis of Algorithms

AL GGGGGGGG

‘\‘ :,“.‘,Z'J.‘

Breadth First Search (BFS)

O(n)
0(1)

O(n)

without

BFS(G (V.E))

(

BFS iter
I

Mark all vertices in G as “unvisited” // time=0
Initialize empty queue Q
for each vertex v € V do

If v IS unvisited

Visit v // time++
Q.enqueue(Vv)
BFS iter(G) (|

BFS iter(G)
— while Q Is non-empty do

3/27/12

v = Q.dequeue()

(

If w Is unvisited
O(m) _<O(deg(v))< visitw // time++

; Q.enqueue(w)

for each w adjacent to v do

Add edge (v,w)to T

S~

CS 3343 Analysis of Algorithms

20

ALGORITHMS

——

— BFS runtime

AR ~

 Each vertex i1s marked as unvisited in the beginning = O(n) time
 Each vertex i1s marked at most once, enqueued at most once,

and therefore dequeued at most once

 The time to process a vertex Is proportional to the size of its
adjacency list (its degree), since the graph is given in adjacency list
representation

= O(m) time

» Total runtime is O(n+m) = O(|V| + |E|)

3/27/12 CS 3343 Analysis of Algorithms 21

AlCO HM

m < Depth-First Search (DFS)

DFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
for each vertex v € V do
If v IS unvisited
DFS_rec(G,v)

DFS_rec(G, v)
mark v as “visited” // d|v]=++time
for each w adjacent to v do
If w Is unvisited
Add edge (v,w) to tree T
DFS_rec(G,w)
mark v as “finished” // f[v]=++time

3/27/12 CS 3343 Analysis of Algorithms 22

Store edges In
n:abcdefghi predecessorarray
- d

3/27/12 CS 3343 Analysis of Algorithms 23

Store edges In
defghi predecessorarray

3/27/12

CS 3343 Analysis of Algorithms

24

Store edges In
n:abcdefghi predecessorarray
-ab

3/27/12 CS 3343 Analysis of Algorithms 25

Store edges In
n:abcdefghi predecessorarray
-ab b

3/27/12 CS 3343 Analysis of Algorithms 26

Store edges In
n:abcdefghi predecessorarray
-ab be

3/27/12 CS 3343 Analysis of Algorithms 27

Store edges In
f g hi predecessorarray
ef

3/27/12 CS 3343 Analysis of Algorithms 28

Store edges In
| predecessor array

3/27/12 CS 3343 Analysis of Algorithms 29

ALGORITHMS

“ .~ Example of depth-first search

ww\

d/f
0/-

Store edges In
| predecessor array

3/27/12 CS 3343 Analysis of Algorithms 30

ALGORITHMS

“ .~ Example of depth-first search

ww\

d/f
0/-

Store edges In
| predecessor array

3/27/12 CS 3343 Analysis of Algorithms 31

Store edges In
f g hi predecessorarray
ef

3/27/12 CS 3343 Analysis of Algorithms 32

ALGORITHMS

“ .~ Example of depth-first search

ww\

d/f 10/-
0/-

Store edges In
f g hi predecessorarray
ef

3/27/12 CS 3343 Analysis of Algorithms 33

ALGORITHMS

“ .~ Example of depth-first search

ww\

d/f 10/-
0/-

Store edges In
f g hi predecessorarray
e

f gf

3/27/12 CS 3343 Analysis of Algorithms 34

ALGORITHMS

“ .~ Example of depth-first search

ww\

d/f 10/13
0/-

Store edges In
f g hi predecessorarray
e

f gf

3/27/12 CS 3343 Analysis of Algorithms 35

ALGORITHMS

“ .~ Example of depth-first search

ww\

d/f 10/13
0/-

Store edges In
f g hi predecessorarray
e

f gf

3/27/12 CS 3343 Analysis of Algorithms 36

ALGORITHMS

“ .~ Example of depth-first search

ww\

d/f 10/13
0/-

Store edges In
f g hi predecessorarray
e

f gf

3/27/12 CS 3343 Analysis of Algorithms 37

Store edges In
predecessor array

g hi

3/27/12

f gf

CS 3343 Analysis of Algorithms

38

Store edges In
predecessor array

g hi

3/27/12

f gf

CS 3343 Analysis of Algorithms

39

AlCO HM

”'"1 ~~ Depth-First Search (DFS)

DFS(G=(V,E))
O(n) Mark all vertices in G as “unvisited” // time=0
O (for each vertex v e V do
Wit(krl]o)ut) If v IS unvisited
DFS_rec | DFS rec(G,v)
DFS_rec(G, v)
0(1) mark v as “visited” // d|v]=++time

for each w adjacent to v do
If w Is unvisited
O(deg(v)) | Add edge (v,w) to tree T
\rlglctgfsl:f/e call DFS_I’EC(G,W)
t mark v as “finished” // f[v]=++time

