.............

— CS 5633 -- Spring 2008

Y =
ALGORITHMS
More on Shortest Paths
Carola Wenk
Slides courtesy of Charles Leiserson with small
changes by Carola Wenk
4/10/08 CS 5633 Analysis of Algorithms 1

.............

!,., Y Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-
weight cycle, then some shortest paths may not exist.
Example:

<0

—0O— TV

Bellman-Ford algorithm: Finds all shortest-path
weights from a source s € V'toall v e Vor
determines that a negative-weight cycle exists.

4/10/08 CS 5633 Analysis of Algorithms 2

.............

\,u Bellman-Ford algorithm

d[s] <« 0
for eachv € V- {s} initialization
do d[v] <
fori<« 1 t0|V|71d0
for cach edge (u, v) € E do
if d[v] > d[u] + w(u, v) then relaxation
d[v] < d[u] + w(u, v) step
n[v] < u
for each edge (v, v) € E
do if d[v] > d[u] + w(u, v)
then report that a negative-weight cycle exists

At the end, d[v] = d(s, v). Time = O(|V]| E|).

4/10/08 CS 5633 Analysis of Algorithms

.............

\,u Example of Bellman-Ford
Order of edges: (B,E), (D,B), (B,D), (A4,B), (4,C), (D,C), (B,C), (E,D)
A4 B C D E

0 0o o o o®

4/10/08 CS 5633 Analysis of Algorithms 4

.............

- ~~* Example of Bellman-Ford
Order of edges: (B,E), (D,B), (B,D), (4,B), (A,C), (D,C), (B,C), (E,D)
A B CDE

0 © o o o

0 -1 0o o o

4/10/08 CS 5633 Analysis of Algorithms 5

.............

'!\,lu' Example of Bellman-Ford
Order of edges: (B,E), (D,B), (B,D), (4,B), (4,C), (D,C), (B,C), (E,D)
A B CDE

0 oo o o ®

0 -1 o o o

0 -1 4 o o
4/10/08 CS 5633 Analysis of Algorithms 6

.............

- “ <" Example of Bellman-Ford
Order of'edges: (B,E), (D,B), (B,D), (4,B), (4,C), (D,C), (B,C), (E,D)
A4 B C D E

0 © © o o
0 -1 0o o o
0 -1 4 o o
0 -1 2 o o

4/10/08 CS 5633 Analysis of Algorithms 7

.............

- “ <" Example of Bellman-Ford
Order of edges: (B,E), (D,B), (B,D), (4,B), (4,C), (D,C), (B,C), (E,D)
A4 B C D E

0 o© o o
0 -1 oo o
0 -1 4 o o
0 -1 2 o o

4/10/08 CS 5633 Analysis of Algorithms

.............

\,- Example of Bellman-Ford
Order of edges: (B,E), (D,B), (B,D), (4,B), (A,C), (D,C), (B,C), (E,D)
C D E

DN A~ 8|8
818 8 8|8
—18 8 818

4/10/08 CS 5633 Analysis of Algorithms 9

.............

l\,llu' Example of Bellman-Ford
Order of edges: (B,E), (D,B), (B,D), (4,B), (4,C), (D,C), (B,C), (E,D)
A B CDE

— 8|8 8 8|8
- —|8 8 8|8

o olo oo
|
—

N N[N A8

4/10/08 CS 5633 Analysis of Algorithms 10

\,u Example of Bellman-Ford
Order of edges: (B,E), (D,B), (B,D), (4,B), (4,C), (D,C), (B,C), (E,D)

C D E
0 0 o
o o0
4 o o
2 oo o
2 o 1
2 1 1
2 21

4/10/08 CS 5633 Analysis of Algorithms 11

\,u Example of Bellman-Ford
Order of edges: (B,E), (D,B), (B,D), (4,B), (4,C), (D,C), (B,C), (E,D)
A B C D E

— 8|8 8 8|8

o0
o0
o0
o0
1
1

o o olooc o
[]
|t

NN N[N A8

-2 1

Note: Values decrease
monotonically. ... and 2 more iterations

4/10/08 CS 5633 Analysis of Algorithms 12

.............

