
1

CS 5633 Analysis of Algorithms 14/15/08

CS 5633 -- Spring 2008

P and NP
Carola Wenk

Slides courtesy of Piotr Indyk with small changes
by Carola Wenk

CS 5633 Analysis of Algorithms 24/15/08

Have seen so far

• Algorithms for various problems
– Running times O(nm2),O(n2) ,O(n log n),

O(n), etc.
– I.e., polynomial in the input size

• Can we solve all (or most of) interesting
problems in polynomial time ?

• Not really…

CS 5633 Analysis of Algorithms 34/15/08

Example difficult problem

• Traveling Salesperson
Problem (TSP)
– Input: Undirected graph

with lengths on edges
– Output: Shortest tour

that visits each vertex
exactly once

• Best known algorithm:
O(n 2n) time.

5

9

8
10

4

5

3

2

9

11

6

7

CS 5633 Analysis of Algorithms 44/15/08

Another difficult problem

• Clique:
– Input: Undirected graph

G=(V,E)
– Output: Largest subset C of V

such that every pair of vertices
in C has an edge between them
(C is called a clique)

• Best known algorithm:
O(n 2n) time

2

CS 5633 Analysis of Algorithms 54/15/08

What can we do ?

• Spend more time designing algorithms for those
problems
– People tried for a few decades, no luck

• Prove there is no polynomial time algorithm for
those problems
– Would be great
– Seems really difficult
– Best lower bounds for “natural” problems:

• Ω(n2) for restricted computational models
• 4.5n for unrestricted computational models

CS 5633 Analysis of Algorithms 64/15/08

What else can we do ?

• Show that those hard problems are
essentially equivalent. I.e., if we can solve
one of them in polynomial time, then all
others can be solved in polynomial time as
well.

• Works for at least 10 000 hard problems

CS 5633 Analysis of Algorithms 74/15/08

The benefits of equivalence

• Combines research
efforts

• If one problem has
polynomial time
solution, then all of
them do

• More realistically:
Once an exponential
lower bound is shown
for one problem, it
holds for all of them

P1

P2

P3

CS 5633 Analysis of Algorithms 84/15/08

Summing up

• If we show that a problem ∏ is equivalent
to ten thousand other well studied problems
without efficient algorithms, then we get a
very strong evidence that ∏ is hard.

• We need to:
– Identify the class of problems of interest
– Define the notion of equivalence
– Prove the equivalence(s)

3

CS 5633 Analysis of Algorithms 94/15/08

Class of problems: NP

• Decision problems: answer YES or NO. E.g.,”is
there a tour of length ≤ K” ?

• Solvable in non-deterministic polynomial time:
– Intuitively: the solution can be verified in

polynomial time
– E.g., if someone gives us a tour T, we can

verify in polynomial time if T is a tour of length
≤ K.

• Therefore, the decision variant of TSP is in NP.

CS 5633 Analysis of Algorithms 104/15/08

Decision problem vs.
optimization problem

3 variants of Clique:
1. Input: Undirected graph G=(V,E), and an integer k ≥ 0.

Output: Does G contain a clique of C such that |C| ≥ k ?
2. Input: Undirected graph G=(V,E)

Output: Largest integer k such that G contains a clique C
with |C|=k.

3. Input: Undirected graph G=(V,E)
Output: Largest clique C of V.

3. is harder than 2. is harder than 1. So, if we reason
about the decision problem (1.), and can show that it is
hard, then the others are hard as well. Also, every
algorithm for 3. can solve 2. and 1. as well.

CS 5633 Analysis of Algorithms 114/15/08

Decision problem vs.
optimization problem (cont.)

Theorem:
a) If 1. can be solved in polynomial time, then 2. can be solved in polynomial time.
b) If 2. can be solved in polynomial time, then 3. can be solved in polynomial time.

Proof:

a) Run 1. for values k=1..n. Instead of linear search one could also do
binary search.

b) Run 2. to find the size kopt of a largest clique in G. Now check one
edge after the other. Remove one edge from G, compute the new size
of the largest clique in this new graph. If it is still kopt then this edge
is not necessary for a clique. If it is less than kopt then it is part of the
clique.

