| aLGORTTiMS CS 5633 L Spring 2008

ALGORITHMS

il o
i

il Lj
el

o ‘ l THOMAS H CORMEN

CHARLE '8 E LEISERSON

RONALD L. RIVEST

CLIFFORD S TEIN

Union-Find Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

3/25/08 CS 5633 Analysis of Algorithms

@ Disjoint-set data structure
e (Union-Find)

Problem

e Maintain a dynamic collection of pairwise-disjoint
sets S = {5, 5,, ..., 5 }.

* Each set S. has one element distinguished as the
representative element, rep|[S.].

* Must support 3 operations:

* MAKE-SET(x): adds new set {x} to S
with rep| {x}]| =x (foranyx ¢ S, forall /)
* UNION(x, y): replaces sets S, S, with 5, U S in S
(for any x, y in distinct sets S, S)
* FIND-SET(x): returns representative rep|[S |

of set S containing element x
3/25/08 CS 5633 Analysis of Algorithms 2

LGORITHMS

ALG

“ <" Union-Find Example
s=q (Mo]
MAKE-SET(2) S ={{2}}
MAKE-SET(3) S={{2}, {3}}
MAKE-SET(4) S =112}, 13}, {4}}
FIND-SET(4) = 4
UNION(2, 4) S=1{{2,4}, {3}}
FIND-SET(4) = 2
MAKE-SET(5) S=1{{2,4}, {3}, {3}}
UNION(4, 5) S=1{{2,4,5}, {3}}

3/25/08 CS 5633 Analysis of Algorithms

= Disjoint-set data structure
o (Union-Find) 11

* In all operations pointers to the elements x, y
in the data structure are given.

* Hence, we do not need to first search for the
element 1n the data structure.

* Let n denote the overall number of elements
(equivalently, the number of MAKE-SET
operations).

3/25/08 CS 5633 Analysis of Algorithms

ALGORITHMS

.
.

~=* Simple linked-list solution

mny

Store each set S. = {x,, x,, ..., x, } as an (unordered)
doubly linked list. Define representative element
rep|S.] to be the front of the list, x,.

Sl . x1 : > .x2 T .. .(xk

repl5;]
®(1) < MAKE-SET(x) initializes x as a lone node.
* FIND-SET(x) walks left in the list containing
®(7) x until it reaches the front of the list.
®(n) * UNION(x, y) calls FIND-SET on y, finds the
last element of list x, and concatenates both
lists, leaving rep. as FIND-SET|x].

3/25/08 CS 5633 Analysis of Algorithms 5

: i;mi ITHMS . .
“<* Simple balanced-tre

mny

maintain how?
Store each set S. = {x,, x,, ..., x, } as a balanced ftree
(1gnoring keys). Define representative element
rep|S.] to be the root of the tree.

S = X1, X5 X3, Xy, X5

* MAKE-SET(x) 1nitializes x

O(1) a5 a lone node. rep[S]
ol * FIND-SET(x) walks up the tree P
(log n) containing x until reaching root. .
» UNION(x, y) calls FIND-SET on <
O(log)y, finds a leaf of x and 4
concatenates both trees,

changing rep. of y

3/25/08 CS 5633 Analysis of Algorithms HOW? 6

X3

Xo| | X5

:_(-;oi‘l:i‘r-ﬂ,\'is

“ <" Plan of attack

* We will build a simple disjoint-union data structure
that, in an amortized sense, performs significantly
better than ®(log n) per op., even better than

O(log log n), O©(log log log n), ..., but not quite O(1).

* To reach this goal, we will introduce two key tricks.
Each trick converts a trivial ®(7) solution 1nto a
simple O(log n) amortized solution. Together, the
two tricks yield a much better solution.

* First trick arises in an augmented linked list.
Second trick arises 1n a tree structure.

3/25/08 CS 5633 Analysis of Algorithms 7

;._,‘ Augmented linked-list solution

Store S. = {x,, x,, ..., X, } as unordered doubly linked list.
Augmentatlon Each element x; also stores pointer
rep|x;] to rep[S;] (which 1s the front of the list, x,).

rep
Sl.; x| T—L |o| T —L [x
repl5;]
* FIND-SET(x) returns rep|x]. — O(1)

* UNION(x, y) concatenates lists containing
x and y and updates the rep pointers for
all elements 1n the list containing y. — O(n)
8

3/25/08 CS 5633 Analysis of Algorithms

@ Example of
~** augmented linked-list solution
Each element x; stores pointer rep|x,| to rep[.S;].
UNION(x, y)

* concatenates the lists containing x and y, and

* updates the rep pointers for all elements 1n the
list containing y.

rep

S | =L [x

rep[S,]

rep

Sy: yl « ’ y2 « : y3

replS,)

3/25/08 CS 5633 Analysis of Algorithms 9

@ Example of
| *‘ augmented linked-list solution

Each element x; stores pointer rep|x,| to rep[.S;].
UNION(x, y)
* concatenates the lists containing x and y, and
* updates the rep pointers for all elements 1n the
list containing y.

