

CS 5633 -- Spring 2008

More on Shortest Paths

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

4/10/08

CS 5633 Analysis of Algorithms

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negativeweight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path weights from a *source* $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

4/10/08

CS 5633 Analysis of Algorithms

Bellman-Ford algorithm

$$\begin{array}{c} d[s] \leftarrow 0 \\ \textbf{for each } v \in V - \{s\} \\ \textbf{do } d[v] \leftarrow \infty \end{array} \right\} \quad \text{initialization}$$

for
$$i \leftarrow 1$$
 to $|V| - 1$ do
for each edge $(u, v) \in E$ do
if $d[v] > d[u] + w(u, v)$ then
 $d[v] \leftarrow d[u] + w(u, v)$ step
 $\pi[v] \leftarrow u$

for each edge $(u, v) \in E$ **do if** d[v] > d[u] + w(u, v)

then report that a negative-weight cycle exists At the end, $d[v] = \delta(s, v)$. Time = O(|V||E|).

4/10/08

CS 5633 Analysis of Algorithms

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

 ∞ ∞ ∞ ∞

4/10/08 CS 5633 Analysis of Algorithms

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$. *Proof.* Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since p is a shortest path, we have

$$\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i).$$

4/10/08

CS 5633 Analysis of Algorithms

13

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and d[s] is unchanged by subsequent relaxations.

- After 1 pass through *E*, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$.
- After k passes through E, we have $d[v_k] = \delta(s, v_k)$. Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq |V| - 1$ edges.

4/10/08 CS 5633 Analysis of Algorithms

14

Detection of negative-weight cycles

Corollary. If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in G reachable from S.

DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

• Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.

4/10/08

CS 5633 Analysis of Algorithms

15

Topological Sort Algorithm

- Store vertices in a priority min-queue, with the in-degree of the vertex as the key
- While queue is not empty
 - Extract minimum vertex v, and give it next number
 - Decrease keys of all adjacent vertices by 1

4/10/08

CS 5633 Analysis of Algorithms

17

19

Topological Sort Algorithm

- Store vertices in a priority min-queue, with the in-degree of the vertex as the key
- While queue is not empty
 - Extract minimum vertex v, and give it next number
 - Decrease keys of all adjacent vertices by 1

4/10/08

CS 5633 Analysis of Algorithms

Topological Sort Algorithm

Runtime:

- O(|V|) to build heap + O(|E|) DECREASE-KEY ops
- \Rightarrow O(|V| + |E| log |V|) with a binary heap
- \Rightarrow O(|V| + |E|) with a Fibonacci heap
- Order the vertices according to decreasing finishing times as calculated by DFS (Correctness proof see book)
- \Rightarrow O(|V| + |E|)

4/10/08

CS 5633 Analysis of Algorithms

ALGORITHMS

DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

- Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.
- O(|V| + |E|) time

• Walk through the vertices $u \in V$ in this order, relaxing the edges in Adj[u], thereby obtaining the shortest paths from s in a total of O(|V| + |E|) time.

4/10/08

CS 5633 Analysis of Algorithms

20

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: O(|V||E|)
- DAG: One pass of Bellman-Ford: O(|V| + |E|)

All-pairs shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm |V| times: $O(|V||E| \log |V|)$
- General
 - Bellman-Ford |V| times: $O(|V|^2|E|)$
 - Floyd-Warshall: $O(|V|^3)$

4/10/08

CS 5633 Analysis of Algorithms

21

23

All-pairs shortest paths

Input: Digraph G = (V, E), where |V| = n, with edge-weight function $w : E \to R$.

Output: $n \times n$ matrix of shortest-path lengths $\delta(i,j)$ for all $i,j \in V$.

Algorithm #1:

- Run Bellman-Ford once from each vertex.
- Time = $O(|V|^2|E|)$.
- But: Dense graph \Rightarrow O($|V|^4$) time.

4/10/08

CS 5633 Analysis of Algorithms

22

24

Floyd-Warshall algorithm

- Dynamic programming algorithm.
- Assume $V=\{1, 2, ..., n\}$, and assume G is given in an adjacency matrix $A=(a_{ij})_{1 \le i,j \le n}$ where a_{ij} is the weight of the edge from i to j.

Define $c_{ij}^{(k)}$ = weight of a shortest path from i to j with intermediate vertices belonging to the set $\{1, 2, ..., k\}$.

Thus, $\delta(i, j) = c_{ij}^{(n)}$. Also, $c_{ij}^{(0)} = a_{ij}$.

4/10/08 CS 5633 Analysis of Algorithms

ALGORITHMS

Floyd-Warshall recurrence

 $c_{ij}^{(k)} = \min \{c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}\}$ Do not use vertex k $c_{ik}^{(k-1)}$ Use vertex k $c_{kj}^{(k-1)}$

intermediate vertices in $\{1, 2, ..., k-1\}$

4/10/08

CS 5633 Analysis of Algorithms

Pseudocode for Floyd-Warshall

```
for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

if c_{ij}^{(k-1)} > c_{ik}^{(k-1)} + c_{kj}^{(k-1)} then

c_{ij}^{(k)} \leftarrow c_{ik}^{(k-1)} + c_{kj}^{(k-1)}
else

c_{ii}^{(k)} \leftarrow c_{ii}^{(k-1)}
```

- Runs in $\Theta(n^3)$ time and space
- Simple to code.
- Efficient in practice.

4/10/08

CS 5633 Analysis of Algorithms

25

27

Shortest paths

Single-source shortest paths

Nonnegative edge weights

• Dijkstra's algorithm: $O(|E| \log |V|)$

• General: Bellman-Ford: O(|V||E|)

• DAG: One pass of Bellman-Ford: O(|V| + |E|)

All-pairs shortest paths

- Nonnegative edge weights adj. list
 - Dijkstra's algorithm |V| times: $O(|V||E| \log |V|)$
- General
 - Bellman-Ford |V| times: $O(|V|^2|E|)$ adj. list
 - Floyd-Warshall: $O(|V|^3)$ adj. matrix

CS 5633 Analysis of Algorithms

26

adj. list

Johnson's algorithm

- 1. Compute a weight function \hat{w} from w such that $\hat{w}(u, v) \ge 0$ for all $(u, v) \in E$. (Or determine that a negative-weight cycle exists, and stop.)
 - Can be done in O(|V||E|) time (details skipped)
- 2. Run Dijkstra's algorithm from each vertex using \hat{w} .
 - Time = $O(|V||E|\log |V|)$.
- 3. Reweight each shortest-path length $\hat{w}(p)$ to produce the shortest-path lengths w(p) of the original graph.
 - Time = $O(|V|^2)$ (details skipped)

Total time = $O(|V||E|\log|V|)$.

4/10/08

CS 5633 Analysis of Algorithms

ALGORITHMS

4/10/08

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
 - Dijkstra's algorithm: $O(|E| \log |V|)$
- General: Bellman-Ford: O(|V||E|)
- DAG: One pass of Bellman-Ford: O(|V| + |E|)

All-pairs shortest paths

- Nonnegative edge weights adj. list
 - Dijkstra's algorithm |V| times: $O(|V||E| \log |V|)$
- General
 - Bellman-Ford |V| times: $O(|V|^2|E|)$ adj. list
 - Floyd-Warshall: $O(|V|^3)$ adj. matrix
 - Johnson's algorithm: $O(|V| |E| \log |V|)$ adj. list

4/10/08

CS 5633 Analysis of Algorithms

28

adi. list