.............

r— CS 5633 -- Spring 2008

ALGORITHMS

Graphs

Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

3/27/08 CS 5633 Analysis of Algorithms 1

.............

!\,] Graphs (review)

Definition. A directed graph (digraph)

G = (V, E) is an ordered pair consisting of

* a set // of vertices (singular: vertex),

caset £ V' x JV of edges.

In an undirected graph G = (V, E), the edge

set £ consists of unordered pairs of vertices.

In either case, we have |E| = O(|V]?).
Moreover, if G is connected, then |E|> | V] — 1.

(Review CLRS, Appendix B.4 and B.5.)

3/27/08 CS 5633 Analysis of Algorithms 2

.............

& \1

representation
The adjacency matrix of a graph G = (V, E), where
V=1{1,2,...,n},isthe matrix A[1 .. n, 1 ..n]

given by
1) e,
ALi, /] { 0 if (i,) & E.

A1 2 3 4
Q @ 110 1 10 O(|V]?) storage
’ 210 01 0 = dense
9 9 310 0 0 0 representation.
410010

3/27/08 CS 5633 Analysis of Algorithms 3

.............

!,\, J Adjacency-list representation

An adjacency list of a vertex v € V' is the list Adj[v]
of vertices adjacent to v.

D)—1) Adl= 2.3
’ Ad2]= {3}
Adj13]1= {)
O—@ -

For undirected graphs, |Adj[v]| = degree(v).
For digraphs, | Adj[v] | = out-degree(v).

3/27/08 CS 5633 Analysis of Algorithms 4

:.:I“N‘ . . .
“.«" Adjacency-list representation

Handshaking Lemma:
Every edge is counted twice
* For undirected graphs:
2. cpdegree(v) =2|E|
* For digraphs:
2oy in-degree(v) + 2. _, out-degree(v) =2 | E |

= adjacency lists use O(|V/| + |E]) storage
= a sparse representation

3/27/08 CS 5633 Analysis of Algorithms 5

oY

)
w

3/27/08

wy——

. Graph Traversal

Let G=(V,E) be a (directed or undirected)
graph, given in adjacency list representation.

V=n,|El=m

A graph traversal visits every vertex:
* Breadth-first search (BFS)
* Depth-first search ~ (DFS)

CS 5633 Analysis of Algorithms

:..u Breadth-First Search (BFS)

w

BFS(G=(V.E))
Mark all vertices in G as “unvisited” // time=0
Initialize empty queue O
for each vertex v € V' do
if v is unvisited

visit v // time++
0.enqueue(v)
BFS iter(G)

BFS iter(G)
while O is non-empty do
v = 0.dequeue()
for each w adjacent to v do
if w is unvisited

visit w // time-+
Add edge (v,w)to T
Q.enqueue(w)

3/27/08 CS 5633 Analysis of Algorithms 7

=== Example of breadth-first

|\
-
')

3/27/08

-

search

CS 5633 Analysis of Algorithms

..........................

v Example of breadth-first = Example of breadth-first
search

|\ |\
st ~ st ~3

Y
search

.............

@71 Example of breadth-first
' search

s =Y

.............

@77 Example of breadth-first
= search

.............

@71 Example of breadth-first
w1 search

3/27/08 CS 5633 Analysis of Algorithms

.............

@77 Example of breadth-first
= search

3/27/08 CS 5633 Analysis of Algorithms 18

uuuuuuuuuuuuu

@7 Example of breadth-first
» search

3/27/08 CS 5633 Analysis of Algorithms

uuuuuuuuuuuuu

;‘i:, X Breadth-First Search (BFS)

BFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
O(n) R
o(1) Initialize empty queue O
for each vertex v € V' do
if v is unvisited

O(n) visit v // time++ BFS iter(())
without —
BFS_iter O.enqueue(v) | while O is non-empty do

| BFS _iter(G) (| v = O.dequeuc()

for each w adjacent to v do
if w is unvisited

O(m) O(deg(v) visit w // time+4
Add edge (v,w)to T’
Q.enqueue(w)
3/27/08 CS 5633 Analysis of Algorithms 20

.............

“ +* BFS runtime

Eah

* Each vertex is marked as unvisited in the beginning = O(#n) time
* Each vertex is marked at most once, enqueued at most once,

and therefore dequeued at most once

* The time to process a vertex is proportional to the size of its
adjacency list (its degree), since the graph is given in adjacency list
representation

= O(m) time

* Total runtime is O(n+m) = O(|V| + |E|)

3/27/08 CS 5633 Analysis of Algorithms 21

.............