= With Handshaking Lemma, all recursive calls are O(m), for

a total of O(n + m) runtime
3/27/12 CS 3343 Analysis of Algorithms 40

AlCO HM

m « DFS runtime

\\‘ :,“i,l‘f‘

 Each vertex is visited at most once = O(n) time

* The body of the for loops (except the recursive call) take constant
time per graph edge

* All for loops take O(m) time

» Total runtime is O(n+m) = O(|V| + |E|)

3/27/12 CS 3343 Analysis of Algorithms 41

3/27/12

Edge u—v is a:

tree edge, If it is part of the depth-first forest.
e hack edge, If u connects to an ancestor v in a depth-
first tree. It holds d(u)>d(v) and f(u)<f(v).
« forward edge, If It connects u to a descendant v in
a depth-first tree. It holds d(u)<d(v).
e cross edge, If it Is any other edge. It holds
d(u)>d(v) and f(u)>f(v).

CS 3343 Analysis of Algorithms 42

ALGORITHMS

“ &~ Paths, Cycles, Connectivity

Let G=(V,E) be a directed (or undirected) graph

« A path from v, to v, in G Is a sequence of vertices v,, v,,...,v, such that
(Vi,Veirnn)€E (or {vi, vy €EIf Gisundirected) forall ie {1,... k-1}.

« A path is simple if all vertices in the path are distinct.

- Apathv,, v,,...,v, forms acycle if v,=v, .

A graph with no cycles is acyclic.

« An undirected acyclic graph is called a tree. (Trees do not have to
have a root vertex specified.)

A directed acyclic graph is a DAG. (A DAG can have undirected
cycles if the direction of the edges is not considered.)

« An undirected graph is connected if every pair of vertices is connected
by a path. A directed graph is strongly connected if for every pair
u,veV there is a path from u to v and there is a path from v to u.

 The (strongly) connected components of a graph are the equivalence

classes of vertices under this reachability relation.
3/27/12 CS 3343 Analysis of Algorithms 43

ALGORITHMS

————

ﬁ,- DAG Theorem

\\\‘ s

Theorem: A directed graph G is acyclic

< a depth-first search of G yields no back edges.
Proof: %\‘o
“="": Suppose there 1s a back edge (u,v). Then by o

definition of a back edge there would be a cycle. ©

“<": Suppose G contains a cycle c. Let v be the first y %\O
vertex to be discovered in ¢, and let u be the

preceding vertex in ¢. v iIs an ancestor of u in the
depth-first forest, hence (u,v) is a back edge.

3/27/12 CS 3343 Analysis of Algorithms 44

"~ Topological Sort
Topologically sort the vertices of a directed acyclic
graph (DAG):

- Determine f:V — {1,2, ..., |V|} such that (u, v) € E
= f(u) <f(v).

I
VIUIRTROY

3/27/12 CS 3343 Analysis of Algorithms 45

ALGORITHMS

=5 Topological Sort Algorithm

e Store vertices with in-degree 0 In a queue Q.
* While Q 1s not empty
» Dequeue vertex v, and give It the next number

 Decrease in-degree of all adjacent vertices by 1
» Enqueue all vertices with in-degree 0

Q:a,b,cedfgl,h

3/27/12 CS 3343 Analysis of Algorithms

46

ALGORITHMS

~ &~ Topological Sort Runtime

Runtime:

* O(|V|+|E|) because every edge Is touched once, and
every vertex is enqueued and dequeued exactly
once

3/27/12 CS 3343 Analysis of Algorithms

47

ALGORITHMS

:m_ Algorlthm

« Call DFS on the directed acyclic graph G=(V,E)
= FInish time for every vertex
» Reverse the finish times (highest finish time

becomes the lowest finish time,...)
= Valid functionf’: V. — {1, 2, ..., | V |} such that
(U, v) e E=17(U) <f"(v)

Runtime: O(|V|+|E|)

3/27/12 CS 3343 Analysis of Algorithms 48

ALGORITHMS

"+ DFS-Based Topological Sort

* Run DFS:

@ (2111 @
AT A = e

« Reverse finish times:
° ° ‘ 6 Q

333333333333333333333333

ALGORITHMS

———

S DFS Based Top. Sort Correctness

* Need to show that for any (u, v) € E holds f (v) <f (u).
(since we consider reversed finish times)

 Consider exploring edge (u, v) in DES:
» v cannot be visited and unfinished (and hence an ancestor in
the depth first tree), since then (u,v) would be a back edge
(which by the DAG lemma cannot happen).
* If v has not been visited yet, it becomes a descendant of u, and
hence f(v)<f(u) . (tree edge)
* If v has been finished, f(v) has been set, and u is still being
explored, hence f(u)>f(v) (forward edge, cross edge) .

3/27/12 CS 3343 Analysis of Algorithms 50

ALGORITHMS

w—

" Topological Sort Runtime

-
.

\ 7

AR

Runtime:

* O(|V|+|E|) because every edge Is touched once, and
every vertex is enqueued and dequeued exactly
once

* DFS-based algorithm: O(|V| + |E|)

3/27/12 CS 3343 Analysis of Algorithms

o1

