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!\‘,"' Flow networks

Definition. A flow network is a directed graph
G = (V, E) with two distinguished vertices: a
source s and a sink t. Each edge (i, v) € E has
a nonnegative capacity c(u, v). If (u,v) ¢ E,
then c(u, v) = 0.

Example:
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= \,"' Flow networks

Definition. A positive flow on G is a function
p: VxV— R satisfying the following:
* Capacity constraint: For all u, v € V,
0 <p(u,v)<c(u,v).
* Flow conservation: For all u € V'\ {s, t},

Zp(u,v)— Zp(v,u)z().

vel vel
The value of a flow is the net flow out of the

source:
> p(s)= 3 p(v,s).

vel velV

4/24/08 CS 5633 Analysis of Algorithms

.............

"!,\,lu' A flow on a network

positive  capacity

flow ~_ /

1:3

Flow conservation (like Kirchoff’s current law):
*Flowinto uis 2 + 1 = 3.

eFlowoutofuisO+1+2=3.
The value of this flowis 1 — 0+ 2 = 3.
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“.«* The maximum-flow problem

Maximum-flow problem: Given a flow network
G, find a flow of maximum value on G.

The value of the maximum flow is 4.
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~ 4~ Flow cancellation

Eah

Without loss of generality, positive flow goes
either from u to v, or from v to u, but not both.

Net flow from

1 to v in both
231 |12 i> 131 Jo2 cases is 1.
On the following slides the

(net) flow on this edge will
be the negated flow of the
other direction, so, -1.

The capacity constraint and flow conservation
are preserved by this transformation.
INTUITION: View flow as a rate, not a quantity.

4/24/08 CS 5633 Analysis of Algorithms 6

uuuuuuuuuuuuu

;__ . . . .
"<~ A notational simplification

IneA: Work with the net flow between two
vertices, rather than with the positive flow.

Definition. A (ne?) flow on G is a function
[V xV— R satistying the following:
* Capacity constraint: For all u,v € V,

f(u,v)<c(u,v).

 Flow conservation: For all u € V'\ {s, t},

Zf(”’ v) = 0.— One summation
veV instead of two.

» Skew symmetry: For all u, v € V,

S, v) =~f(v, u).
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“ <" Equivalence of definitions

Theorem. The two definitions are equivalent.

Proof. (=) Let f(u, v) = p(u, v) — p(v, u).

* Capacity constraint: Since p(u, v) < c¢(u, v) and
p(v, u) >0, we have f(u, v) < c(u, v).

» Flow conservation:

D Sy =Y (puy) - pv,u))

vel vel
= Z pu,v)—- z p(v,u)
velV velV
* Skew symmetry:
Su, v) =p(u, v) = p(v, u)
- (p(V, l/l) *p(l/l, V))

=—f(v, u).
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!\,lu' Proof (continued)

(<) Let

) fu,v) ifflu,v)>0,
Pl v) = { 0 iffu,1)<0.

* Capacity constraint: By definition, p(u, v) > 0. Since
f(u, v) <c(u, v), it follows that p(u, v) < c(u, v).

* Flow conservation: 1f f(u, v) > 0, then p(u, v) — p(v, u)

:.f(ua V)' Iff(“: V) < O: then p(l/l, V) —p(V, I/l) - _4/{(‘): Ll)
= f(u, v) by skew symmetry. Therefore,

D pwy) =Y pay= fy). O
vel velV vel
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= \,"' Positive flow vs. (net) flow

Positive flow:

(Net) flow:
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= \..'u' Positive flow vs. (net) flow

(Net) flow:
Flow conserv.:
2-0+2=0
ﬁ_‘
outgoing
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= \..'u' Positive flow vs. (net) flow

Positive flow:

(Net) flow:

i Edges with 0-

i capacity are

i usually omitted,
i even if they

i carry a negative
 flow!
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'!‘:;u' Notation

|\
Eah

Definition. The value of a flow f, denoted by ||,
is given by
VIEDINACRY

vel
= f(s,V).
Implicit summation notation: A set used in
an arithmetic formula represents a sum over
the elements of the set.
* Example — flow conservation:
f(u, Vy=0forallu € I\ {s, t}.
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:IL!-:*" Simple properties of flow
Lemma.
L (X, X)=0,

2. fX, N =-f(Y, X),
3. (XY, 2) = f(X, 2) +f(Y, Z) if XnY = @.0

Theorem. | f|= f(V, ?).

