

CS 5633 -- Spring 2008

Dynamic Programming

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

3/4/08

CS 5633 Analysis of Algorithms

Dynamic programming

- Algorithm design technique (like divide and conquer)
- Is a technique for solving problems that have
 - overlapping subproblems
 - and, when used for optimization, have an optimal substructure property
- Idea: Do not repeatedly solve the same subproblems, but solve them only once and store the solutions in a dynamic programming table

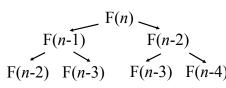
3/4/08

CS 5633 Analysis of Algorithms

ALGORITHM

Example: Fibonacci numbers

- F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for $n \ge 2$
- Implement this recursion naively:



Solve same subproblems many times!

Runtime is exponential in *n*.

• Store 1D DP-table and fill bottom-up in O(n) time:

F: 0 1 1 2 3 5 8

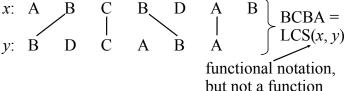
3/4/08

CS 5633 Analysis of Algorithms

Longest Common Subsequence

Example: Longest Common Subsequence (LCS)

• Given two sequences x[1 ...m] and y[1 ...n], find a longest subsequence common to them both.



3/4/08

CS 5633 Analysis of Algorithms

4

■ Brute-force LCS algorithm

Check every subsequence of x[1..m] to see if it is also a subsequence of y[1...n].

Analysis

- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
- Hence, the runtime would be exponential!

3/4/08

CS 5633 Analysis of Algorithms

Towards a better algorithm

Two-Step Approach:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by | *s* |.

Strategy: Consider *prefixes* of x and y.

- Define c[i, j] = |LCS(x[1..i], y[1..j])|.
- Then, c[m, n] = |LCS(x, y)|.

3/4/08

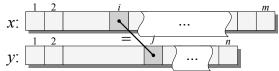
CS 5633 Analysis of Algorithms

Recursive formulation

Theorem.

$$c[i,j] = \begin{cases} c[i-1,j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1,j], c[i,j-1]\} & \text{otherwise.} \end{cases}$$

Proof. Case x[i] = y[j]:



Let z[1...k] = LCS(x[1...i], y[1...j]), where c[i, j]= k. Then, z[k] = x[i], or else z could be extended. Thus, z[1 ... k-1] is CS of x[1 ... i-1] and y[1 ... j-1].

Proof (continued)

Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1]).Suppose w is a longer CS of x[1..i-1] and y[1...j-1], that is, |w| > k-1. Then, *cut and* **paste**: $w \parallel z[k]$ (w concatenated with z[k]) is a common subsequence of x[1..i] and y[1..i]with |w||z[k]| > k. Contradiction, proving the claim

Thus, c[i-1, j-1] = k-1, which implies that c[i, j]= c[i-1, j-1] + 1.

Other cases are similar.

3/4/08

CS 5633 Analysis of Algorithms

Dynamic-programming hallmark #1

Optimal substructure

An optimal solution to a problem (instance) contains optimal solutions to subproblems.

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

3/4/08

CS 5633 Analysis of Algorithms

9

Recursive algorithm for LCS

$$LCS(x, y, i, j)$$
if $x[i] = y[j]$
then $c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1$
else $c[i, j] \leftarrow \max \{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}$

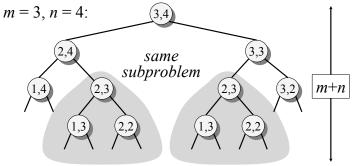
Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

3/4/08

CS 5633 Analysis of Algorithms

10

Recursion tree



Height = $m + n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

3/4/08

CS 5633 Analysis of Algorithms

ALGORITHMS

Dynamic-programming hallmark #2

Overlapping subproblems

A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths *m* and *n* is only *mn*.

3/4/08

CS 5633 Analysis of Algorithms

12

Dynamic-programming

There are two variants of dynamic programming:

- 1. Memoization
- 2. Bottom-up dynamic programming (often referred to as "dynamic programming")

3/4/08

CS 5633 Analysis of Algorithms

13

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

$$\begin{array}{l} \textbf{for all } i,j\text{: } c[i,0] = 0 \textbf{ and } c[0,j] = 0 \\ \text{LCS}(x,y,i,j) \\ \textbf{if } c[i,j] = \text{NIL} \\ \textbf{then if } x[i] = y[j] \\ \textbf{then } c[i,j] \leftarrow \text{LCS}(x,y,i-1,j-1) + 1 \\ \textbf{else } c[i,j] \leftarrow \max \left\{ \text{LCS}(x,y,i-1,j), \\ \text{LCS}(x,y,i,j-1) \right\} \end{array}$$

Time = $\Theta(mn)$ = constant work per table entry. Space = $\Theta(mn)$.

3/4/08

CS 5633 Analysis of Algorithms

14

