ALGORITHMS CS 5633 — Sp]‘ing 2006

ALGORITHMS

THOMAS H CORMEN

llllllllllllllllllllll

LLLLLLLLLLLLLLL

CLIFPORD STEITN

2/21/08 CS 5633 Analysis of Algorithms

| =’
-

- 'IHi\lr ° °
<" External memory dictionary

mny

Task: Given a large amount of data that does
not fit into main memory, process 1t 1nto a
dictionary data structure

 Need to minimize number of disk accesses

* With each disk read, read a whole block of
data

e Construct a balanced search tree that uses one
disk block per tree node

* Each node needs to contain more than one key

2/21/08 CS 5633 Analysis of Algorithms

ALGORITHMS
."‘..o k-ary search trees
A k-ary search tree T 1s defined as follows:
*For each node x of T:
* x has at most & children (1.e., T 1s a k-ary tree)

* x stores an ordered list of pointers to 1ts children,
and an ordered list of keys

 For every internal node: #keys = #children-1
o x fulfills the search tree property:

keys 1n subtree rooted at i-th child < i-th key <
keys 1n subtree rooted at (i+1)-st child

2/21/08 CS 5633 Analysis of Algorithms 3

ALGORITHMS

-

“ " Example of a 4-ary tree

mny

%

2/21/08 CS 5633 Analysis of Algorithms

M2

" Example of a 4-ary search tree

mny

10 25

6 12 15 21 30 45

207 811014 12002324 427X 40) 50

1

2/21/08 CS 5633 Analysis of Algorithms 5

A B-tree T with minimum degree k& > 2 1s
defined as follows:

1. T1sa(2k)-ary search tree

2. Every node, except the root, stores at least
k-1 keys
(every internal non-root node has at least &
children)

3. The root must store at least one key
4. All leaves have the same depth

2/21/08 CS 5633 Analysis of Algorithms

ALGORIT

.;“,_,- B-tree with /A=2

10 25

12 15 21 30 45

11 14202324 27X 40 50

1. T 1s a (2k)-ary search tree

2/21/08 CS 5633 Analysis of Algorithms 7

ALGORI
L

“ o~ B-tree with i=2

™

10 25

6 12 15 21 30 45

207 811014 12002324 427X 40) 50

2. Every node, except the root, stores at least
k-1 keys

2/21/08 CS 5633 Analysis of Algorithms 8

ALGORI
)

“ o~ B-tree with i=2

™

10 25

6 12 15 21 30 45

207 811014 12002324 427X 40) 50

3. The root must store at least one key

2/21/08 CS 5633 Analysis of Algorithms 9

ALGORI
L

“ o~ B-tree with i=2

™

10 25

6 12 15 21 30 45

207 811014 12002324 427X 40) 50

4. All leaves have the same depth

2/21/08 CS 5633 Analysis of Algorithms 10

ALGORI
L

“ o~ B-tree with i=2

™

10 25

6 12 15 21 30 45

207 811014 12002324 427X 40) 50

Remark: This 1s a (2,3,4)-tree.

2/21/08 CS 5633 Analysis of Algorithms 11

: G 0. RITHMS .
~ " Height of a B-tree

Y

Theorem: A B-tree with minimum degree £ > 2
which stores 7 keys has height /7 at most
log, (n+1)/2

Proof: #nodes > 1+2+2k+2)>+. . . +2)!

/ AN
/ ﬁ.evell\ level 3
level 0 level 2

h-1
n=#keys > 1+(k-1) 22k = 142(k-1)- kh—ll = k-1

2/21/08 CS 5633 Analysis of Algorithms 12

ALGORI

e
- —

~ & B-tree search

mny o

B-TREE-SEARCH(x,ke))

[« 1

while i<#keys of x and key > i-th key of x
do i < i+l

if i<#keys of x and key = i-th key of x
then return (x,7)

if x 1s a leaf
then return NIL

else)=DISK-READ(i-th child of x)
return B-TREE-SEARCH(D,key)

2/21/08 CS 5633 Analysis of Algorithms

13

ALGORITHMS
e e <" B-tree search runtime

* O(k) per node
e Path has height /» = O(log, n)
* CPU-time: O(k log, n)

* Disk accesses: O(log, n)

disk accesses are more expensive than CPU time

2/21/08 CS 5633 Analysis of Algorithms

14

ALGORI
|m
|

“ o~ B-tree insert

 There are different insertion strategies. We just cover
one of them

* Make one pass down the tree:
 The goal is to insert the new key into a leaf
» Search where key should be 1nserted
* Only descend into non-full nodes:

» [f a node 1s full, split it. Then continue
descending.

