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CS 5633 -- Spring 2008

Flow Networks
Carola Wenk

Slides courtesy of Charles Leiserson with 
small changes by Carola Wenk
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Flow networks
Definition. A flow network is a directed graph 
G = (V, E) with two distinguished vertices: a 
source s and a sink t.  Each edge (u, v) ∈ E has 
a nonnegative capacity c(u, v).  If (u, v) ∉ E, 
then c(u, v) = 0.

Example:
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Flow networks
Definition. A positive flow on G is a function 
p : V × V → R satisfying the following: 
• Capacity constraint: For all u, v ∈ V,

0 ≤ p(u, v) ≤ c(u, v).
• Flow conservation: For all u ∈ V \ {s, t}, 

0),(),( =− ∑∑
∈∈ VvVv

uvpvup .

The value of a flow is the net flow out of the 
source:
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A flow on a network
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The value of this flow is 1 – 0 + 2 = 3.

Flow conservation (like Kirchoff’s current law):
• Flow into u is 2 + 1 = 3.
• Flow out of u is 0 + 1 + 2 = 3.

u
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The maximum-flow problem
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The value of the maximum flow is 4.

Maximum-flow problem: Given a flow network 
G, find a flow of maximum value on G.
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Flow cancellation
Without loss of generality, positive flow goes 
either from u to v, or from v to u, but not both.
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Net flow from 
u to v in both 
cases is 1.

The capacity constraint and flow conservation 
are preserved by this transformation.
INTUITION: View flow as a rate, not a quantity.

On the following slides the 
(net) flow on this edge will 
be the negated flow of the 

other direction, so, -1.
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One summation 
instead of two.

A notational simplification
IDEA: Work with the net flow between two 
vertices, rather than with the positive flow.
Definition. A (net) flow on G is a function 
f : V × V → R satisfying the following: 
• Capacity constraint: For all u, v ∈ V,

f (u, v) ≤ c(u, v).
• Flow conservation: For all u ∈ V \ {s, t}, 

0),( =∑
∈Vv

vuf .

• Skew symmetry: For all u, v ∈ V,
f (u, v) = –f (v, u).
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Equivalence of definitions
Theorem. The two definitions are equivalent.
Proof. (⇒) Let f (u, v) = p(u, v) – p(v, u).
• Capacity constraint: Since p(u, v) ≤ c(u, v) and 

p(v, u) ≥ 0, we have f (u, v) ≤ c(u, v).
• Flow conservation:
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• Skew symmetry:
f (u, v) = p(u, v) – p(v, u) 

= – (p(v, u) – p(u, v))
= – f (v, u).
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Proof (continued)
(⇐) Let

p(u, v) = f (u, v) if f(u, v) > 0,
0 if f(u, v) ≤ 0.

• Capacity constraint: By definition, p(u, v) ≥ 0.  Since 
f (u, v) ≤ c(u, v), it follows that p(u, v) ≤ c(u, v).

• Flow conservation:  If f (u, v) > 0, then p(u, v) – p(v, u) 
= f (u, v).  If f (u, v) ≤ 0, then p(u, v) – p(v, u) = – f (v, u) 
= f (u, v) by skew symmetry.  Therefore,

∑∑∑
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Positive flow vs. (net) flow
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Positive flow vs. (net) flow
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Positive flow vs. (net) flow
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Notation

Definition. The value of a flow f, denoted by | f |, 
is given by

),(

),(

Vsf

vsff
Vv

=

= ∑
∈

.
Implicit summation notation:  A set used in 
an arithmetic formula represents a sum over 
the elements of the set. 
• Example — flow conservation:

f (u, V) = 0 for all u ∈ V \ {s, t}.
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Simple properties of flow
Lemma.
1. f (X, X) = 0,
2. f (X, Y) = – f (Y, X),
3. f (X∪Y, Z) = f (X, Z) + f (Y, Z) if X∩Y = ∅.

