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1:-“ KFlow networks

Definition. A flow network 1s a directed graph
G = (V, E) with two distinguished vertices: a
source s and a sink t. Each edge (u, v) € E has
a nonnegative capacity c(u, v). If (u,v) ¢ E,
then c(u, v) =0,

Example:
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::‘:\-', ' Flow networks

Definition. A positive flow on G 1s a function
p . Vx V— R satisfying the following:
* Capacity constraint: For all u,v € V,
0 <p(u, v) <c(u,v).
» Flow conservation: For all u € I\ {s, t},

Zp(u,v)— Zp(v,u) =0.

velV velV

The value of a flow 1s the net flow out of the

source:
2. p(s,v)= D p(v,5).

velV velV
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: GORITHMS
b ' A flow on a network

positive  capacity

ﬂOW \1:3/

Flow conservation (like Kirchoff’s current law):
* Flow mto uz1s 2 + 1 = 3.
* Flowoutofu1s 0+ 1 +2 =3,

The value of this flowi1s 1 — 0+ 2 = 3.
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“ " The maximum-flow problem

Ry

Maximum-flow problem: Given a flow network
G, find a flow of maximum value on G.

The value of the maximum flow 1s 4.
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i 5 h]'H ..l.

v~ Flow cancellation

mny

Wlthout loss of generality, positive flow goes
either from u to v, or from v to u, but not both.

Net flow from

1 to v 1n both
23| |12 i> 13| Joo  casesis .
~On the following slides the ™
(net) flow on this edge will

be the negated flow of the
\—__Other direction, so, -1.

The capacity constraint and flow conservation

are preserved by this transformation.
INTUITION: View flow as a rate, not a quantity.
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I ‘-:.c;o.'li ITHMS . . . .
“<* A notational simplification

IDEA: Work with the net flow between two
vertices, rather than with the positive flow.

Definition. A (net) flow on G 1s a function
[V x V— R satisfying the following:
» Capacity constraint: For all u,v € V,

f(u,v) <c(u,v).

» Flow conservation: For all u € '\ {s, t},

Z f(u,v)=0.— One summation
vel instead Oftwo,

* Skew symmetry: Forall u,v € V,

f(ua V) — _f(va M)
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LAY

Theorem. The two definitions are equivalent.
Proof. (=) Let f(u, v) = p(u, v) — p(v, u).
* Capacity constraint: Since p(u, v) < c(u, v) and

p(v, u) >0, we have f(u, v) < c(u, v).
o Flow conservation:

Zf(uav) — Z(p(M,V) —p(V,l/l))

— Equivalence of definitions

vel vel
= Zp(u,\f) - Zp(v,u)
vel vel

* Skew symmetry:
S (u, v) =p(u, v) —p(v, u)
- Q?(V Z/l) p(M, V))
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~ " Proof (continued)

Ve

(<) Let

pluy = H) Ht =6

* Capacity constraint: By definition, p(u, v) > 0. Since
f(u, v) <c(u,v), 1t follows that p(u, v) < c(u, v).

* Flow conservation: If f(u, v) > 0, then p(u, v) — p(v, u)

=f(u, v). It f(u, v) <0, then p(u, v) — p(v, u) = —f(v, u)
= f(u, v) by skew symmetry. Therefore,

D puv)=D pvu)y=) fu,v).

vel vel vel
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ALGORITHMS

N o

WY e

Positive flow vs. (net) flow
2:2

Positive flow:

(Net) flow:
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ALGORITHMS

N o

WY e

Positive flow vs. (net) flow

Positive flow:

Flow conserv.:

240 - 2=0
m- outgoing
coming

(Net) flow:

Flow conserv.:
-2-0+2=0

outgoing
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ALGORITHMS

“\

Posmve flow vs. (net) flow

Positive flow:

(Net) flow:

: Edges with 0-

: capacity are

: usually omitted,

: even if they :
: carry a negative |
: flow! :
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I ;:.(‘_;0 |% ITHMS .
“ " Notation
Definition. The value of a flow f, denoted by |/,
1S given by
f1=2_/(sv)

vel

= f(s,V).