CS 5633 Analysis of Algorithms 124/15/08

Class of problems: NP

• Decision problems: answer YES or NO. E.g.,”is
there a tour of length ≤ K” ?

• Solvable in non-deterministic polynomial time:
– Intuitively: the solution can be verified in

polynomial time
– E.g., if someone gives us a tour T, we can

verify in polynomial time if T is a tour of length
≤ K.

• Therefore, the decision variant of TSP is in NP.

4

CS 5633 Analysis of Algorithms 134/15/08

Formal definitions of P and NP
• A decision problem ∏ is solvable in polynomial

time (or ∏∈P), if there is a polynomial time
algorithm A(.) such that for any input x:

∏(x)=YES iff A(x)=YES

• A decision problem ∏ is solvable in non-
deterministic polynomial time (or ∏∈NP), if there
is a polynomial time algorithm A(. , .) such that for
any input x:
∏(x)=YES iff there exists a certificate y of size

poly(|x|) such that A(x,y)=YES

CS 5633 Analysis of Algorithms 144/15/08

Examples of problems in NP

• Is “Does there exist a clique in G of size ≥K” in
NP ?
Yes: A(x,y) interprets x as a graph G, y as a set C,
and checks if all vertices in C are adjacent and if
|C|≥K

• Is Sorting in NP ?
No, not a decision problem.

• Is “Sortedness” in NP ?
Yes: ignore y, and check if the input x is sorted.

CS 5633 Analysis of Algorithms 154/15/08

Reductions: ∏’ to ∏

A for ∏
YES

NO

x

A’ for ∏’
YES

NO

x’

CS 5633 Analysis of Algorithms 164/15/08

Reductions: ∏’ to ∏

A for ∏
YES

NO
f f(x’)=

A’ for ∏’

x

YES

NO

x’

5

CS 5633 Analysis of Algorithms 174/15/08

Reductions

• ∏’ is polynomial time reducible to ∏ (∏’ ≤ ∏)
iff there is a polynomial time function f that maps
inputs x’ for ∏’ into inputs x for ∏, such that for
any x’

∏’(x’)=∏(f(x’))

• Fact 1: if ∏∈P and ∏’ ≤ ∏ then ∏’∈P
• Fact 2: if ∏∈NP and ∏’ ≤ ∏ then ∏’∈NP
• Fact 3 (transitivity):

if ∏’’ ≤ ∏’ and ∏’ ≤ ∏ then ∏” ≤ ∏
CS 5633 Analysis of Algorithms 184/15/08

Recap

• We defined a large class of interesting
problems, namely NP

• We have a way of saying that one problem
is not harder than another (∏’ ≤ ∏)

• Our goal: show equivalence between hard
problems

CS 5633 Analysis of Algorithms 194/15/08

Showing equivalence between
difficult problems

TSP

P3 P4

Clique

P5

• Options:
– Show reductions between all

pairs of problems
– Reduce the number of

reductions using transitivity
of “≤”

∏’
≤

≤

CS 5633 Analysis of Algorithms 204/15/08

Showing equivalence between
difficult problems

TSP

P3 P4

Clique

P5

• Options:
– Show reductions between all

pairs of problems
– Reduce the number of

reductions using transitivity
of “≤”

– Show that all problems in NP
are reducible to a fixed ∏.

To show that some
problem ∏’∈NP is equivalent
to all difficult problems, we
only show ∏ ≤ ∏’.

∏

∏’

≤
≤≤

6

CS 5633 Analysis of Algorithms 214/15/08

The first problem ∏

• Satisfiability problem (SAT):
– Given: a formula φ with m clauses over n

variables, e.g., x1v x2 v x5 , x3 v ¬ x5

– Check if there exists TRUE/FALSE
assignments to the variables that makes
the formula satisfiable

CS 5633 Analysis of Algorithms 224/15/08

SAT is NP-complete

• Fact: SAT ∈NP
• Theorem [Cook’71]: For any ∏’∈NP ,

we have ∏’ ≤ SAT.
• Definition: A problem ∏ such that for any
∏’∈NP we have ∏’ ≤ ∏, is called NP-hard

• Definition: An NP-hard problem that
belongs to NP is called NP-complete

• Corollary: SAT is NP-complete.

