R CS 5633 — Spl‘ing 2008

[W :
“\‘ i

ALGORITHMS

1 il
|
\\"l ——
1 ‘ l THOMAS H CORMEN
CHARLES E LEISERSON
RONALD L. RIVEST
CLIFPF S TEIN

Red-black trees

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

2/14/08 CS 5633 Analysis of Algorithms

ALGORITHMS

-y

o~ Search Trees

mny

* A binary search tree 1s a binary tree. Each node stores
a key. The tree fulfills the binary search tree property:

For every node x holds:
» y< x, for all y 1n the subtree left of x

e x <y, for all y 1in the subtree right of x

2/14/08 CS 5633 Analysis of Algorithms

ALGORITHMS

-

“<" Search Trees

mny

Different variants of search trees:

 Balanced search trees (guarantee height of /og n
for n elements)

e k-ary search trees (such as B-trees, 2-3-4-trees)

 Search trees that store the keys
only 1n the leaves, and store
additional split-values in the
internal nodes

2/14/08 CS 5633 Analysis of Algorithms 3

:0,,- ADT Dictionary / Dynamic Set
Abstract data type (ADT) Dictionary
(also called Dynamic Set):
A data structure which supports operations
* Insert
* Delete
* Find
Using balanced binary search trees we can

implement a dictionary data structure such that
each operation takes O(log n) time.

2/14/08 CS 5633 Analysis of Algorithms 4

ALGORITHMS

.

“ <" Balanced search trees

Balanced search tree: A search-tree data

structure for which a height of O(log n) 1s
guaranteed when implementing a dynamic
set of n 1tems.

* AVL trees
e 2-3 trees

Examples: » 2-3-4 trees
e B-trees

* Red-black trees

2/14/08 CS 5633 Analysis of Algorithms

.‘;‘,,- Red black trees

This data structure requires an extra one-
bit color field in each node.

Red-black properties:

1. Every node 1s either red or black.
2. The root 1s black.

3. The leaves (NIL’s) are black.

4. If a node 1s red, then both 1ts children are black.
5

. All simple paths from any node x, excluding x,
to a descendant leaf have the same number of
black nodes = black-height(x).

2/14/08 CS 5633 Analysis of Algorithms 6

e (“l.Rl.'.l"H.,.\.i.‘.’a.
“ " Example of a red-black tree

NIL

NIL NIL NIL NIL NIL NIL |

2/14/08 CS 5633 Analysis of Algorithms

4

ALGORITHMS

-y

y :- Example of a red-black tree

wY

NIL

NIL NIL NIL NIL NIL NIL

1. Every node 1s either red or black.

2/14/08 CS 5633 Analysis of Algorithms

ALGORITHMS

-y

y :- Example of a red-black tree

wY

NIL

NIL NIL NIL NIL NIL NIL

2., 3. The root and leaves (NIL’s) are black.

2/14/08 CS 5633 Analysis of Algorithms

ALGORITHMS

-y

y :- Example of a red-black tree

mny :

NIL

NIL NIL NIL NIL NIL NIL

4. If a node 1s red, then both 1ts children are
black.

2/14/08 CS 5633 Analysis of Algorithms 10

ALGORITHMS

-y

y :- Example of a red-black tree

wY

NIL NIL

bh=0 NIL NIL NIL NIL NIL NIL

5. All simple paths from any node x, excluding
x, to a descendant leaf have the same
number of black nodes = black-height(x).

2/14/08 CS 5633 Analysis of Algorithms 11

:.c;oiii"rﬂ,\ié .
“ " Height of a red-black tree

Theorem. A red-black tree with » keys has height
h<2log(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

2/14/08 CS 5633 Analysis of Algorithms 12

:.c;oiii"rﬂ,\ié .
“ " Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2log(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

2/14/08 CS 5633 Analysis of Algorithms 13

:.c;oiii"rﬂ,\ié .
“ " Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2log(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

2/14/08 CS 5633 Analysis of Algorithms 14

: i;oii ITHMS .
“ " Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2log(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

2/14/08 CS 5633 Analysis of Algorithms 15

.:.(.;()'l.;:i"l'H:\'-lS .
“ " Height of a red-black tree

Theorem. A red-black tree with n keys has height
h<2log(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION:

* Merge red nodes
into their black
parents.

