R CS 5633 — Spl‘ing 2008

[W :
“\‘ i

ALGORITHMS

1 il
|
\\"l —
1 ‘ l THOMAS H CORMEN
CHARLES E LEISERSON
RONALD L. RIVEST
CLIFFORD S TEIN

Order Statistics

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

2/12/08 CS 5633 Analysis of Algorithms

| ' ()rder statistics

NS \‘

Select the ith smallest of # elements (the
element with rank i).

e =1: minimum;,
* | =n: maximum,
¢ = L(n+1)/2J or r(n+1)/2_\: median.

Naive algorithm: Sort and index ith element.

Worst-case running time = O(n log n) + O(1)
= O(n log n),

using merge sort or heapsort (not quicksort).

2/12/08 CS 5633 Analysis of Algorithms

p!.‘ Randomized divide-and-
w3 conquer algorithm
RAND-SELECT(A, p,q,1) >ithsmallestofAlp..q]

if p =¢ then return 4| p]
7 <— RAND-PARTITION(4, p, q)

k<«—r—p+1 > k = rank(A[7])
if =/ then return A| r]
if 1<k

then return RAND-SELECT(A, p, r — 1, 1)
else return RAND-SELECT(A, r + 1, g, 1 — k)

k ,
< A[7] > A[r]
p r q

2/12/08 CS 5633 Analysis of Algorithms 3

=4+ Example

Select the 7 = 7th smallest:

6 10| 13| 5 |8 | 3 |2 |11} i=7
pivot

Partition:

2 15 36|38 |13|10|11) k=4

N\ _J
Y

Select the 7 — 4 = 3rd smallest recursively.

2/12/08 CS 5633 Analysis of Algorithms

St . . Intuition for analysis

'\\‘

(All our analyses today assume that all elements
are distinct.)

Lucky:
T(n) =T(9n/10) + O(n) ntogonl = 40 =1
= 0O(n) CASE 3
Unlucky:
I(n)y=1T(n—1)+ O(n) arithmetic series
= 0(n)

Worse than sorting!

2/12/08 CS 5633 Analysis of Algorithms

S Analysis of expected time

: \‘_.‘

The analysis follows that of randomized
quicksort, but 1t’s a little different.

Let 7(n) = the random variable for the running
time of RAND-SELECT on an 1nput of size 7,
assuming random numbers are independent.

For k=0, 1, ..., n—1, define the indicator
random variable

- { 1 1f PARTITION generates a & : n—k—1 split,
X, = .
0 otherwise.

2/12/08 CS 5633 Analysis of Algorithms

ALGORITH

) \‘\’

Analys1s (continued)

To obtaln an upper bound, assume that the / th element
always falls in the larger side of the partition:

" T(max{0, n—1}) + ®(n) if 0 : n—1 split,

T(n) = < i3 (m:ax{l, n-24)+0(m) if 1 :n-2 split,

T'(max{n—1,0})+O(n) 1fn-1:0 split,

—

-3 Xk(T(maX{k,n —k—1})+ ®(’”l))

0

<2 ni)(k (T(k)+O(n))

k= n/2 |

T

2/12/08 CS 5633 Analysis of Algorithms 7

:\.l.(:().l\{i”
— . Calculating expectation

w \‘\._.‘

EIT(n)]=E|2 3 X,(Tk)+0(n)

k= n/2 |

Take expectations of both sides.

2/12/08 CS 5633 Analysis of Algorithms

;-""5",'_ Calculating expectation

WY -

EIT(n)]=E|2 3 X,(Tk)+0(n)

k=|n/2 |

=2 > E[x,(T(k)+©(n))]

Linearity of expectation.

2/12/08 CS 5633 Analysis of Algorithms

.4 Calculating expectation

"‘“

n—1

E[T(m)]=E|2 Y X, (T(k)+0O(n))
k= n/2 | i
=2 LZlf[(T (k) +0(n))]
=2 HZEE[Xk]-E[T(k)Jr@(n)]
k= n/2]

Independence of X, from other random
choices.