.............

'!‘:;ﬁll Flow into the sink

|
'

[f1= (s, V) =4 J,n=4
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Proof.
fl=ren :
=fW N -fNis}, V) 1,2
— Vs )
= f(V,0)+f(V, V\{s,t}) Flow conservation
=1 0.
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'!‘:;ﬁll Cuts

|
'

Definition. A cut (S, 7) of a flow network G =
(V, E) 1s a partition of /' such thats € Sand 7 € T.
If / is a flow on G, then the flow across the cut is

ST =Q2+2)+(-2+1-1+2)
=4
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e Another characterization of
~*" flow value

Lemma. For any flow f'and any cut (S, 7), we

have | /| = f(S, ).

Proof. FS D=/, N-f(S,9)
-
=f(s, N +f(SVs), V)
=f(s. V)
=1/ O
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:f,:,--" Capacity of a cut
Definition. The capacity of a cut (S, T) is c(S, 7).

c(S,N=2+3)+0+1+2+3)
=11
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== Upper bound on the maximum

:-n‘ =Y o

flow value

Theorem. The value of any flow is bounded
from above by the capacity of any cut:

Ifl <c(S, 7).
Proof. ‘f‘ =f(8.T)
=22 [y

ueSvel

< Z Zc(u,v)

ueSvel *

=c(s,7) O
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“«* Residual network

Definition. Let / be a flow on G = (V, E). The
residual network G (V, E,) is the graph with
strictly positive residual capacities

cp(u, v) = c(u, v) — f(u, v) > 0.
Edges in £, admit more flow.

Example: i A
3:5 2

Lemma. |/ <2|E]. [
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;;ﬁ, Y Augmenting paths

Definition. Any path from s to 7 in G,is an aug-
menting path in G with respect to /. The flow
value can be increased along an augmenting

path p by ¢, (p)= ( min {c,(u,v)}.

u,v)ep
Ex.: 3:5 2:6 -5:2 2:0 2:5
G:
¢(p)=2 2 4 7 2 3
6: @339 D3350
3 2 1 2
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ry— .
~ ~* Max-flow, min-cut theorem

Eah

Theorem. The following are equivalent:

1. | f]=¢c(S, T) for some cut (S, 7). €= min-cut

2. f1s a maximum flow.
3. fadmits no augmenting paths.

Proof.

(1)= (2): Since | f| < (S, T) for any cut (S, 7) (by
the theorem from 3 slides back), the assumption that
| /| =c(S, T) implies that /" is a maximum flow.

(2) = (3): If there was an augmenting path, the flow
value could be increased, contradicting the
maximality of f.
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o X Proof (continued)

(3) = (/): Define S = {v € V/: there exists a path in G,
from s to v}, and let 7= 7\ S. Since f admits no '
augmenting paths, there is no path from s to 7in G, .
Hence, s € Sand ¢ € 7, and thus (S, 7) is a cut. Consider
any vertices u € Sand v € T.

pathin G, S| T

We must have cr(u, v) =0, since if ¢ (u,v)>0,thenv € S,
not v € 7 as assumed. Thus, /(u, v) = c(u, v), since ¢, (u, v)
=c(u, v) —f(u, v). Summing overall u € Sandv € T

yields f(S, T7) = ¢(S, T), and since | /| = f(S, 7), the theorem

follows.
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s Ford-Fulkerson max-flow
1 algorithm

Algorithm:
flu,vl<«Oforallu,veV
while an augmenting path p in G wrt f exists
do augment / by ¢,(p)

Can be slow:
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v Ford-Fulkerson max-flow
1 algorithm

Algorithm:
flu,vl<«-Oforallu,veV
while an augmenting path p in G wrt f exists
do augment / by ¢,(p)

Can be slow:
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v Ford-Fulkerson max-flow
1 algorithm

Algorithm:
flu,vl<«-Oforallu,veV
while an augmenting path p in G wrt f exists
do augment / by ¢,(p)

Can be slow:
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s Ford-Fulkerson max-flow
1 algorithm

Algorithm:
flu,vl<«Oforallu,v eV
while an augmenting path p in G wrt / exists
do augment / by ¢,(p)