2/14/08 CS 5633 Analysis of Algorithms 16

.:.(.;()'l.;:i"l'H:\'-lS .
“ " Height of a red-black tree

Theorem. A red-black tree with » keys has height
h<2log(n+1).

Proof. (The book uses induction. Read carefully.)

INTUITION: [
* Merge red nodes 7
into their black l

parents.

* This process produces a tree in which each node
has 2, 3, or 4 children.

* The 2-3-4 tree has uniform depth /2’ of leaves.

2/14/08 CS 5633 Analysis of Algorithms 17

ALGORITHMS

-y

“.=" Proof (continued)

* We have
h' > h/2, since
at most half
the vertices on any
path are red.

* The number of leaves
In each tree 1s n + 1
—=n+1>2"
= log(n+1)>h'>h/2
= h<2log(n+1).

2/14/08 CS 5633 Analysis of Algorithms 18

ALGORITHMS

A
Y \‘

2/14/08

- Query operations

Corollary. The queries SEARCH, MIN,
MAX, SUCCESSOR, and PREDECESSOR
all run 1n O(log n) time on a red-black
tree with » nodes.

NIL NIL

NIL NIL NIL NIL NIL NIL

CS 5633 Analysis of Algorithms 19

ALGORITHMS

“ " Modifying operations

™

The operations INSERT and DELETE cause
modifications to the red-black tree:

1. the operation itself,
2. color changes,

3. restructuring the links of the tree
via “rotations”.

2/14/08 CS 5633 Analysis of Algorithms

20

LGORITHMS

e ' Rotations

wY

@ RIGHT-ROTATE(B)

 Rotations maintain the inorder ordering of keys:
aea,befPB,cey >a<A<b<B<c.

» Rotations maintain the binary search tree property

* A rotation can be performed in O(1) time.

2/14/08 CS 5633 Analysis of Algorithms 21

.‘;‘,,- Red black trees

This data structure requires an extra one-
bit color field in each node.

Red-black properties:

1. Every node 1s either red or black.
2. The root 1s black.

3. The leaves (NIL’s) are black.

4. If a node 1s red, then both 1ts children are black.
5

. All simple paths from any node x, excluding x,
to a descendant leaf have the same number of
black nodes = black-height(x).

2/14/08 CS 5633 Analysis of Algorithms 22

: i;m‘{ ITHMS . .
“ <" Insertion into a red-black tree

™

IDEA: Insert x 1n tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
e Insert x =15.

2/14/08 CS 5633 Analysis of Algorithms 23

.:.(-;()'I‘;:i"r'i-lﬂzlﬁ . .
“ <" Insertion into a red-black tree

™

IDEA: Insert x 1n tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
 Insert x =15.

* Recolor, moving the
violation up the tree.

2/14/08 CS 5633 Analysis of Algorithms 24

.:.(-;()'I‘;:i"r'i-lﬂzlﬁ . .
“ <" Insertion into a red-black tree

™

IDEA: Insert x 1n tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
 Insert x =15.

* Recolor, moving the
violation up the tree.

2/14/08 CS 5633 Analysis of Algorithms 25

.:.(-;()'I‘;:i"r'i-lﬂzlﬁ . .
“ <" Insertion into a red-black tree

™

IDEA: Insert x 1n tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
 Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).

2/14/08 CS 5633 Analysis of Algorithms 26

.:.(-;()'I‘;:i"r'i-lﬂzlﬁ . .
“ <" Insertion into a red-black tree

™

IDEA: Insert x 1n tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
 Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).

2/14/08 CS 5633 Analysis of Algorithms 27

.:.(-;()'I‘;:i"r'i-lﬂzlﬁ . .
“ <" Insertion into a red-black tree

™

IDEA: Insert x 1n tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
 Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
* LEFT-ROTATE(7/)

2/14/08 CS 5633 Analysis of Algorithms 28

.:.(-;()'I‘;:i"r'i-lﬂzlﬁ . .
“ <" Insertion into a red-black tree

™

IDEA: Insert x 1n tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
 Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
* LEFT-ROTATE(7/)

2/14/08 CS 5633 Analysis of Algorithms 29

.:.(-;()'I‘;:i"r'i-lﬂzlﬁ . .
“ <" Insertion into a red-black tree

™

IDEA: Insert x 1n tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
 Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
* LEFT-ROTATE(7) and recolor.