;“!,:, Y Correctness

Theorem. If G = (V, E) contains no negative-
weight cycles, then after the Bellman-Ford
algorithm executes, d[v] = d(s, v) forall v € V.

Proof. Letv € V be any vertex, and consider a shortest
path p from s to v with the minimum number of edges.
v

p:.../@

Since p is a shortest path, we have
O(s, v;) =0(s, v,) + w(v,_, v,) .

4/10/08 CS 5633 Analysis of Algorithms 13

.............

;‘i:, { Correctness (continued)
1%

p:.../@

Initially, d[v,] = 0 = 8(s, v,), and d[s] is unchanged by
subsequent relaxations.

* After | pass through £, we have d[v,] = d(s, v)).
* After 2 passes through £, we have d[v,]| = d(s, v,).

* After k passes through £, we have d[v,] = (s, v}).
Since G contains no negative-weight cycles, p is simple.
Longest simple path has < |//| - 1 edges. []

4/10/08 CS 5633 Analysis of Algorithms 14

uuuuuuuuuuuuu

@7 Detection of negative-weight
w2 cycles
Corollary. Ifa value d[v] fails to converge after

| V| — 1 passes, there exists a negative-weight
cycle in G reachable from s. []

4/10/08 CS 5633 Analysis of Algorithms 15

uuuuuuuuuuuuu

;‘i:, X DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first
topologically sort the vertices.
* Determine /: V' — {1, 2, ...,

= f(u) <f().

V|} such that (1, v) € E

O/\

4/10/08 CS 5633 Analysis of Algorithms

:.. q Topological Sort Algorithm

* Store vertices in a priority min-queue, with the

in-degree of the vertex as the key
* While queue is not empty

* Extract minimum vertex v, and give it next number
* Decrease keys of all adjacent vertices by 1

4/10/08 CS 5633 Analysis of Algorithms 17

;\jﬁ, " Topological Sort Algorithm

« Store vertices in a priority min-queue, with the

in-degree of the vertex as the key
* While queue is not empty

* Extract minimum vertex v, and give it next number
* Decrease keys of all adjacent vertices by 1

4/10/08 CS 5633 Analysis of Algorithms 18

uuuuuuuuuuuuu

e . Topological Sort Algorithm

Runtime:

* O(]V]) to build heap + O(|E|) DECREASE-KEY ops
= O(|V] + |E| log |V|) with a binary heap

= O(|V| + |E|) with a Fibonacci heap

* Order the vertices according to decreasing finishing
times as calculated by DFS (Correctness proof see
book)

= O(V| + [E])

4/10/08 CS 5633 Analysis of Algorithms 19

uuuuuuuuuuuuu

e X DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first
topologically sort the vertices.

* Determine /: V — {1, 2, ...,
= f(u) <f(v).
* O(|V] + |E]) time

V|} such that (1, v) € E

» Walk through the vertices u € J in this order, relaxing
the edges in Adj[u], thereby obtaining the shortest paths
from s in a total of O(|V| + |E|) time.

4/10/08 CS 5633 Analysis of Algorithms 20

.............

<" Shortest paths

Single-source shortest paths
» Nonnegative edge weights
* Dijkstra’s algorithm: O(|E| log |V])
* General: Bellman-Ford: O(|V||E|)
* DAG: One pass of Bellman-Ford: O(|V| + |E])

All-pairs shortest paths
» Nonnegative edge weights

* Dijkstra’s algorithm | /| times: O(|V||E| log |V])
* General

¢ Bellman-Ford |V times: O(|V] 2|E|)

* Floyd-Warshall: O(|V] %)

4/10/08 CS 5633 Analysis of Algorithms 21

.............