* Splitting of the root node is the only way a B-
tree grows in height

2/21/08 CS 5633 Analysis of Algorithms 15

ALGORITHMS

e " B-TREE-SPLIT- CHILD(x,1,))

wY

%s 2k-1 keys |
 Split full node y into two nodes y and z of &-1 keys
of y 1s moved up 1nto y’s parent x

* Median key §

« Example below for k=4

2/21/08 CS 5633 Analysis of Algorithms 16

; (:I{ ITHMS .
“ <" Split root: B-TREE-SPLIT-CHILD(s, /,7)

Y

* The full root node 7 1s split in two.
* A new root node s 1s created

* 5 contains the median key
two halves of as children

* Example below for k=4

f » and has the

root|T]

root[T]

2/21/08 CS 5633 Analysis of Algorithms 17

ALGOR

“ " B-TREE-INSERT(7key)

r =root[7]

if (# keys in) = 2k-1 // root r 1s full
//insert new root node:
s <— ALLOCATE-NODE()
root| 7] <— s
// split old root » to be two children of new root s
B-TREE-SpLIT-CHILD(s, 1 ,7)
B-TREE-INSERT-NONFULL(S,ke))

else B-TREE-INSERT-NONFULL(7,key)

2/21/08 CS 5633 Analysis of Algorithms 18

~ ITHMS
“ " B-TREE-INSERT-NONFULL(x,key)

mny

if x 1s a leaf then

insert key at the correct (sorted) position 1n x
DISK-WRITE(x)
else
find child ¢ of x which by the search tree property
should contain /ey

DISK-READ(¢)

if ¢ 1s full then // ¢ contains 2/-1 keys
B-TREE-SPLIT-CHILD(x,i,c)
B-TREE-INSERT-NONFULL(c,k)

2/21/08 CS 5633 Analysis of Algorithms 19

ALGORI’
N

“w" Insert example (k=3)

™

ACDE| |[JK| INO| [RSTUV

e Insert B:

// N\

ABCDE | |JK| [NO| |RSTUV

2/21/08 CS 5633 Analysis of Algorithms

ALGORITH

‘\

Qv

" :;‘ Insert example (k=3) -- cont.

G MPX.
ABCDE | |JK| |INO| |RSTUV||YZ
node is full
e Insert Q:
/ \ —
ABCDE | |JK| |NO||oRrRS||UV| |YZ

2/21/08

CS 5633 Analysis of Algorithms

ALGORITH

‘\

" :;‘ Insert example (k=3) -- cont.

Qv

node is full | g arp T&\\
— 7 T

ABCDE | |JK| |NO||oRS||UV| |YZ

e Insert L:

/' '\
GM TX.

_— 7N\ N

ABCDE ||JKL||NO||ORS||UV| |YZ

2/21/08 CS 5633 Analysis of Algorithms

ALGORITHMS

-y

.~ Insert example (£=3) -- cont.
P
GM TX.

node lSjjull/' 7N\ s N

ABCDE |(|JKL||NO||OoRS||UV| |YZ

e Insert F:

CGM, TX.
A///' N\ ~ \ \

AB|DEF|JKL||NO||OoRS||UV| |YZz

2/21/08 CS 5633 Analysis of Algorithms

“* Runtime of B-TREE-INSERT

mny

* O(k) runtime per node
e Path has height /» = O(log, n)
* CPU-time: O(k log, n)

* Disk accesses: O(log, n)

disk accesses are more expensive than CPU time

2/21/08 CS 5633 Analysis of Algorithms

24

LGORITHMS

|
-
™

\
ny

— .
“ o~ Deletion of an element

e Similar to insertion, but a bit more complicated;
see book for details

e I[f sibling nodes get not full enough, they are merged
into a single node

e Same complexity as insertion

2/21/08 CS 5633 Analysis of Algorithms 25

ALGORITHMS
im
|

-

“ " B-trees -- Conclusion

» B-trees are balanced 2/k-ary search trees

* The degree of each node 1s bounded from
above and below using the parameter &

» All leaves are at the same height

* No rotations are needed: During insertion (or
deletion) the balance 1s maintained by node
splitting (or node merging)

* The tree grows (shrinks) in height only by
splitting (or merging) the root

2/21/08 CS 5633 Analysis of Algorithms

26