2/14/08 CS 5633 Analysis of Algorithms 30

. :I.i;m.l:i'm MS . .
“ <" Insertion into a red-black tree

™

IDEA: Insert x 1n tree. Color x red. Only red-
black property 4 might be violated. Move the
violation up the tree by recoloring until 1t can
be fixed with rotations and recoloring.

Example:
 Insert x =15.

* Recolor, moving the
violation up the tree.

* RIGHT-ROTATE(18).
* LEFT-ROTATE(7) and recolor.

2/14/08 CS 5633 Analysis of Algorithms 31

ALGORITHMS

" Pseudocode
RB-INSERT(7), x)
TREE-INSERT(7,, x)
color|x] <~ RED > only RB property 4 can be violated
while x # root[T] and color[p[x]|] = RED
do if p[x] = left|p[p[x]]
then y < right[p[p[x]] >) = aunt/uncle of x
if color[y] = RED
then (Case 1)
else if x = right|[p[x]]
then (Case 2) > Case 2 falls into Case 3
(Case 3)
else (“then” clause with “left” and “right” swapped)

color[root|T]] <~ BLACK

2/14/08 CS 5633 Analysis of Algorithms 32

ALGORITHMS
;"‘..;.- Graphical notation

[et Adenote a subtree with a black root.

All A’ s have the same black-height.

2/14/08 CS 5633 Analysis of Algorithms

33

(Or, A’s children are swapped.) Push C’s black onto 4

B and D, and recurse,
Pl =lefiiplplx]] since C’s parent may be
y = right|p|p|x]] red.

color[y] = RED

2/14/08 CS 5633 Analysis of Algorithms 34

= Case 2

Y

plx] = lefi[p[p[x]]
y = right|p[plx]]

color[y] = BLACK
x = right|p[x]]

2/14/08

LEFT-ROTATE(A)

Transform to Case 3.

CS 5633 Analysis of Algorithms

35

“ o~ Case3

RIGHT-ROTATE(C)
y (and recolor)

Done! No more

plx] = leftplplx]] violations of RB
y = right[p|p[x]] property 4 are
color[y] = BLACK possible.

x = left|p[x]]

2/14/08 CS 5633 Analysis of Algorithms 36

ALGORITHMS
———

.':‘::,f Analysis

™

* Go up the tree performing Case 1, which only
recolors nodes.

e If Case 2 or Case 3 occurs, perform | or 2
rotations, and terminate.

Running time: O(log n) with O(1) rotations.

RB-DELETE — same asymptotic running time
and number of rotations as RB-INSERT (see
textbook).

2/14/08 CS 5633 Analysis of Algorithms

37

'\ LG) lTH\dS

“ Pseudocode (part 1I)

else (“then” clause with “left” and “right” swapped)
> plx] = right|p[p[x]]
then y < left[p[p[x]] > y = aunt/uncle of x
if color[y] = RED
then (Case 1°)
else if x = leff|p|x]]
then (Case 2°) > Case 2’ falls into Case 3’
(Case 3°)
color[root|T]] <~ BLACK

2/14/08 CS 5633 Analysis of Algorithms 38

(Or, A’s children are swapped.) Push C’s black onto 4

o and D, and recurse,
plxl=rightiplplx]] since C’s parent may be
y = left[p[plx]] red.

color[y] = RED

2/14/08 CS 5633 Analysis of Algorithms 39

RIGHT-ROTATE(A)
A

plx] = right[p[p|x]]
y = left|plplx]]

color[y] = BLACK

x = left|p[x]]

2/14/08 CS 5633 Analysis of Algorithms 40

Transform to Case 3°.

“ o~ Case 3’

LEFT-ROTATE(C)
(and recolor)

Done! No more

plx] = right[p[p[x]] violations of RB
y = left|plplx]] property 4 are
C‘OZOI/'[)/] = BLACK p0881ble

x = right|p[x]]

2/14/08 CS 5633 Analysis of Algorithms 41