CS 5633 Analysis of Algorithms 234/15/08

Plan of attack:

SAT

Clique

Vertex cover

Independent set

Conclusion: all of the above problems are NP-
complete

Follow from Cook’s Theorem

(thanks, Steve ☺)

CS 5633 Analysis of Algorithms 244/15/08

Clique again

• Clique (decision variant):
– Input: Undirected graph

G=(V,E), and an integer K≥0
– Output: Is there a clique C,

i.e., a subset C of V such that
every pair of vertices in C has
an edge between them, such
that |C|≥K ?

7

CS 5633 Analysis of Algorithms 254/15/08

SAT ≤ Clique

• Given a SAT formula φ=C1,…,Cm over
x1,…,xn, we need to produce

G=(V,E) and K,

such that φ satisfiable iff G has a clique of
size ≥ K.

• Notation: a literal is either xi or ¬xi

x’

f(x’)=x

CS 5633 Analysis of Algorithms 264/15/08

SAT ≤ Clique reduction

• For each literal t occurring in φ, create a
vertex vt

• Create an edge vt – vt’ iff:
– t and t’ are not in the same clause, and
– t is not the negation of t’

CS 5633 Analysis of Algorithms 274/15/08

SAT ≤ Clique example

• Formula: x1v x2 v x3 , ¬ x2 v ¬ x3, ¬ x1 v x2

• Graph:

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• Claim: φ satisfiable iff G has a clique of
size ≥ m

• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔

CS 5633 Analysis of Algorithms 284/15/08

Proof

• “→” part:
– Take any assignment that

satisfies φ.
E.g., x1=F, x2=T, x3=F

– Let the set C contain one
satisfied literal per clause

– C is a clique

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔

8

CS 5633 Analysis of Algorithms 294/15/08

Proof

• “←” part:
– Take any clique C of size ≥ m

(i.e., = m)
– Create a set of equations that

satisfies selected literals.
E.g., x3=T, x2=F, x1=F

– The set of equations is
consistent and the solution
satisfies φ

x1

x2

x3

¬x2

¬ x1

¬ x3

x2

• t and t’ are not in the same clause, and
• t is not the negation of t’

Edge vt – vt’ ⇔

CS 5633 Analysis of Algorithms 304/15/08

Altogether

• We constructed a reduction that maps:
– YES inputs to SAT to YES inputs to

Clique
– NO inputs to SAT to NO inputs to Clique

• The reduction works in polynomial time
• Therefore, SAT ≤ Clique →Clique NP-hard
• Clique is in NP → Clique is NP-complete

CS 5633 Analysis of Algorithms 314/15/08

Independent set (IS)

• Input: Undirected graph
G=(V,E)

• Output: Is there a subset S
of V, |S|≥K such that no pair
of vertices in S has an edge
between them? (S is called
an independent set)

CS 5633 Analysis of Algorithms 324/15/08

Clique ≤ IS

• Given an input G=(V,E), K to
Clique, need to construct an
input G’=(V’,E’), K’ to IS,

such that G has clique of size
≥K iff G’ has IS of size ≥K’.

• Construction: K’=K,V’=V,E’=E
• Reason: C is a clique in G iff it

is an IS in G’s complement.

x’

f(x’)=x

9

CS 5633 Analysis of Algorithms 334/15/08

Vertex cover (VC)

• Input: undirected graph
G=(V,E)

• Output: is there a subset C
of V, |C| ≤ K, such that each
edge in E is incident to at
least one vertex in C.

CS 5633 Analysis of Algorithms 344/15/08

IS ≤ VC

• Given an input G=(V,E), K to IS,
need to construct an input
G’=(V’,E’), K’ to VC, such that

G has an IS of size ≥K iff G’ has VC
of size ≤K’.

• Construction: V’=V, E’=E, K’=|V|-K
• Reason: S is an IS in G iff V-S is a

VC in G.

x’

f(x’)=x