Theorem. | f | =  f (V, t).
Proof.

| f | = f (s, V) 3.
= f (V, V) – f (V\{s}, V) 1., 2.
=  f (V, V\{s}) 2., 3.
=  f (V, t) + f (V, V\{s,t}) Flow conservation
=  f (V, t).
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Flow into the sink
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| f | =  f (s, V) = 4 f (V, t) = 4
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Cuts
Definition. A cut (S, T) of a flow network G =
(V, E) is a partition of V such that s ∈ S and t ∈ T.  
If f is a flow on G, then the flow across the cut is
f (S, T).
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f (S, T) = (2 + 2) + (– 2 + 1 – 1 + 2)
= 4
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Another characterization of 
flow value

Lemma. For any flow f and any cut (S, T), we 
have | f | =  f (S, T).
Proof. f (S, T) = f (S, V) – f (S, S)

= f (S, V)
= f (s, V) + f (S\{s}, V)
= f (s, V)
= | f |.
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Capacity of a cut
Definition. The capacity of a cut (S, T) is c(S, T).
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= 11
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Upper bound on the maximum 
flow value

Theorem. The value of any flow is bounded 
from above by the capacity of any cut:
|f| ≤ c(S,T) .

.
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),(
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Residual network
Definition. Let f be a flow on G = (V, E).  The 
residual network Gf (V, Ef ) is the graph with 
strictly positive residual capacities

cf (u, v) = c(u, v) – f (u, v) > 0.
Edges in Ef admit more flow.

uu vv

-3:1

3:5

G: uu vv

4

2

Gf :

Example:

Lemma. |Ef | ≤ 2|E |.
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Augmenting paths
Definition. Any path from s to t in Gf is an aug-
menting path in G with respect to f.  The flow 
value can be increased along an augmenting 
path p by )},({min)(

),(
vucpc fpvuf ∈

= .
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cf (p) = 2
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Max-flow, min-cut theorem
Theorem. The following are equivalent:
1. | f | = c(S, T) for some cut (S, T).
2. f is a maximum flow.
3. f admits no augmenting paths.
Proof. 
(1) ⇒ (2): Since | f | ≤ c(S, T) for any cut (S, T) (by 
the theorem from 3 slides back), the assumption that    
| f | = c(S, T) implies that f is a maximum flow.
(2) ⇒ (3): If there was an augmenting path, the flow 
value could be increased, contradicting the 
maximality of f.

min-cut
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Proof (continued)
(3) ⇒ (1): Define S = {v ∈ V : there exists a path in Gf
from s to v}, and let T = V \ S. Since f admits no 
augmenting paths, there is no path from s to t in Gf . 
Hence, s ∈ S and t ∈ T, and thus (S, T) is a cut. Consider 
any vertices u ∈ S and v ∈ T.  

We must have cf (u, v) = 0, since if cf (u, v) > 0, then v ∈ S, 
not v ∈ T as assumed. Thus, f (u, v) = c(u, v), since cf (u, v) 
= c(u, v) – f (u, v).  Summing over all u ∈ S and v ∈ T
yields f (S, T) = c(S, T), and since | f | = f (S, T), the theorem 
follows.

ss uu vv
S Tpath in Gf
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Ford-Fulkerson max-flow 
algorithm

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
Can be slow:
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

ss tt
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Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

ss tt

0:109 0:109

0:109

0:1

0:109

G:

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

ss tt
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Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

ss tt
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Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:
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Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:
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Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Can be slow:

ss tt

2:109 1:109

2:109

1:1

1:109

G:

2 billion iterations on a graph with 4 vertices!

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
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Ford-Fulkerson max-flow 
algorithm

Runtime:
• Let | f*| be the value of a maximum flow, and

assume it is an integral value.
• The initialization takes O(|E|) time
• There are at most | f*| iterations of the loop
• Find an augmenting path with DFS in O(|V|+|E|) time
• Each augmentation takes O(|V|) time
⇒ O(|E| ·|f*|) time in total

Algorithm:
f [u, v] ← 0 for all u, v ∈ V
while an augmenting path p in G wrt f exists

do augment f by cf (p)
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Edmonds-Karp algorithm

Edmonds and Karp noticed that many people’s 
implementations of Ford-Fulkerson augment along a 
breadth-first augmenting path: a shortest path in Gf from s
to t where each edge has weight 1.  These implementations 
would always run relatively fast.
Since a breadth-first augmenting path can be found in 
O(V+E) time, their analysis, which provided the first 
polynomial-time bound on maximum flow, focuses on 
bounding the number of flow augmentations.
(In independent work, Dinic also gave polynomial-time 
bounds.)
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Running time of Edmonds-
Karp

• One can show that the number of flow augmentations 
(i.e., the number of iterations of the while loop) is 
O(V E).

• Breadth-first search runs in O(V+E) time

• All other bookkeeping is O(V) per augmentation.

