

CS 5633 -- Spring 2008

More on Shortest Paths

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path weights from a **source** $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

```
for i \leftarrow 1 to |V| - 1 do
  for each edge (u, v) \in E do
    if d[v] > d[u] + w(u, v) then
d[v] \leftarrow d[u] + w(u, v)
step
           \pi[v] \leftarrow u
for each edge (u, v) \in E
   do if d[v] > d[u] + w(u, v)
          then report that a negative-weight cycle exists
At the end, d[v] = \delta(s, v). Time = O(|V||E|).
```


\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	D	\boldsymbol{E}
0	∞	∞	∞	∞

A	B	\boldsymbol{C}	D	\boldsymbol{E}
0	∞	∞	∞	∞
0	_1	∞	∞	00

B	C	D	\boldsymbol{E}
∞	∞	∞	∞
-1	∞	∞	∞
-1	4	∞	∞
	∞ -1	∞ ∞ -1 ∞	$\begin{array}{c cccc} B & C & D \\ \hline \infty & \infty & \infty \\ \hline -1 & \infty & \infty \\ -1 & 4 & \infty \end{array}$

\boldsymbol{A}	B	\boldsymbol{C}	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞

A	B	\boldsymbol{C}	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1

\boldsymbol{A}	B	\boldsymbol{C}	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	00
0	-1	2	∞	1
0	-1	2	1	1

A	В	\boldsymbol{C}	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	00
0	-1	2	∞	00
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

Note: Values decrease monotonically.

A	В	\boldsymbol{C}	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1
	1 0		• ,	

... and 2 more iterations

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since p is a shortest path, we have

$$\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i).$$

Correctness (continued)

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and d[s] is unchanged by subsequent relaxations.

- After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$.

• • •

• After k passes through E, we have $d[v_k] = \delta(s, v_k)$. Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq |V| - 1$ edges.

Detection of negative-weight cycles

Corollary. If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in G reachable from S.

DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

• Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.

Topological Sort Algorithm

- Store vertices in a priority min-queue, with the in-degree of the vertex as the key
- While queue is not empty
 - Extract minimum vertex v, and give it next number
 - Decrease keys of all adjacent vertices by 1

Topological Sort Algorithm

- Store vertices in a priority min-queue, with the in-degree of the vertex as the key
- While queue is not empty
 - Extract minimum vertex v, and give it next number
 - Decrease keys of all adjacent vertices by 1

Topological Sort Algorithm

Runtime:

- O(|V|) to build heap + O(|E|) DECREASE-KEY ops
- \Rightarrow O(|V| + |E| log |V|) with a binary heap
- \Rightarrow O(|V| + |E|) with a Fibonacci heap
- Order the vertices according to decreasing finishing times as calculated by DFS (Correctness proof see book)
- \Rightarrow O(|V| + |E|)

DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

- Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.
- O(|V| + |E|) time

• Walk through the vertices $u \in V$ in this order, relaxing the edges in Adj[u], thereby obtaining the shortest paths from s in a total of O(|V| + |E|) time.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: O(|V||E|)
- DAG: One pass of Bellman-Ford: O(|V| + |E|)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(|V||E| \log |V|)$
- General
 - Bellman-Ford |V| times: $O(|V|^2|E|)$
 - Floyd-Warshall: $O(|V|^3)$

All-pairs shortest paths

Input: Digraph G = (V, E), where |V| = n, with edge-weight function $w : E \to \mathbb{R}$.

Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

Algorithm #1:

- Run Bellman-Ford once from each vertex.
- Time = $O(|V|^2|E|)$.
- But: Dense graph $\Rightarrow O(|V|^4)$ time.

Floyd-Warshall algorithm

- Dynamic programming algorithm.
- Assume $V=\{1, 2, ..., n\}$, and assume G is given in an adjacency matrix $A=(a_{ij})_{1 \le i,j \le n}$ where a_{ij} is the weight of the edge from i to j.

Define $c_{ij}^{(k)}$ = weight of a shortest path from i to j with intermediate vertices belonging to the set $\{1, 2, ..., k\}$.

Thus, $\delta(i,j) = c_{ij}^{(n)}$. Also, $c_{ij}^{(0)} = a_{ij}$.

Floyd-Warshall recurrence

Pseudocode for Floyd-Warshall

```
for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

if c_{ij}^{(k-1)} > c_{ik}^{(k-1)} + c_{kj}^{(k-1)} then

c_{ij}^{(k)} \leftarrow c_{ik}^{(k-1)} + c_{kj}^{(k-1)}

else
```

$$c_{ij}^{(k)} \leftarrow c_{ij}^{(k-1)}$$

- Runs in $\Theta(n^3)$ time and space
- Simple to code.
- Efficient in practice.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: O(|V||E|)
- DAG: One pass of Bellman-Ford: O(|V|)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(|V||E| \log |V|)$
- General
 - Bellman-Ford |V| times: O(|V| ²|E|)
 Floyd-Warshall: O(|V| ³)

adj. list adi. matrix

adj. list

Johnson's algorithm

- 1. Compute a weight function \hat{w} from w such that $\hat{w}(u, v) \ge 0$ for all $(u, v) \in E$. (Or determine that a negative-weight cycle exists, and stop.)
 - Can be done in O(|V||E|) time (details skipped)
- 2. Run Dijkstra's algorithm from each vertex using \hat{w} .
 - Time = $O(|V||E| \log |V|)$.
- 3. Reweight each shortest-path length $\hat{w}(p)$ to produce the shortest-path lengths w(p) of the original graph.
 - Time = $O(|V|^2)$ (details skipped)

Total time = $O(|V||E|\log|V|)$.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: O(|V||E|)
- DAG: One pass of Bellman-Ford: O(|V| + |E|)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(|V||E| \log |V|)$
- General
 - Bellman-Ford |V| times: $O(|V|^2|E|)$
 - Floyd-Warshall: $O(|V|^3)$
 - Johnson's algorithm: $O(|V| |E| \log |V|)$

adj. list adj. matrix adj. list

adj. list