Implicit summation notation: A set used in
an arithmetic formula represents a sum over
the elements of the set.

* Example — flow conservation:
f(u, Vy=01torallu € V'\ {s, t}.
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=" Simple properties of tlow
Lemma.
1. f(X, X)=0,

2. f(X, Y)=—f(Y, X),
3. F(XUY, 2)= (X, 2) + f(Y, Z) if XnY = D

Theorem. |f|= f(V, 1).
Proof.

f1 =7, 1) 3.
=fV, V) —fN{ish, V) 1,2
= f(V, V\{s}) 2, 3.
= f(V,t)+f(V, V\{s,t}) Flow conservation
= f(V, 1.
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4/24/08

fI=1G, V)=4
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f(V, =4
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4" Cuts

"‘“

Definition. A cut (S, T) of a flow network G =
(V, E) 1s a partition of /' such thats € Sand ¢ € 7.
If / 1s a flow on G, then the flow across the cut 1s

J(S, D).
2:2
2:3 _.: D --' . 2:3 O c S

2:0
[\
Q“ 21 {03 3 1:3 QeT
: . , 2:2
2:2 33

S, )=2+2)+(-2+1-1+2)
=4
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m Another characterization of
reo - flow value

Lemma. For any flow f and any cut (S, 7), we

have | /| = /(5. 7).

Proof. JS, 1) =f(S5, V)=f(S,5)
ACEY
=/ (s, V) + 1 (Sl{s}, V)
=f (s, V)

Al
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~ o Capacity of a cut

Ve

Definition. The capacity of a cut (S, T) 1s c(S, 7).
2.

(RS

3 e .’ 23

20 ‘.‘< QeSS
YW 01

Q‘ 03 5 1:3 QeT
2: > 2:2

3:3

S, T)=Q2+3)+(O0+1+2+3)
— 11
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m Upper bound on the maximum
7 flow value

Theorem. The value of any flow 1s bounded
from above by the capacity of any cut:

fl <c(S, 7).

Proof. f1=1(8.T)
=Z;Zf(“»")
SZZC(U,V)

ueSvel °

=c(S,7)
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::‘:\-', ' Residual network

D.e”ﬁnition. Let / be a flowon G = (V, E). The
residual network G,(V, E,) 1s the graph with
strictly positive residual capacities

Cf(ua V) ~ C(Z/t, V) _f(ua V) > 0.
Edges in £, admit more flow.

Example: . ,
3:5 2

Lemma. [E|<2|E].
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1\‘

“\ Augmenting paths

Deﬁnltlon Any path from s to 7 1n G, 1s an aug-
menting path in G with respect to /. The flow
value can be increased along an augmenting

path p by ¢ (p)= min {c,(u,v)}.

(u,v)ep
Ex.: 3:5 2:6 -5:2 2:0 2:5
G: |
cr(p) =2 2 4 7 2 3
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.:.(.;()'l.;:i"l'H:\'-lS .
“ <" Max-flow, min-cut theorem

mny

Theorem. The following are equivalent:

1. |f]=c(S, T) for some cut (S, 7). <= min-cut

2. f1s a maximum flow.
3. fadmits no augmenting paths.

Proof.

(/)= (2): Since | /| < c(S, T) for any cut (S5, 7) (by
the theorem from 3 slides back), the assumption that
11 =c(S, T) implies that / 1s a maximum flow.

(2) = (3): If there was an augmenting path, the flow
value could be increased, contradicting the
maximality of /.

4/24/08 CS 5633 Analysis of Algorithms 22



“.=* Proof (continued)

(3) = (/): Detine S = {v € J/: there exists a path in G,
from s to v}, and let 7= J7\ S. Since / admits no
augmenting paths, there 1s no path from s to 7 1n G,
Hence, s € Sand 7 € 7, and thus (S, 7) 1s a cut. Consider
any vertices z € Sand v € T.

