

CS 5633 -- Spring 2008

Minimum Spanning Trees

Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

4/3/08

CS 5633 Analysis of Algorithms

ALGORITHM

Minimum spanning trees

Input: A connected, undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.

• For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Output: A *spanning tree T* — a tree that connects all vertices — of minimum weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

4/3/08

CS 5633 Analysis of Algorithms

Example of MST

4/3/08 CS 5633 Analysis of Algorithms

Hallmark for "greedy" algorithms

Greedy-choice property A locally optimal choice is globally optimal.

Theorem. Let T be the MST of G = (V, E), and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V \setminus A$. Then, $(u, v) \in T$.

4/3/08

CS 5633 Analysis of Algorithms

4

🧱 Prim's algorithm

IDEA: Maintain $V \setminus A$ as a priority queue O. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A.

```
O \leftarrow V
kev[v] \leftarrow \infty for all v \in V
key[s] \leftarrow 0 for some arbitrary s \in V
while Q \neq \emptyset
    do u \leftarrow \text{EXTRACT-MIN}(Q)
         for each v \in Adj[u]
             do if v \in Q and w(u, v) < key[v]
                      then key[v] \leftarrow w(u, v) DECREASE-KEY
                            \pi[v] \leftarrow u
At the end, \{(v, \pi[v])\} forms the MST.
```

CS 5633 Analysis of Algorithms

Kruskal's algorithm

IDEA (again greedy):

Repeatedly pick edge with smallest weight as long as it does not form a cycle.

- The algorithm creates a set of trees (a **forest**)
- During the algorithm the added edges merge the trees together, such that in the end only one tree remains
- The correctness of this greedy strategy is not obvious and needs to be proven. (Proof skipped here.)

4/3/08

CS 5633 Analysis of Algorithms

25

Disjoint-set data structure (Union-Find)

- Maintains a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}$.
- Each set S_i has one element distinguished as the representative element.
- Supports operations:
 - 1) MAKE-SET(x): adds new set {x} to S
- $O(\alpha(n)) \bullet \text{UNION}(x, y)$: replaces sets S_x , S_y with $S_x \cup S_y$
- $O(\alpha(n))$ FIND-SET(x): returns the representative of the set S_x containing element x
- $1 < \alpha(n) < \log^*(n) < \log(\log(n)) < \log(n)$

4/3/08

CS 5633 Analysis of Algorithms

37

39

MST algorithms

- Prim's algorithm:
 - Maintains one tree
 - Runs in time $O(|E| \log |V|)$, with binary heaps.
- Kruskal's algorithm:
 - Maintains a forest and uses the disjoint-set data structure
 - Runs in time $O(|E| \log |E|)$
- Best to date: Randomized algorithm by Karger, Klein, Tarjan [1993]. Runs in expected time O(|V| + |E|)

4/3/08

CS 5633 Analysis of Algorithms

ALGORITHA

Kruskal's algorithm

IDEA: Repeatedly pick edge with smallest weight as long as it does not form a cycle.

 $S \leftarrow \varnothing$ \triangleright S will contain all MST edges O(|V|) for each $v \in V$ do MAKE-SET(v) $O(|E|\log|E|)$ Sort edges of E in non-decreasing order according to w O(|E|) For each $(u,v) \in E$ taken in this order do $O(\alpha(|V|))$ if FIND-SET(u) \neq FIND-SET(v) \triangleright u,v in different trees $O(\alpha(|V|))$

Runtime: $O(|V| + |E| \log |E| + |E| \alpha(|V|)) = O(|E| \log |E|)$

UNION(u,v) \triangleright Edge (u,v) connects the two trees

4/3/08 CS 5633 Analysis of Algorithms

20