B CS 5633 - Spring 2008

W

ALGORITHMS

il o
i

il Lj
el

o ‘ l aaaaa $ H. CORMEN

CHARLE '8 E LEISERSON

RONALD L. RIVEST

CLIFFORD S TEIN

More on Shortest Paths

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

4/10/08 CS 5633 Analysis of Algorithms

"\

SR Negatlve-welght cycles

Recall If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.

Example:

W0

Bellman-Ford algorithm: Finds all shortest-path
weilghts from a source s € Vtoallv € JVor
determines that a negative-weight cycle exists.

4/10/08 CS 5633 Analysis of Algorithms 2

“ <" Bellman-Ford algorithm
dls] <« 0 .

for eachv € I'— {s} » 1initialization
do d|v]| <«

~/

fori< 1to|V|-1do
for each edge (1, v) € E do
if d[v] > dlu] + w(u,v) then " relaxation
dlv] < dlu] +w(u,v) step
n[v] < u
for each edge (1, v) € E
do if d[v] > d[u] + w(u, v)
then report that a negative-weight cycle exists

At the end, d|v] = o(s, v). Time = O(|V|| E|).

4/10/08 CS 5633 Analysis of Algorithms

' '\, . Example of Bellman-Ford

SN

Order of edges: (B.E), (D.B), (B.D). (4.B), (4.C)., (D.C), (B.C). (E.D)
Q0 A B C D FE

0 o0 o0 o o

4/10/08 CS 5633 Analysis of Algorithms 4

~ " Example of Bellman-Ford

SN

Order of edges: (B.E), (D.B), (B.D). (4.B), (4.C)., (D.C), (B.C). (E.D)
—1 A B C D FE

0 o0 o0 o o

0 -1 0o o o

4/10/08 CS 5633 Analysis of Algorithms 5

“ <" Example of Bellman-Ford
Order of edges: (B.E), (D.B), (B.D), (4,B), (4,C), (D.C), (B.C), (E.D)
—1 A B C D FE

0 o0 o0 o o

0 -1 o0 o o

0 -1 4 o o

4/10/08 CS 5633 Analysis of Algorithms 6

~ " Example of Bellman-Ford

SN

Order of edges: (B.E), (D.B), (B.D). (4.B), (4.C)., (D.C), (B.C). (E.D)

4/10/08 CS 5633 Analysis of Algorithms 7

~ " Example of Bellman-Ford

SN

Order of edges: (B.E), (D.B), (B.D). (4.B), (4.C)., (D.C), (B.C). (E.D)

4/10/08 CS 5633 Analysis of Algorithms 8

~ " Example of Bellman-Ford

SN

Order of edges: (B.E), (D.B), (B.D). (4.B), (4.C)., (D.C), (B.C). (E.D)

4/10/08 CS 5633 Analysis of Algorithms 9

~ " Example of Bellman-Ford

SN

Order of edges: (B.E), (D.B), (B.D). (4.B), (4.C)., (D.C), (B.C). (E.D)

4/10/08 CS 5633 Analysis of Algorithms 10

-f"\, " Example of Bellman-Ford

1\\‘

Order of edges: (B.E), (D.B), (B.D). (4.B), (4.C)., (D.C), (B.C). (E.D)

4/10/08 CS 5633 Analysis of Algorithms 11

' '\, . Example of Bellman-Ford

1\\‘

Order of edges: (B.E), (D.B), (B.D). (4.B), (4.C)., (D.C), (B.C). (E.D)

Note: Values decrease |
monotonically. ... and 2 more iterations

4/10/08 CS 5633 Analysis of Algorithms 12

St Correctness

Theorem If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = o(s, v) forall v € V.

Proof. Letv € J be any vertex, and consider a shortest
path p from s to v with the minimum number of edges.
N

p:.../@

Since p 1s a shortest path, we have
6(S9 Vl) S(S, Vi 1) T W(Vz 1> 1)

4/10/08 CS 5633 Analysis of Algorithms 13

1\‘

Correctness (continued)
§

@

Initially, d[v,] = 0= 0o(s, v,), and d[s] 1s unchanged by
subsequent relaxations.

 After | pass through £, we have d|v,| = o(s, v,).
* After 2 passes through £, we have d[v,]| = o(s, v,).

. A.fter k passes through £, we have d[v,| = o(s, v,).

Since G contains no negative-weight cycles, p 1s simple.
Longest simple path has < | V| — | edges.

4/10/08 CS 5633 Analysis of Algorithms 14

m Detection of negative-weight
~7 cycles

Corollary. If a value d[v] fails to converge after
| V| — 1 passes, there exists a negative-weight
cycle in G reachable from s.

4/10/08 CS 5633 Analysis of Algorithms 15

'\, . DAG shortest paths

Ve

If the graph 1s a directed acyclic graph (DAG), we first
topologically sort the vertices.

e Determine /: V' — {1, 2, ...,
= f(u) <f(v).