2/12/08 CS 5633 Analysis of Algorithms

10

= 4~ Calculating expectation

E[T(n)]=E| 2 ni)(k(T(kH@(n))

=2 Y E[X,] E[T (k) +©(n)]
2]

-2 S)+ Sem

N j=[n/2] M= n/2]

Linearity of expectation; £[.X, | = 1/n.

2/12/08 CS 5633 Analysis of Algorithms

= 4~ Calculating expectation

E[T(n)]=E|2 ni)(k (T(k)+O(n))

=2 > E[X, | E[T(k)+6(n)]
2

Ero]+= S om)

k= n/2 | N j=[n/2]
-1

E|T(k)]+©(n)
k=|n/2 |

2/12/08 CS 5633 Analysis of Algorithms

- \,' - Hairy recurrence

'\\‘

(But not quite as hairy as the quicksort one.)

E[T(n)]= ZE T(k)]+®(n)
k= (n/2 |
Prove: E[1(n)]| < cn for constant ¢ > 0.

* The constant ¢ can be chosen large enough
so that £[7(n)]| < cn for the base cases.

Use fact: Zk <3n? (exercise).
k=|n/ 2J

2/12/08 CS 5633 Analysis of Algorithms

13

ALGORITHMS
° * '_\‘
R

2/12/08

Substitution method

n—1
E[T(n)]< - ch +O(n)
Vk=|ni2

Substitute inductive hypothesis.

CS 5633 Analysis of Algorithms 14

2/12/08

= 5~ Substitution method

n—1
E[T(m)]<2 > ck+6(n)
& k=|n/2|

< 2;@112) +0O(n)

Use fact.

CS 5633 Analysis of Algorithms

15

2/12/08

= &~ Substitution method

n—|
E[T(m)]<? > ck+6(n)
Mk=|n/2]

< 2}@6‘@;@2) +O(n)

=Cn — (CZ — @(n)j

Express as desired — residual.

CS 5633 Analysis of Algorithms

16

""*\"'\',- Substitution method
-
E[T(n)]< : ch +0O(n)
& k=|n/2

< 2};(21/12) +0(n)

=cn— (T - @(n))

<cn,

if ¢ 1s chosen large enough so
that cn/4 dominates the ®(n).

2/12/08 CS 5633 Analysis of Algorithms

17

g Summary of randomized
~3" order-statistic selection
* Works fast: linear expected time.

* Excellent algorithm in practice.
* But, the worst case is very bad: O(»?).

0. Is there an algorithm that runs 1n linear
time 1n the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
and Tarjan [1973].

IDEA: Generate a good p1vot recursively.

2/12/08 CS 5633 Analysis of Algorithms

18

m Worst-case linear-time order

w7 statistics

SELECT(Z, n)

1. D1ivide the » elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the | /5 |
group medians to be the pivot.

3. Partition around the pivot x. Let &k = rank(x).
4.1if 1=k then return x

elseif i <k Same as
then recursively SELECT the ith > RAND-
smallest element in the lower part SELECT

else recursively SELECT the (i—k)th
smallest element in the upper part

2/12/08 CS 5633 Analysis of Algorithms 19

ALGORITHMS

" Choosing the pivot

2/12/08 CS 5633 Analysis of Algorithms

20

ALG)I lTHMS

1.

2/12/08

U ® ®© 6 6 ©

ivide the » elements into groups of 5.

CS 5633 Analysis of Algorithms

Choosmg the pivot

21

=~ Choosing the pivot

1. Divide the » elements into groups of 5. Find /esser
the median of each 5-element group by rote. I

greater

2/12/08 CS 5633 Analysis of Algorithms 22

-*’w'“ ”f Choosing the pivot

A
Y

o
—COr®

§ ol
® © @ O

1. Divide the » elements into groups of 5. Find /esser
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the | /5]
group medians to be the pivot. greater

2/12/08 CS 5633 Analysis of Algorithms 23

= 4~ Developing the recurrence

T(n) SELECT(I, n)

" 1. Divide the » elements into groups of 5. Find
the median of each 5-element group by rote.

