Order Statistics
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

2/9/12 CS 5633 Analysis of Algorithms

ALGO

2/9/12

RITHMS

Order statistics

Select the ith smallest of n elements (the
element with rank 1).

| =1: minimum;
| = N: maximum;
o i = (n+1)/2]or| (n+1)/2 |: median.

Naive algorithm: Sort and index ith element.
Worst-case running time = ®(n logn + 1)

= 0(n log n),
using merge sort or heapsort (not quicksort).

CS 5633 Analysis of Algorithms

g+ Randomized divide-and-
« " conquer algorithm
RAND-SELECT(A, p, 0,1) o i-thsmallestof Al p .. q]

if p=q then return A[p]
r < RAND-PARTITION(A, p, Q)

K«—r—p+1 = Kk = rank(A[r])
If 1 =k then return A[r]
if 1<K

then return RAND-SELECT(A, p, r—1,1)
else return RAND-SELECT(A, r + 1,0, 1 — k)

1 k ;
< Alr] > Alr] |
p r G

2/9/12 CS 5633 Analysis of Algorithms 3

Select the 1 = 7th smallest:

6 10113 5 1 8| 3| 2 |11 | =7
NIVOt
Partition:
2 1 51368 (13[10|11}) k=4
g J
Y

Select the 7 — 4 = 3rd smallest recursively.

2/9/12 CS 5633 Analysis of Algorithms 4

AAAAAAAAAA

Intumon for analysis

‘\

(AII our analyses today assume that all elements
are distinct.)

for RAND-PARTITION

Lucky: =
T(n) = T(9n/10) + dn n'0%0/9l = n0 =1
= O(n) CASE 3
Unlucky:
T(n)=T(h—-1) +dn arithmetic series
= O(n?)

Worse than sorting!

2/9/12 CS 5633 Analysis of Algorithms

ALGORITHMS

E—

= 4~ Analysis of expected time

ni\‘ \‘

The analysis follows that of randomized
quicksort, but 1t’s a little different.

Let T(n) = the random variable for the running
time of RAND-SELECT on an input of size n,
assuming random numbers are independent.

Fork=20, 1, ..., n—1, define the indicator
random variable

X = { 1 1f PARTITION generates a k : n—k—1 split,
< L0 otherwise.

2/9/12 CS 5633 Analysis of Algorithms

To obtain an upper bound, assume that the 1 th element

always fal

T(n) = <

Is In the larger side of the partition:
" T(max{0, n—1}) + dn if 0: n—1 split,
T(max{1, n—2}) + dn If 1:n-2 split,

_ T(max{n-1, 0}) +dn If n—1 : 0 split,

=§xk(T(max{k,n—k—1})+dn)

<

2/9/12

n-1

2 > X, (T(k)+dn)

k=|n/2]

CS 5633 Analysis of Algorithms 7

AAAAAAAAAA

=4 Calculating expectation

n-1

E[T(M]=E|2 > X,(T(k)+dn)

k=|n/2]

Take expectations of both sides.

2/9/12 CS 5633 Analysis of Algorithms

AAAAAAAAAA

\‘

Calculatlng expectation

\\\

E[T(n)] = Zl (T (k) +dn)
| k=[nr2

=2 Z [X, (T (k) +dn)]

k={n/2]

Linearity of expectation.

2/9/12 CS 5633 Analysis of Algorithms

~ Calculating expectation

E[T (n)] = E| 2 nix (T (k) +dn)
k=Ln/2]

=2 j E[X, (T (k)+dn)]
k=|n/2]
=2 nZ%‘E[xk]- E[T (k) +dn]
k={n/2]
Independence of X, from other random
choices.

2/9/12 CS 5633 Analysis of Algorithms

~ .+ Calculating expectation

E[T (n)] = E| 2 j X, (T (k) +dn)
| k=[n/2]

;1 [X, (T (k) +dn)]

=2 1E[X, |- E[T (k) +dn]
/2J

k=|n
n— n-1
=% [T(k)]+E > dn
k=n/2| Ny JThiz)

Linearity of expectation; E[X,] = 1/n.

2/9/12 CS 5633 Analysis of Algorithms

2/9/12

CS 5633 Analysis of Algorithms

12

AAAAAAAAAA

Halry recurrence

“\‘

(But not quite as hairy as the quicksort one.)

emml=2 3 EfT®)]+dn

Ny JThiz)

Prove: E[T(n)] <cn for constant ¢ > 0.

* The constant ¢ can be chosen large enough
so that E[T(n)] < cn for the base cases.

Use fact: Zk n (exercise).
k=/n/2|

2/9/12 CS 5633 Analysis of Algorithms 13

AAAAAAAAAA

if;"',""ﬂ Substitution method

n-1

Substitute inductive hypothesis.

2/9/12 CS 5633 Analysis of Algorithms

14

2/9/12

~ .+ Substitution method

E[T(n)]gg nick+dn

Ny JThiz)
< &G nzj +dn
n\3

Use fact.

CS 5633 Analysis of Algorithms

15

2/9/12

~ .+ Substitution method

[T(n)]< - nzckmn

Ny JThiz)

£§(§n2j+dn
n \ 8

:cn—tﬂ—dnj
4

Express as desired — residual.

CS 5633 Analysis of Algorithms

16

2/9/12

~ .+ Substitution method

E[T(n)]<= nick +dn

N Thr2]

5529(§n2j+dn
n\8

:cn—(gﬂ—dnj
4

CS 5633 Analysis of Algorithms

17

ALGO

-
L

w== Summary of randomized

N G T

~>" order-statistic selection

2/9/12

« Works fast: linear expected time.
* Excellent algorithm In practice.
* But, the worst case is very bad: ®(n?).