Can be slow:
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s Ford-Fulkerson max-flow
1 algorithm

Algorithm:
flu,vl<«Oforallu,veV
while an augmenting path p in G wrt f exists
do augment / by ¢,(p)

Can be slow:
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@ Ford-Fulkerson max-flow
1 algorithm

Algorithm:
flu,vl<«-Oforallu,veV
while an augmenting path p in G wrt f exists
do augment / by ¢,(p)

Can be slow:
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@™ Ford-Fulkerson max-flow
1 algorithm

Algorithm:
flu,vl<«-Oforallu,veV
while an augmenting path p in G wrt f exists
do augment / by ¢,(p)

Can be slow:
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@ Ford-Fulkerson max-flow
1 algorithm

Algorithm:
flu,vl<«Oforallu,v eV
while an augmenting path p in G wrt / exists
do augment / by ¢,(p)

Can be slow:

2 billion iterations on a graph with 4 vertices!
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@ Ford-Fulkerson max-flow
1 algorithm

Algorithm:
flu,vl<«Oforallu,veV
while an augmenting path p in G wrt f exists
do augment / by ¢,(p)

Runtime:
* Let | /¥| be the value of a maximum flow, and
assume it is an integral value.
* The initialization takes O(|E|) time
* There are at most | /*| iterations of the loop
* Find an augmenting path with DFS in O(|V|+|E|) time
» Each augmentation takes O(|/]) time
= O(|E] -|f*|) time in total
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‘..~ Edmonds-Karp algorithm

Edmonds and Karp noticed that many people’s
implementations of Ford-Fulkerson augment along a
breadth-first augmenting path: a shortest path in G, from s
to # where each edge has weight 1. These implementations
would always run relatively fast.

Since a breadth-first augmenting path can be found in
O(V+E) time, their analysis, which provided the first
polynomial-time bound on maximum flow, focuses on
bounding the number of flow augmentations.

(In independent work, Dinic also gave polynomial-time
bounds.)
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¥ Running time of Edmonds-
= Karp

* One can show that the number of flow augmentations
(i.e., the number of iterations of the while loop) is
O(VE).

* Breadth-first search runs in O(V/+FE) time

* All other bookkeeping is O()') per augmentation.

= The Edmonds-Karp maximum-flow
algorithm runs in O(/ E?) time.
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“<* Monotonicity lemma

Lemma. Let 5(v) = ,(s, v) be the breadth-first
distance from s to v in G,. During the Edmonds-
Karp algorithm, (v) increases monotonically.

Proof. Suppose that f is a flow on G, and augmentation
produces a new flow /". Let 6'(v) = &,(s, v). We’ll
show that &'(v) > 6(v) by induction on &(v). For the base
case, &'(s) = d(s) = 0.

For the inductive case, consider a breadth-first path s —
- —>u—vin G,. We must have 6'(v) = 6'(u) + 1, since
subpaths of shortest paths are shortest paths. Certainly,
(u, v) € E,, and now consider two cases depending on
whether (1, v) € E,.
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T Case 1
Case: (u,v) € E;.
We have
o(v) <0(u) +1 (triangle inequality)
<d'(u)+1 (induction)
=0'(v) (breadth-first path),

and thus monotonicity of (v) is established.
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o~ Case 2
Case: (u,v) ¢ E,.
Since (u,v) € E,,the augmenting path p that produced

/" from / must have included (v, «). Moreover, p is a
breadth-first path in G

pP=S—>>o>Vo>uUu—>- L.
Thus, we have
d(v) =8(u)—1 (breadth-first path)
<d'(w)—-1 (induction)
=0'(v) -2 (breadth-first path)
<d'(v),

thereby establishing monotonicity for this case, too. [ ]
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“.«~ Counting flow augmentations

Theorem. The number of flow augmentations
in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(V E).
Proof. Let p be an augmenting path, and suppose that
we have ¢, (u, v) = ¢,(p) for edge (u, v) € p. Then, we
say that (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

Example: cr(p) =2
2 4 7 2 3

6: G333 U339
3 2 1 2
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“ < Counting flow augmentations

Theorem. The number of flow augmentations

in the Edmonds-Karp algorithm (Ford-Fulkerson
with breadth-first augmenting paths) is O(V'E).
Proof. Let p be an augmenting path, and suppose that
the residual capacity of edge (u, v) € pis ¢,(u, v) = ¢/(p).
Then, we say (u, v) is critical, and it disappears from the
residual graph after flow augmentation.

