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Slides courtesy of Charles Leiserson with small
changes by Carola Wenk
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T Dynamlc programming
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* Algorithm design technique (like divide and conquer)
* Is a technique for solving problems that have
* overlapping subproblems

« and, when used for optimization, have an optimal
substructure property

* Idea: Do not repeatedly solve the same subproblems,
but solve them only once and store the solutions in a
dynamic programming table
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“«* Example: Fibonacci numbers

« F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n > 2

* Implement this recursion naively:

Solve same
F(n) subproblems
F(n-1) F(n-2) many times !

~ ~N ~ N . .
F(n-2) F(n-3) F(n-3) F(n-4)|Runtimeis
exponential in 7.

* Store 1D DP-table and fill bottom-up in O(n) time:
Frlolifipfslsig] | | | |
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" Longest Common Subsequence

Example: Longest Common Subsequence (LCS)
*» Given two sequences x[1 . . m] and y[1 . . n], find
a longest subsequence common to them both.

6‘a7’ nOZ CCthe77
X A/B (|I B\D A| B BCBA =
» B D C A B A L/Cs(x’y)
functional notation,
but not a function
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;:,;,Q Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis

* 2™ subsequences of x (each bit-vector of
length m determines a distinct subsequence
of x).

* Hence, the runtime would be exponential !
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! ‘.." Towards a better algorithm

Ay

Two-Step Approach:

1. Look at the /ength of a longest-common
subsequence.

2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s
by [s].

Strategy: Consider prefixes of x and y.
* Define c[i, j] = |LCS(x[1 .. ], ¥[1../]].
* Then, c[m, n] =|LCS(x, y)|.
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“.<" Recursive formulation

Theorem.
o el 1]+ if x[i] = yljl,
cli,j]= max {c[i-1, /], c[i, j~1]} otherwise.

Proof. Case x[i] = y[j]:
el 1] N/ - 1]
y (L] MRERIN

Letz[1..k]=LCS(x[1..i],y[l../]), where c[i, j]
= k. Then, z[k] = x[{], or else z could be extended.

Thus, z[1 .. k1]is CS of x[1 ..i-1] and y[1 .. j—1].
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“<* Proof (continued)

Claim: z[1 .. k1]=LCS(x[1 .. 1], y[1..j-1]).
Suppose w is a longer CS of x[1 . . i—1] and
y[1..j-1], thatis, |[w|>k-1. Then, cut and
paste: w || z[ k] (w concatenated with z[k]) is a
common subsequence of x[1 .. 7] and y[1 .. /]
with |w || z[k]| > k. Contradiction, proving the
claim.

Thus, c[i—1, j—1] = k-1, which implies that c[i, j]

=c[i-1,j-1]+ 1.

Other cases are similar. []
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--:- Dynamic-programming
=" hallmark #1

Optimal substructure
An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

‘ Recurrence

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.
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“.<" Recursive algorithm for LCS

LCS(x, y, 1, )
if x[i] = y[ /]
then c[i, j] < LCS(x, y, i-1,j-1) + 1
else c[i, j] < maX{LCS(x, v, i—1,)),
LCS(x, y, i, j-1)}

Worst-case: x[i] # y[ j], in which case the
algorithm evaluates two subproblems, each
with only one parameter decremented.
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“.<" Recursion tree

same
subproblem

Height = m + n = work potentially exponential,
but we’re solving subproblems already solved!
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---:- Dynamic-programming
=" hallmark #2

Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and » is only mn.
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S Dynamlc-programmlng
There are two variants of dynamic
programming;:

1. Memoization

2. Bottom-up dynamic programming
(often referred to as “dynamic
programming”)
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~<* Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.

for all i, j: ¢[i,0]=0 and [0, j]=0
LCS(x, v, i, /)
if c[i, j)]=NIL
then if x[i] = y[/]
then c[i, j] < LCS(x, y, i-1,j-1) + 1 igme
else c[i, j] « max{LCS(X, W l._LJ)’ before
LCS(x, y, z,]fl)}

Time = ®(mn) = constant work per table entry.
Space = O(mn).
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"<~ Memoization

1 2345 6 7

xxA B CBDAB

LCS(xy,7.6) .10/ 0]/0]0(/0/0/0]0
— :

(6,6) (7,5) 1 B|0+0 |1 |nil nilnil nil nil

QﬁwazDodjmmmmm

mm@mmcodbmmmmm

4 A| 0|1 |nilnil|nil|nil|nil|nil

5 B | 0 nil nil |nil |nil |nil |nil |nil

6 A | 0 nil nil |nil |nil |nil |nil |nil
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=7 Bottom-up dynamlc-
Sk programming algorithm

IDEA: A B CBDAB
Compute the 0 OELO O‘LO 0/0 0
table bottom-up. BloloMi41tMi4141 ™y
Time=0(mn). 1,0 11| 1] 24242
AN 11
cloJoliTata[2/2]2
Al0[1/1]2]2/23g3
BloJ12]21343/3 4
aloT1]2|2]3]3 4 4

3/4/08 CS 5633 Analysis of Algorithms 16




@77 Bottom-up dynamic-
=" programming algorithm

IDEA: A B CBDAB
Compute the 0 Q‘LO oio 00,0
table bottom-up. BlololMi<1 Ni+141 M
Time=O(nn). o 0 1 1|1 24242
Reconstruct I B
LCSbyback-  C OO 11 377 42 2
tracing. A0 T 1120221333
Space=@(mn). B |0 1|22 3«3 /3 4
Exercise: Al0[1]2/2]3 37‘4 4

O(min{m, n}).
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