Y All-palrs shortest paths

Input: Digraph G = (V, E), where |V/| = n, with
edge-weight function w : £ — R.

Output: » x n matrix of shortest-path lengths
o(i,j) foralli,j € V.

Algorithm #1:

* Run Bellman-Ford once from each vertex.
* Time = O(| V| ?|E]).

* But: Dense graph = O(|//| 4) time.

uuuuuuuuuuuuu

“«" Floyd-Warshall algorithm

* Dynamic programming algorithm.

e Assume /={1,2, ..., n}, and assume G is given
in an adjacency matrlx A=(ay) < where a; is
the weight of the edge from 7 to ;.

Define ¢;*) = weight of a shortest path from /

' to / with intermediate vertices
belonging totheset {1,2, ..., k}.
. DD D
: \J Y

Thus’ 6(l’]) - CU‘(”)- AISO, CU(O) =a

N

4/10/08 CS 5633 Analysis of Algorithms 23

4/10/08 CS 5633 Analysis of Algorithms 22
—
“ .~ Floyd-Warshall recurrence
Cij(k) = min { Clj(kfl), Cl_k(k—l) + Ck/(kfl)}
(Do not use \m (Use vertex k

(k1)

f—1
¢y D)

intermediate vertices in {1, 2, ..., k-1}

4/10/08 CS 5633 Analysis of Algorithms 24

.............

@ Pseudocode for Floyd-
=" Warshall

for k< 1 ton do
fori< 1tondo
forj < 1tondo

if o (kD) > (k1) (k-1) .
ifc; (Cik (k;% ,]the“ }relaxatton
k . (k- K-1)
eyt ey

else
ey ¢
* Runs in ©(7?) time and space
* Simple to code.
« Efficient in practice.

4/10/08 CS 5633 Analysis of Algorithms 25

.............

“.<" Shortest paths

Single-source shortest paths
 Nonnegative edge weights
* Dijkstra’s algorithm: O(|E| log |V])
* General: Bellman-Ford: O(|V]|E|) adj. list
* DAG: One pass of Bellman-Ford: O(|V] + |E|)

All-pairs shortest paths o

« Nonnegative edge weights adj. list
* Dijkstra’s algorithm | /| times: O(|V||E| log |V])

* General

« Bellman-Ford | /] times: O(| /'] 2(E|) adj. list
* Floyd-Warshall: O(|//] %) adj. matrix
4/10/08 CS 5633 Analysis of Algorithms 26

uuuuuuuuuuuuu

“.«~ Johnson’s algorithm

1. Compute a weight function w from w such that
w(u, v) > 0 for all (u, v) € E . (Or determine that a
negative-weight cycle exists, and stop.)

» Can be done in O(|V]| £|) time (details skipped)

2. Run Dijkstra’s algorithm from each vertex using w.
* Time = O(|V]| E| log |V)).

3. Reweight each shortest-path length w(p) to produce
the shortest-path lengths w(p) of the original graph.
* Time = O(|V]?) (details skipped)

Total time = O(|V|| E| log |V)).

4/10/08 CS 5633 Analysis of Algorithms 27

uuuuuuuuuuuuu

“.< Shortest paths

Single-source shortest paths
* Nonnegative edge weights
* Dijkstra’s algorithm: O(|E| log |V])
* General: Bellman-Ford: O(|V||E|) adj. list
* DAG: One pass of Bellman-Ford: O(|V] + |E|)

All-pairs shortest paths o

» Nonnegative edge weights adj. list
* Dijkstra’s algorithm | /| times: O(|V||E| log |V])

* General o
* Bellman-Ford |/] times: O(|V] 2|E]) de- llst.
* Floyd-Warshall: O(|//] %) adj. matrix
* Johnson’s algorithm: O(|V] |E| log |V]) adj. list

4/10/08 CS 5633 Analysis of Algorithms 28