5, U, rep
ol =R]y o
P
replS,] \ |
\ > >
Vil F |} V3

rep[S,)

3/25/08 CS 5633 Analysis of Algorithms 10

e @ Example of
| “ augmented linked-list solution

Each element x; stores pointer rep|x,| to rep[.S;].
UNION(x, y)
* concatenates the lists containing x and y, and
* updates the rep pointers for all elements 1n the
list containing y.

rep
S, U, :
ol =R]y
rep[S,US,] \
\

il — 1l — s

3/25/08 CS 5633 Analysis of Algorithms 11

ALGORITHMS

“ <" Alternative concatenation
UNION(x, y) could instead

* concatenate the lists containing y and x, and

* update the rep pointers for all elements 1n the

list containing x.

rep

rep :
rep|S,]

Sy: vl =k || Tk [
repls,)

3/25/08 CS 5633 Analysis of Algorithms 12

ALGORITHMS
‘ L et

mny

UNION(x, y) could instead

“ " Alternative concatenation

* concatenate the lists containing y and x, and
* update the rep pointers for all elements 1n the

list containing x.

S, US,: rep
Vil k %) V3
repls,]

3/25/08

CS 5633 Analysis of Algorithms

13

ALGORITHMS
- .

-y

mny

UNION(x, y) could instead

“ " Alternative concatenation

* concatenate the lists containing y and x, and
* update the rep pointers for all elements 1n the

list containing x.

S ul. :

X y°

rep

rep

V1

3/25/08

rep[S, S |

)

/I/

N E

/

CS 5633 Analysis of Algorithms

14

W0 Trick I: Smaller into larger
R (weighted-union heuristic)

To save work, concatenate smaller list onto the end
of the larger list. Cost = O(length of smaller list).
Augment list to store its weight (# elements).

* Let n denote the overall number of elements
(equivalently, the number of MAKE-SET operations).

* Let m denote the total number of operations.

* Let / denote the number of FIND-SET operations.

Theorem: Cost of all UNION’s 1s O(n log n).
Corollary: Total cost 1s O(m + n log n).

3/25/08 CS 5633 Analysis of Algorithms 15

¥ Analysis of Trick 1
WY (weighted-union heuristic)

Theorem: Total cost of UNION’s 1s O(7n log n).

Proof. » Monitor an element x and set S, containing it.
 After initial MAKE-SET(x), weight[S | = 1.
* Each time S| 1s united with S
* if weight[S] = weight[S§,]:

—pay | to update rep|x], and

— weight[S, | at least doubles (increases by weight[S|]).
o 1f weight[Sy] <weight[S,]:

— pay nothing, and

— weight[S.] only increases.

Thus pay < log » for x.

3/25/08 CS 5633 Analysis of Algorithms 16

""'T"" Disjoint set forest:
=37 Representing sets as trees

Store each set S. = {x,, x,, ..., x, } as an unordered,
potentially unbalanced, not necessarily binary tree,
storing only parent pointers. rep|S.] 1s the tree root.

* MAKE-SET(x) 1nitializes x
as a lonenode. —O(1)

 FIND-SET(x) walks up the replS;] [x,
tree containing x until it
reaches the root. — O(depth|x])

* UNION(x, y) calls FIND-SET twice
and concatenates the trees
containing x and y...— O(depth|x])

3/25/08 CS 5633 Analysis of Algorithms 17

S8i= X1, X5, X3, Xy, X5, X

ALGORITHMS

“ &~ Trick 1 adapted to trees

WYY e

* UNION(x, y) can use a simple concatenation strategy:
Make root FIND-SET(y) a child of root FIND-SET(x).
— FIND-SET(y) = FIND-SET(x).

» Adapt Trick 1 to this context:/
Union-by-weight:
Merge tree with smaller
weight into tree with
larger weight.