⇒ The Edmonds-Karp maximum-flow 
algorithm runs in O(V E2) time.
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Monotonicity lemma
Lemma. Let δ(v) = δf (s, v) be the breadth-first 
distance from s to v in Gf . During the Edmonds-
Karp algorithm, δ(v) increases monotonically.
Proof.  Suppose that f is a flow on G, and augmentation 
produces a new flow f ′.  Let δ′(v) = δf ′(s, v).  We’ll 
show that δ′(v) ≥ δ(v) by induction on δ(v).  For the base 
case, δ′(s) = δ(s) = 0.
For the inductive case, consider a breadth-first path s →
L → u → v in Gf ′.  We must have δ′(v) = δ′(u) + 1, since 
subpaths of shortest paths are shortest paths.  Certainly, 
(u, v) ∈ Ef ′ , and now consider two cases depending on 
whether (u, v) ∈ Ef .
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Case 1
Case: (u, v) ∈ Ef .

δ(v) ≤ δ(u) + 1 (triangle inequality)
≤ δ′(u) + 1 (induction)
= δ′(v) (breadth-first path),

and thus monotonicity of δ(v) is established.

We have
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Case 2
Case: (u, v) ∉ Ef .
Since  (u, v) ∈ Ef ′ , the augmenting path p that produced 
f ′ from f must have included (v, u).  Moreover, p is a 
breadth-first path in Gf :

p = s → L → v → u → L → t .
Thus, we have

δ(v) = δ(u) – 1 (breadth-first path)
≤ δ′(u) – 1 (induction)
= δ′(v) – 2 (breadth-first path)
< δ′(v) ,

thereby establishing monotonicity for this case, too.
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Counting flow augmentations
Theorem. The number of flow augmentations 
in the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(VE).
Proof. Let p be an augmenting path, and suppose that 
we have cf (u, v) = cf (p) for edge (u, v) ∈ p.  Then, we 
say that (u, v) is critical, and it disappears from the 
residual graph after flow augmentation.
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Counting flow augmentations
Theorem. The number of flow augmentations 
in the Edmonds-Karp algorithm (Ford-Fulkerson 
with breadth-first augmenting paths) is O(VE).
Proof. Let p be an augmenting path, and suppose that 
the residual capacity of edge (u, v) ∈ p is cf (u, v) = cf (p).  
Then, we say (u, v) is critical, and it disappears from the 
residual graph after flow augmentation.
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have

ss
uu

vv
tt

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).
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δ(u) = 5

δ(v) = 6

Example:
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have
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δ(u) = 5

δ(v) = 6

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have
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δ(u) ≥ 7

δ(v) ≥ 6

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have
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δ(u) ≥ 7

δ(v) ≥ 6

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).
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Counting flow augmentations 
(continued)

The first time an edge (u, v) is critical, we have δ(v) = 
δ(u) + 1, since p is a breadth-first path.  We must wait 
until (v, u) is on an augmenting path before (u, v) can 
be critical again.  Let δ′ be the distance function when 
(v, u) is on an augmenting path.  Then, we have
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δ(u) ≥ 7

δ(v) ≥ 8

Example:

δ′(u) = δ′(v) + 1 (breadth-first path)
≥ δ(v) + 1 (monotonicity)
= δ(u) + 2 (breadth-first path).
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Running time of Edmonds-
Karp

Distances start out nonnegative, never decrease, and are 
at most |V| – 1 until the vertex becomes unreachable.  
Thus, (u, v) occurs as a critical edge O(V) times, because 
δ(v) increases by at least 2 between occurrences.  Since 
the residual graph contains O(E) edges, the number of 
flow augmentations is O(V E).

Corollary. The Edmonds-Karp maximum-flow 
algorithm runs in O(V E2) time.
Proof.  Breadth-first search runs in O(E) time, and all 
other bookkeeping is O(V) per augmentation.
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Best to date
• The asymptotically fastest algorithm to date for 

maximum flow, due to King, Rao, and Tarjan, runs 
in O(|V||E| log|E|/(|V| log |V|)|V|) time.

• If we allow running times as a function of edge 
weights, the fastest algorithm for maximum flow, 
due to Goldberg and Rao, runs in time

O(min{|V| 2/3, |E|1/2} ⋅ |E| log (|V| 2/|E| + 2) ⋅ log C),
where C is the maximum capacity of any edge in 
the graph.