Q. Is there an algorithm that runs in linear
time in the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

IDEA: Generate a good pivot recursively.

CS 5633 Analysis of Algorithms

18

m‘ Stat I Stl CS

SELECT(I, n)

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SeLecT the median x of the | n/5]
group medians to be the pivot.

3. Partition around the pivot x. Let k = rank(x)."

4.1f 1 =k then return x
elseif 1 <Kk Same as
then recursively SeLecT the ith > RAND-
smallest element in the lower part SELECT
else recursively SELecT the (I—K)th
smallest element in the upper part

2/9/12 CS 5633 Analysis of Algorithms 19

ALGORITHMS

4~ Choosing the pivot

2/9/12

CS 5633 Analysis of Algorithms

20

1.

2/9/12

Ivide the n elements into groups of 5.

CS 5633 Analysis of Algorithms

Choosing the pivot

21

AAAAAAAAAA

1. Divide the n elements into groups of 5. Find lesser
the median of each 5-element group by rote. I

greater
2/9/12 CS 5633 Analysis of Algorithms 22

AAAAAAAAAA

”"" Choosing the pivot

“\‘
‘ ‘ Q

¢ oo o

1. Divide the n elements into groups of 5. Find lesser
the median of each 5-element group by rote.

2. Recursively SeLecT the median x of the | n/5._
group medians to be the pivot. greater

2/9/12 CS 5633 Analysis of Algorithms 23

ALGok iiiii

;‘ W~ Developlng the recurrence

“\‘

T(n) SELECT(I, Nn)
" 1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

- 2. Recursively SeLecT the median x of the | n/5.
T(n/5) 1 group medians to be the pivot.

-

®(n) 3. Partition around the pivot x. Let k = rank(x).

(4. if i=kthen return x
elseif 1<k
T(72) 4 then recursively SeLecT the ith
| smallest element in the lower part
else recursively SELecT the (I-k)th
N smallest element in the upper part

2/9/12 CS 5633 Analysis of Algorithms 24

O(n) <

ALGORITHMS

('(' . (s

At least half the group medians are < x, which lesser
is at least | | n/5//2|=[n/10] group medians. I

greater
2/9/12 CS 5633 Analysis of Algorithms 25

AAAAAAAAAA

Ana|ySIS (Assume all elements are distinct.)

(’(’ >

At least half the group medians are < x, which lesser
is at least | | n/5//2|=[n/10] group medians. I

- Therefore, at least 3| n/10 | elements are < x.

greater
2/9/12 CS 5633 Analysis of Algorithms 26

AAAAAAAAAA

Ana|ySIS (Assume all elements are distinct.)

(AGGALS

At least half the group medians are < x, which lesser
is at least | | n/5//2|=[n/10] group medians. I

» Therefore, at least 3|.n/10] elements are < x.
» Similarly, at least 3| n/10] elements are > x. greater

2/9/12 CS 5633 Analysis of Algorithms 27

- '—3‘ AnalySiS (Assume all elements are distinct.)

W

Need “at most” for worst-case runtime

. At Jeast 3| n/10| elements are < x
—/at most n-3| n/10 | elements are > x

. At least 3| n/10 | elements are > x
— at most n-3| n/10 | elements are < x

* The recursive call to SELECT In Step 4 Is
executed recursively on n-3.n/10] elements.

2/9/12 CS 5633 Analysis of Algorithms 28

ALGORITHMS

s Analysis (Assume all elements are distinct.)

1\\‘ ‘

- Use fact that | a/b | > ((a-(b-1))/b (page 51)

- n-3[.n/10 < n-3-(n-9)/10 = (10n -3n +27)/10
<7n/10 + 3
* The recursive call to SELECT In Step 4 Is

executed recursively on at most 7/n/10+3
elements.

2/9/12 CS 5633 Analysis of Algorithms 29

ALGok iiiii

“\‘

;‘ W~ Developlng the recurrence

T(n) SELECT(I, Nn)
" 1. Divide the n elements into groups of 5. Find
O(n) 1 the median of each 5-element group by rote.
- 2. Recursively SELecT the median x of the [n/5._
T(n75) 1" group medians to be the pivot.
®(n) 3. Partition around the pivot x. Let k = rank(x).
(4. if i =kthen return x
elseif 1 <k
then recursively SeLecT the ith
T(7n/10 < smallest e?/ement In the lower part
+3) else recursively SeLecT the (i—k)th
N smallest element in the upper part

2/9/12

CS 5633 Analysis of Algorithms 30

= .~ Solving the recurrence
e for O(n)

T(n) ZT(l nj+T(ln+3j+dn/
5 10

Substitution: T(n)<c(n— 3)+c(—n+3 3) +dn
T(n) <c(n - 3) >

N ggcn—30+dn
10

Technical trick. This
shows that T(n)e O(n)

:c(n—3)—%cn+dn
<c(n-3),
If ¢ Is chosen large enough, e.g., c=10d

2/9/12 CS 5633 Analysis of Algorithms 31

ALGORITHMS

f < Conclusmns

AR \‘

0 Slnce the work at each level of recursion Is

basically a constant fraction (9/10) smaller,

the work per level Is a geometric series
dominated by the linear work at the root.

* In practice, this algorithm runs slowly,
because the constant in front of n is large.

 The randomized algorithm is far more
practical.

Exercise: Try to divide into groups of 3 or 7.

2/9/12 CS 5633 Analysis of Algorithms

32