%
IS
IS
IS
%
IS

L 4

* Variant of Trick 1 (see book): yé yvs

Union-by-rank:
rank of a tree = 1ts height

3/25/08 CS 5633 Analysis of Algorithms 18

""“""' Trick 1 adapted to trees
(unlon -by-weight)
° He1ght of tree 1s logarithmic in weight, because:
* Induction on n
* Height of a tree 7'1s determined by the two subtrees
I, T, that 7"has been united from.
* Inductively the heights of 7', 7, are the logs of their
weights.
« If 7| and 7, have different heights:
height(7) = max(height(7), height(7))
= max(log weight(7), log weight(7),))
<log weight(7)
e If 7| and 7, have the same heights:
(Assume 2<weight(7')<weight(7),))
height(7) = height(7)) + 1 <2* log weight(7")

<log weight(7)

* Thus the total cost of any m operations 1s O(m log n).
3/25/08 CS 5633 Analysis of Algorithms 19

ALGORITHMS

-

“ <~ Trick 2: Path compression
When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes

all of those nodes direct Vi
children of the root. T .
Cost of FIND-SET(x) %) 4 Ly 3\
1s still O(depth|x]). '
FIND-SET(y») J/z_‘ Vs

3/25/08 CS 5633 Analysis of Algorithms 20

ALGORITHMS

-

“ <~ Trick 2: Path compression
When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

Path compression makes

all of those nodes direct Vi

children of the root. 1

Cost of FIND-SET(x) %) Yal ||V 3\

1s still O(depth|x]). '
FIND-SET(y,) J/z—‘ Vs

3/25/08 CS 5633 Analysis of Algorithms 21

ALGORITHMS

-

“ <~ Trick 2: Path compression
When we execute a FIND-SET operation and walk
up a path p to the root, we know the representative
for all the nodes on path p.

Xq

Path compression makes

all of those nodes direct Vil s
children of the root.] T
Cost of FIND-SET(x) 4 Js

1s still O(depth|x]). FIND-SET(V,)
= 2

3/25/08 CS 5633 Analysis of Algorithms 22

ALGORITHM
!

-

™

' ;‘,{ Trick 2: Path compression

mny

» Note that UNION(x,) first calls FIND-SET(x) and
FIND-SET(y). Therefore path compression also
affects UNION operations.

3/25/08 CS 5633 Analysis of Algorithms 23

ALGORITHMS

:;‘ Analysis of Trick 2 alone

mny

Theorem: Total cost of FIND-SET’s 1s O(m log n).
Proof: By amortization. Omitted.

3/25/08 CS 5633 Analysis of Algorithms

24

¥ = Ackermann’s function 4, and
IS “Inverse” o

(

Define A (/) j+1 1t k=0,
=<
cHne At AUH)(]) 1t k>1. —iterate j+1 times
A,()=j+1 A1) =2
A1)~ 2] - A;(:):
A7)~ 2> A,(1) =
27 A5(1) =
2.- g 22047 3
2 J .

A(j) > 2 J 22 > 2048 times
A,(j) 1s a lot bigger. A,(1)>2 J

Detine o(n) = min {k: A,(1) 2 n} <4 for practlcal n.

3/25/08 CS 5633 Analysis of Algorithms

Analys1s of Tricks 1+ 2

Y for disjoint-set forests

Theorem: In general, total cost 1s O(m ou(n)).

(long, tricky proof — see Section 21.4 of CLRS)

3/25/08 CS 5633 Analysis of Algorithms

26

w== Application:
- Dynamic connectivity

| §
Y \‘

Suppose a graph 1s given to us incrementally by
* ADD-VERTEX(V)
* ADD-EDGE(u, V)

and we want to support connectivity queries:
* CONNECTED(1, V):
Are u and v 1n the same connected component?

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

3/25/08 CS 5633 Analysis of Algorithms 27

w== Application:

Dynamic connectivity

Sets of vertices represent connected components.
Suppose a graph 1s given to us incrementally by

* ADD-VERTEX(V) : MAKE-SET(V)

* ADD-EDGE(u, v) : if not CONNECTED(, V)

then UNION(v, w)

and we want to support connectivity queries:

* CONNECTED(u, v): : FIND-SET(2) = FIND-SET(V)

Are u and v 1n the same connected component?

: \‘_._‘

For example, we want to maintain a spanning forest,
so we check whether each new edge connects a
previously disconnected pair of vertices.

3/25/08 CS 5633 Analysis of Algorithms 28