I

VUAFRGTRO

4/10/08 CS 5633 Analysis of Algorithms

+ such that (1, v) € £

ALGORITHMS

“ <~ Topological Sort Algorithm
* Store vertices 1n a priority min-queue, with the

in-degree of the vertex as the key
* While queue is not empty

» Extract minimum vertex v, and give it next number
* Decrease keys of all adjacent vertices by 1

4/10/08 CS 5633 Analysis of Algorithms 17

ALGORITHMS

5‘ Topological Sort Algorithm

e Store vertices 1n a priority min-queue, with the

in-degree of the vertex as the key
* While queue is not empty

» Extract minimum vertex v, and give 1t next number
* Decrease keys of all adjacent vertices by 1

0 U1 10

4/10/08 CS 5633 Analysis of Algorithms

18

ALGO]

mny

Runtime:

' \,‘ Topological Sort Algorithm

* O(|V]) to build heap + O(|E|) DECREASE-KEY ops

= O(|V] + |E| log

V|) with a binary heap

— O(|V| + |E|) with a Fibonacc1 heap

* Order the vertices according to decreasing finishing
times as calculated by DFS (Correctness proof see

book)
= O(}V] + [E])

4/10/08

CS 5633 Analysis of Algorithms 19

*\w DAG shortest paths

If the graph 1s a directed acyclic graph (DAG), we first
topologically sort the vertices.

e Determine /: V' — {1, 2, ...,

= f(u) <f().
* O(|V| +|E|) time

+ such that (1, v) € £

» Walk through the vertices © € J 1n this order, relaxing
the edges 1n Adj[u], thereby obtaining the shortest paths
from s 1n a total of O(|V| + |£]) time.

4/10/08 CS 5633 Analysis of Algorithms 20

Shortest paths

Slngle-source shortest paths
* Nonnegative edge weights
 Dyjkstra’s algorithm: O(|E| log |V])
* General: Bellman-Ford: O(|V||E|)
* DAG: One pass of Bellman-Ford: O(|V] + |E])

All-pairs shortest paths

* Nonnegative edge weights

* Dyjkstra’s algorithm |V| times: O(|V]|E| log |V])
e General

 Bellman-Ford | /| times: O(|V| ?|E|)
* Floyd-Warshall: O(|V] %)

4/10/08 CS 5633 Analysis of Algorithms

21

|

: JORITHMS .

“<* All-pairs shortest paths

Input: Digraph G = (V, £), where || = n, with
edge-weight function w : £ — R.

Output: 7 x n matrix of shortest-path lengths
o(i,j) foralli,j € V.

Algorithm #1:

* Run Bellman-Ford once from each vertex.
* Time = O(|V] ?|E)).
 But: Dense graph = O(|V/] %) time.

4/10/08 CS 5633 Analysis of Algorithms

22

ALGORITHMS

“«" Floyd-Warshall algorithm
* Dynamic programming algorithm.
* Assume V={1, 2, ..., n}, and assume G 1s given
in an adjacency matrix A=(a;),., .., where a;; 18
the weight of the edge from i to ;.

Define cl-j(k) = weight of a shortest path from :
to j with intermediate Vertices
belonging to the set {1, 2, .

Thus, o(7, /) = ¢; (1. Also, CZJ(O)— i

4/10/08 CS 5633 Analysis of Algorithms 23

ALGORITHMS

-y

y :‘;~ Floyd-Warshall recurrence

j
i Use vertex k |

k—1
e D

intermediate vertices in {1, 2, ..., k-1}

4/10/08 CS 5633 Analysis of Algorithms 24

m Pseudocode for Floyd-

A

~" Warshall

for k< 1 ton do
fori < 1 tondo
forj < 1 ton do

if o (k1 L (k-1) (k-1) .
if ¢,V > ¢, 0+ ¢V then }relaxatzon

k-1 k-1

else
Cij(k) « Cl-j(k'“

* Runs in ©(#?) time and space
 Simple to code.
» Efficient in practice.

4/10/08 CS 5633 Analysis of Algorithms 25

Shortest paths

Slngle-source shortest paths
* Nonnegative edge weights

* Dyjkstra’s algorithm: O(|E| log |V])
 General: Bellman-Ford: O(|V]|E|) -adj. list
* DAG: One pass of Bellman-Ford: O(|V] + |E])

All-pairs shortest paths

* Nonnegative edge weights adj. list

- Dijkstra’s algorithm | 7] times: O(|V||E| log |])
* General

* Bellman-Ford |//| times: O(|V] ?|E]) adj. list
» Floyd-Warshall: O(|V/] %) adj. matrix

4/10/08 CS 5633 Analysis of Algorithms 26

11

ALGOI
‘ L et

~ &~ Johnson’s algorithm

YV e

1. Compute a weight function w from w such that

w(u, v) = 0 for all (1, v) € E . (Or determine that a
negative-weight cycle exists, and stop.)
e (Can be done 1 O(|V|| E]) time (details skipped)

2. Run Drjkstra’s algorithm from each vertex using w.
 Tmme = O(|V|| E| log |V]).

3. Reweight each shortest-path length v (p) to produce
the shortest-path lengths w(p) of the original graph.
* Time = O(|V]?) (details skipped)

Total time = O(| V|| E£| log |V]).

4/10/08 CS 5633 Analysis of Algorithms 27

Shortest paths

Slngle-source shortest paths
* Nonnegative edge weights

* Dyjkstra’s algorithm: O(|E| log |V])
 General: Bellman-Ford: O(|V]|E|) -adj. list
* DAG: One pass of Bellman-Ford: O(|V] + |E])

All-pairs shortest paths

* Nonnegative edge weights adj. list

- Dijkstra’s algorithm | 7] times: O(|V||E| log |])
* General

* Bellman-Ford |//| times: O(|V] ?|E]) adj. list
» Floyd-Warshall: O(|V/] %) adj. matrix
* Johnson’s algorithm: O(|V] |E| log |V]) adj. list

4/10/08 CS 5633 Analysis of Algorithms 28