Example:
2 5 1
5 4 4 3 4
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‘_‘ Counting flow augmentations
w7 (continued)

The first time an edge (i, v) is critical, we have d(v) =
S(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let 8’ be the distance function when
(v, u) is on an augmenting path. Then, we have
0'(u) =0'(v)+1  (breadth-first path)
>08(v)+1 (monotonicity)
=0(u) +2 (breadth-first path).

Example:

© ©
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= Counting flow augmentations

b b .
=" (continued)
The first time an edge (u, v) is critical, we have o(v) =
o(u) + 1, since p is a breadth-first path. We must wait
until (v, ©) is on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) is on an augmenting path. Then, we have
O'(u) =0'(v)+1  (breadth-first path)
>d(v)+1 (monotonicity)
=0(u)+2 (breadth-first path).

Example: ?(_”E B
DES G0

8(1)=6

CS 5633 Analysis of Algorithms 41

4/24/08

g Counting flow augmentations

b b .
=" (continued)
The first time an edge (u, v) is critical, we have 6(v) =
o(u) + 1, since p is a breadth-first path. We must wait
until (v, «) is on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, 1) is on an augmenting path. Then, we have
O'(u)y =0'(v)+1  (breadth-first path)
>3(v)+1 (monotonicity)
=0(u) +2 (breadth-first path).

Example: (u) =5

© ©

S(v)=6
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@3 Counting flow augmentations
=" (continued)

The first time an edge (i, v) is critical, we have o(v) =
S(u) + 1, since p is a breadth-first path. We must wait
until (v, ©) is on an augmenting path before (u, v) can
be critical again. Let &' be the distance function when
(v, u) is on an augmenting path. Then, we have
O0'(u) =08"(v)+1  (breadth-first path)
>d8(v) +1 (monotonicity)
=0(u)+2 (breadth-first path).

Example: o(u) 27

~<o
~
~ : ;
@ R

3(v)>6
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‘_‘ Counting flow augmentations
w7 (continued)

The first time an edge (i, v) is critical, we have d(v) =
S(u) + 1, since p is a breadth-first path. We must wait
until (v, u) is on an augmenting path before (u, v) can
be critical again. Let 8’ be the distance function when
(v, u) is on an augmenting path. Then, we have

0'(u) =0'(v)+1  (breadth-first path)

>08(v)+1 (monotonicity)
=0(u) +2 (breadth-first path).
Example: 8(u) 27
5(v)> 6
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e Counting flow augmentations
~37 (continued)

The first time an edge (u, v) is critical, we have o(v) =
o(u) + 1, since p is a breadth-first path. We must wait
until (v, ©) is on an augmenting path before (u, v) can
be critical again. Let &’ be the distance function when
(v, u) is on an augmenting path. Then, we have
O'(u)y =0'(v)+1  (breadth-first path)
>9(v)+1 (monotonicity)
=0(u)+2 (breadth-first path).

Example: du) 27
DES 0

o(v) =8
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¥ Running time of Edmonds-
Sk Karp

Distances start out nonnegative, never decrease, and are
at most |//| — 1 until the vertex becomes unreachable.
Thus, (u, v) occurs as a critical edge O(}) times, because
5(v) increases by at least 2 between occurrences. Since
the residual graph contains O(£) edges, the number of
flow augmentations is O(V E). []

Corollary. The Edmonds-Karp maximum-flow
algorithm runs in O(V E?) time.

Proof. Breadth-first search runs in O(F) time, and all
other bookkeeping is O(}) per augmentation. [ ]
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"+~ Best to date

* The asymptotically fastest algorithm to date for
maximum flow, due to King, Rao, and Tarjan, runs
in O(|V]|E| 108411 10g 17| V1) time.

* If we allow running times as a function of edge
weights, the fastest algorithm for maximum flow,
due to Goldberg and Rao, runs in time

O(min{[V]253, |E|"2} - |E| log (V] |E] +2) - log C),

where C is the maximum capacity of any edge in
the graph.
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