

CS 5633 -- Spring 2008

Graphs

Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

3/27/08

CS 5633 Analysis of Algorithms

Graphs (review)

Definition. A directed graph (digraph) G = (V, E) is an ordered pair consisting of

- a set V of vertices (singular: vertex),
- a set $E \subset V \times V$ of *edges*.

In an *undirected graph* G = (V, E), the edge set *E* consists of *unordered* pairs of vertices.

In either case, we have $|E| = O(|V|^2)$. Moreover, if G is connected, then $|E| \ge |V| - 1$.

(Review CLRS, Appendix B.4 and B.5.)

3/27/08

CS 5633 Analysis of Algorithms

Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n]given by

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

				1	
$\Theta(V ^2)$ storage	0	1	1	0 0 0	1
\Rightarrow dense	0	1	0	0	2
representation.	0	0	0	0	3
	0	1	0	0	4

3/27/08

CS 5633 Analysis of Algorithms

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v]of vertices adjacent to v.

 $Adi[1] = \{2, 3\}$ $Adi[2] = \{3\}$

 $Adi[3] = \{\}$

 $Adi[4] = \{3\}$

For undirected graphs, |Adi[v]| = degree(v).

For digraphs, |Adj[v]| = out-degree(v).

3/27/08

CS 5633 Analysis of Algorithms

Adjacency-list representation

Handshaking Lemma:

Every edge is counted twice

• For undirected graphs:

$$\sum_{v \in V} degree(v) = 2|E|$$

• For digraphs:

$$\sum_{v \in V} in\text{-}degree(v) + \sum_{v \in V} out\text{-}degree(v) = 2 \mid E \mid$$

- \Rightarrow adjacency lists use $\Theta(|V| + |E|)$ storage
- ⇒ a *sparse* representation

3/27/08

CS 5633 Analysis of Algorithms

5

Graph Traversal

Let G=(V,E) be a (directed or undirected) graph, given in adjacency list representation.

$$|V|=n$$
, $|E|=m$

A graph traversal visits every vertex:

- Breadth-first search (BFS)
- Depth-first search (DFS)

3/27/08

CS 5633 Analysis of Algorithms

ALGORITHMS

3/27/08

Breadth-First Search (BFS)

```
BFS(G=(V,E))
Mark all vertices in G as "unvisited" // time=0
Initialize empty queue Q
for each vertex v \in V do
    if v is unvisited
        visit v // time++
                         BFS iter(G)
        O.enqueue(v)
                             while O is non-empty do
        BFS iter(G)
                                 v = O.dequeue()
                                 for each w adjacent to v do
                                     if w is unvisited
                                        visit w // time++
                                        Add edge (v,w) to T
                                        Q.enqueue(w)
```

CS 5633 Analysis of Algorithms

BFS runtime

- Each vertex is marked as unvisited in the beginning $\Rightarrow O(n)$ time
- Each vertex is marked at most once, enqueued at most once, and therefore dequeued at most once
- The time to process a vertex is proportional to the size of its adjacency list (its degree), since the graph is given in adjacency list representation
- \Rightarrow O(m) time
- Total runtime is O(n+m) = O(|V| + |E|)

3/27/08

CS 5633 Analysis of Algorithms

21

Depth-First Search (DFS)

DFS(G=(V,E))Mark all vertices in G as "unvisited" // time=0 for each vertex $v \in V$ do if ν is unvisited DFS rec(G, v)

DFS rec(G, v)visit v // d[v] = ++timefor each w adjacent to v do if w is unvisited Add edge (v,w) to tree TDFS rec(G, w)//f[v]=++time

3/27/08 CS 5633 Analysis of Algorithms

22

DFS runtime

- Each vertex is visited at most once $\Rightarrow O(n)$ time
- The body of the **for** loops (except the recursive call) take constant time per graph edge
- All for loops take O(m) time
- Total runtime is O(n+m) = O(|V| + |E|)

3/27/08

CS 5633 Analysis of Algorithms

41