D 9T

path in G, S| 7

We must have ¢, (u, v) =0, since 1t ¢, (u, v) > 0, then v € S,
not v € 7'as assumed. Thus, f(u, v) = c(u, v), since ¢, (u, v)
=c(u, v) —f(u,v). Summing overallu € Sandv € T

yields 7(S, 7) = ¢(S, T), and since | /| =/ (S, T), the theorem

follows.
4/24/08 CS 5633 Analysis of Algorithms 23




m Ford-Fulkerson max-flow
s algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:
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m Ford-Fulkerson max-flow
s algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:
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m-ll Ford-Fulkerson max-flow
s algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

0:10°

4/24/08 CS 5633 Analysis of Algorithms
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m-ll Ford-Fulkerson max-flow
s algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

1:10°

4/24/08 CS 5633 Analysis of Algorithms
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m-ll Ford-Fulkerson max-flow
s algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

1:10°
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m— Ford-Fulkerson max-flow
s algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

1:10°
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m-ll Ford-Fulkerson max-flow
s algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

1:10°
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m Ford-Fulkerson max-flow
s algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)
Can be slow:

2:10°

2 billion 1terations on a graph with 4 vertices!
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"'T'- Ford-Fulkerson max-flow
~* algorithm

Algorithm:

flu,vl<—Oforallu,velV
while an augmenting path p in G wrt f exists

do augment / by ¢,(p)

Runtime:

* Let | /| be the value of a maximum flow, and
assume 1t 1s an integral value.
 The 1mitialization takes O(|£|) time
 There are at most | /*| iterations of the loop
 Find an augmenting path with DFS 1n O(|V|+|E]) time
» Each augmentation takes O(|/)/]) time

= O(|E| -|f*|) time 1n total

4/24/08 CS 5633 Analysis of Algorithms 32



| ;.(I;o'l{i"]'rl:\'-ls .
“ <" Edmonds-Karp algorithm

mny

Edmonds and Karp noticed that many people’s
implementations of Ford-Fulkerson augment along a
breadth-first augmenting path: a shortest path in G, from s
to # where each edge has weight 1. These implementations
would always run relatively fast.

Since a breadth-first augmenting path can be found in
O(V+E) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses on
bounding the number of flow augmentations.

(In independent work, Dinic also gave polynomial-time
bounds.)
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Runnlng time of Edmonds-
~ Karp

* One can show that the number of flow augmentations
(1.e., the number of iterations of the while loop) 1s

O(V E).
* Breadth-first search runs in O()//+£E) time

A
)
\‘

* All other bookkeeping 1s O(}') per augmentation.

— The Edmonds-Karp maximum-flow
algorithm runs in O(V E?) time.

4/24/08 CS 5633 Analysis of Algorithms
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ALGORITHMS
“ & Monotonicity lemma

Lemma Let o(v) = 0,(s, v) be the breadth-first
distance from s to v 1n G,. During the Edmonds-

Karp algorithm, o(v) 1 1ncreases monotonically.

Proof. Suppose that / 1s a flow on G, and augmentation
produces a new tlow f'. Leto'(v) =0,(s, v). We'll
show that 0'(v) = o(v) by induction on o(v). For the base
case, 0'(s) =o(s) = 0.

For the inductive case, consider a breadth-first path s —
- —> u—>vin G, We must have 0'(v) = 0o'(u) + 1, since
subpaths of shortest paths are shortest paths. Certamly,

(u, v) € £, and now consider two cases depending on
whether (u v) € E,.
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ﬂ- : G 0 |‘< ITHMS

Case: (u,v) € E,.
We have
o(v) <o(u)+1 (triangle inequality)
<o'(u)+ 1  (induction)
=0'(v) (breadth-first path),

and thus monotonicity of o(v) 1s established.