- 2. Recursively SELECT the median x of the | /5]
I(n/35) < group medians to be the pivot.
®(n) 3. Partition around the pivot x. Let £ = rank(x).

(4.if i =k then return x

elseif i <k
(2) < then recursively SELECT the ith

' smallest element in the lower part
else recursively SELECT the (i—k)th
N smallest element 1n the upper part

2/12/08 CS 5633 Analysis of Algorithms 24

ALGORITHN

O(n) S

e Analysis (Assume all elements are distinct.)

(o (s

At least half the group medians are < x, which /esser
is at least | Ln/SJg/ﬂ = 1/10 group medians. I

greater

2/12/08 CS 5633 Analysis of Algorithms 25

e Analysis (Assume all elements are distinct.)

(o (s

At least half the group medians are < x, which /esser
is at least | Ln/SJg/ﬂ = 1/10 group medians. I

e Theretfore, at least 3 | n/10] elements are < x.

greater

2/12/08 CS 5633 Analysis of Algorithms 26

sy Analysis (Assume all elements are distinct.)

L

(o (s (9 (3 (s (s

X y
o ©

At least half the group medians are < x, which /esser
is at least | Ln/SJg/ﬂ = 1/10 group medians. I

e Theretfore, at least 3 | n/10] elements are < x.
e Similarly, at least 3 | 7/10] elements are > x. greater

2/12/08 CS 5633 Analysis of Algorithms 27

P AnaIYSIS (Assume all elements are distinct.)

-

Need “at most” for worst-case runtime

e At least 3| #/10 | elements are < x
= 'at most 7-3| /10| elements are > x

» At least 3| 7/10 | elements are > x
— at most 7-3| 7/10 | elements are < x

* The recursive call to SELECT in Step 4 1s
executed recursively on 7-3 | 1/10] elements.

2/12/08 CS 5633 Analysis of Algorithms 28

A\LGORITHMS

g Analysis (Assume all elements are distinct.)

1\“ \‘ coemr

» Use fact that | a/b] > ((a-(b-1))/b (page 51)
e n-3L.n/10] < n-3-(n-9)/10 = (10n -3n +27)/10
<7n/10 + 3

* The recursive call to SELECT 1n Step 4 1s

executed recursively on at most 77/10+3
clements.

2/12/08 CS 5633 Analysis of Algorithms 29

ALGORITH

— Developlng the recurrence

| §
Y \‘

T (n)

On) 3

1(n/5)

SELECT(Z, 1)

O(n)

T(7n/10 <
+3)

2/12/08

1.

Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

. Recursively SELECT the median x of the | 7/5_

group medians to be the pivot.

. Partition around the pivot x. Let & = rank(x).
. if 7=k then return x

elseif i <k
then recursively SELECT the ith
smallest element in the lower part
else recursively SELECT the (i—k)th
smallest element 1n the upper part

CS 5633 Analysis of Algorithms 30

= 4~ Solving the recurrence
for O(n)

T(n)= T(énj+T(%n+3)+drz -~

Substitution: 7(n)< 0(5 n—4)+ c(—n +3—-4)+dn
I(n)<cn-4)

N Sicn—4c+dn
10

Technical trick. This

shows that 7(n)e O(n) =c(n—4)- % cn+dn

<c(n—-4),

if ¢ 1s chosen large enough, e.g., c=10d

2/12/08 CS 5633 Analysis of Algorithms 31

ALGORITH
|m
|

. Conclusmns

N |
Qv

. Slnce the work at each level of recursion 1s
basically a constant fraction (9/10) smaller,
the work per level 1s a geometric series
dominated by the linear work at the root.

* In practice, this algorithm runs slowly,
because the constant in front of 7 1s large.

* The randomized algorithm is far more
practical.

Exercise: Try to divide into groups of 3 or 7.

2/12/08 CS 5633 Analysis of Algorithms 32