“.«* Depth-First Search (DFS)

DFS(G=(V,E))
Mark all vertices in G as “unvisited” // time=0
for each vertex v € J do
if v is unvisited
DFS rec(G,v)

DFS rec(G, v)
visit v // d[v]=t++time
for each w adjacent to v do
if w is unvisited
Add edge (v,w) to tree T’
DFS rec(G,w)
/I flv]=++time

3/27/08 CS 5633 Analysis of Algorithms 22

ALGORI THMS

“«* Example of depth-first search

d/f

Store edges in
n:abcdefghi predecessorarray
-a

3/27/08 CS 5633 Analysis of Algorithms 23

ALGORI THMS

“«* Example of depth-first search

d/f

1/-
Store edges in
n:abcdefghi predecessorarray
-ab
3/27/08 CS 5633 Analysis of Algorithms 24

.............

d/f
0/-
1/-
2/3
Store edges in
n:abcdefghi predecessorarray
-ab
3/27/08 CS 5633 Analysis of Algorithms 25

.............

1/-
2/3
Store edges in
n:abcdefghi predecessorarray
-ab b
3/27/08 CS 5633 Analysis of Algorithms 26

uuuuuuuuuuuuu

23 e
Store edges in

n:abcdefghi predecessorarray
-ab b e

3/27/08 CS 5633 Analysis of Algorithms 27

uuuuuuuuuuuuu

Store edges in

n:abcdefghi predecessorarray
-ab b e g
3/27/08 CS 5633 Analysis of Algorithms 28

.............

d/f

0/-

1/-

6/-
2/3
Store edges in
n:abcdefghi predecessorarray
-ab b e1g
3/27/08 CS 5633 Analysis of Algorithms 29

.............

1/-
6/-
2/3
Store edges in
n:abcdefghi predecessorarray
-ab b e1g
3/27/08 CS 5633 Analysis of Algorithms 30

uuuuuuuuuuuuu

Store edges in
cdefghi predecessorarray
b b ei1g

3/27/08 CS 5633 Analysis of Algorithms 31

uuuuuuuuuuuuu

d/f
0/- 7/8
1/-

6/9

Store edges in

n:abcdefghi predecessorarray
-ab bgeilg
3/27/08 CS 5633 Analysis of Algorithms 32

.............

d/f 10/-

0/- 7/8

1/-

6/9
2/3
Store edges in
n:abcdefghi predecessorarray
-abfbgeig
3/27/08 CS 5633 Analysis of Algorithms 33

.............

1/-
6/9
2/3
Store edges in
n:abcdefghi predecessorarray
-abfbgeig
3/27/08 CS 5633 Analysis of Algorithms 34

uuuuuuuuuuuuu

Store edges in
g h i predecessor array

3/27/08 CS 5633 Analysis of Algorithms 35

uuuuuuuuuuuuu

d/f 10/13
0/- 7/8
1/-

6/9

Store edges in

n:abcdefghi predecessorarray
-abfbgeilg
3/27/08 CS 5633 Analysis of Algorithms 36

.............

Store edges in

n:abcdefghi predecessorarray
-abfbgeig
3/27/08 CS 5633 Analysis of Algorithms 37

.............

Store edges in
g h i predecessor array

3/27/08 CS 5633 Analysis of Algorithms 38

uuuuuuuuuuuuu

d/f 10/13
qm 7/8
1/16

6/9

Store edges in
g h i predecessor array
e 1

CS 5633 Analysis of Algorithms 39

3/27/08

uuuuuuuuuuuuu

;‘i:, . Depth-First Search (DFS)

DFS(G=(V.E))
O(n) Mark all vertices in G as “unvisited” // time=0
o for each vertex v € /' do
'(n) if v is unvisited
without
DFS_rec DFS rec(G,v)
DFS rec(G, v)
o(1) visit v // d[v]=++time
for each w adjacent to v do
if w is unvisited
Q(deg(v)) Add edge (v,w) to tree T’
without DFS_rec(G,w)
recursive call .
// flv]=t+time

= With Handshaking Lemma, all recursive calls are O(m), for

a total of O(n + m) runtime

3/27/08 CS 5633 Analysis of Algorithms 40

.............

:f;',-‘ DFS runtime

* Each vertex is visited at most once = O(7) time

* The body of the for loops (except the recursive call) take constant
time per graph edge

* All for loops take O(m1) time

* Total runtime is O(n+m) = O(|V| + |E|)

3/27/08 CS 5633 Analysis of Algorithms 41

.............
n! II

™

3/27/08

. ;,--d]/)fFS edge classification

* tree edge, if it is part of the depth-first forest.
« back edge, if # connects to an ancestor v in a depth-
first tree. It holds d(u)>d(v) and f(u)<f(v).

» forward edge, if it connects u to a descendant v in

a depth-first tree. It holds d(u)<d(v).

* cross edge, if it is any other edge. It holds
d(u)>d(v) and fu)>A(v).

CS 5633 Analysis of Algorithms 42