4/24/08 CS 5633 Analysis of Algorithms

36



A\LGORITHMS

“ o Case 2

Case: (u,v) ¢ E,.

Since (u, v) € £, ,the augmenting path p that produced
f

/" from / must have included (v, u). Moreover, p 1s a
breadth-first path in G

p=S—>->Vo>U—> L.
Thus, we have

o(v) =o(u)—1 (breadth-first path)
<0o'(u)—1 (induction)
=0'(v) -2 (breadth-first path)
<o'(v),

thereby establishing monotonicity for this case, too.
4/24/08 CS 5633 Analysis of Algorithms
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: ; (.; ORITHMS . .
“ " Counting flow augmentations

mny

Theorem. The number of flow augmentations
in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) 1s O(V'E).
Proof. Let p be an augmenting path, and suppose that
we have ¢ (u, v) = ¢,(p) for edge (1, v) € p. Then, we
say that (u, v) 1s critical, and 1t disappears from the
residual graph after flow augmentation.

Example: cr(p) =2
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: i;oii ITHMS . .
“ " Counting flow augmentations

mny

Theorem. The number of flow augmentations

in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) 1s O(V'E).

Proof. Let p be an augmenting path, and suppose that
the residual capacity of edge (i, v) € p1s ¢,(u, v) = c/(p).
Then, we say (u, v) 1s critical, and 1t disappears from the
residual graph after flow augmentation.

Example:
2 5 1
5 4 4 3 4

4/24/08 CS 5633 Analysis of Algorithms 39



m Counting flow augmentations
~7 (continued)

The ﬁrst time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1  (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example:
O O
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m Counting flow augmentations
~7 (continued)

The ﬁrst time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1  (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example: o(u) =5
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m Counting flow augmentations
~7 (continued)

The ﬁrst time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1  (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example: o(u) =5

O Y

o(v) =6
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m Counting flow augmentations
~7 (continued)

The ﬁrst time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1  (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example: o(u) 277

—--
_—
---
—

5(v) > 6
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m Counting flow augmentations
~7 (continued)

The ﬁrst time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1  (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example: o(u) 277

O Y

5(v) > 6

4/24/08 CS 5633 Analysis of Algorithms 44



m Counting flow augmentations
~7 (continued)

The ﬁrst time an edge (u, v) 1s critical, we have o(v) =
o(u) + 1, since p 1s a breadth-first path. We must wait
until (v, #) 1s on an augmenting path before (u, v) can
be critical again. Let o' be the distance function when
(v, u) 1s on an augmenting path. Then, we have
o'(u) =0'(v)+1  (breadth-first path)
>0o(v) + 1 (monotonicity)
=0o(u) +2 (breadth-first path).

Example: o(u) 27
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. Runnlng time of Edmonds-
m“f._ Karp

Distances start out nonnegative, never decrease, and are
at most | /| — 1 until the vertex becomes unreachable.
Thus, (u, v) occurs as a critical edge O())) times, because
0(v) Iincreases by at least 2 between occurrences. Since
the residual graph contains O(F) edges, the number of
flow augmentations 1s O(V' E).

Corollary. The Edmonds-Karp maximum-flow
algorithm runs in O(V E?) time.

Proof. Breadth-first search runs in O(F) time, and all
other bookkeeping 1s O()) per augmentation.
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\LGORITHM

“ " Best to date

* The asymptotically fastest algorithm to date for
maximum flow, due to King, Rao, and Tarjan, runs
in O(|V]|E 10g|15|/( V| log |V|)| V) time.

* If we allow running times as a function of edge
weights, the fastest algorithm for maximum flow,
due to Goldberg and Rao, runs 1n time

O(min{|V| *°, |E|'} - |E| log ([V] ¥|E| +2) - log C),
where C' 1s the maximum capacity of any edge in
the graph.
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