B CS 5633 -- Spring 2008

W

ALGORITHMS

il o
i

il Lj
el

o ‘ l THOMAS H CORMEN

CHARLE '8 E LEISERSON

RONALD L. RIVEST

CLIFFORD S TEIN

More Divide & Conquer

Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

1/29/08 CS 5633 Analysis of Algorithms 1

m The divide-and-conquer
des1gn paradigm

1. Divide the problem (instance) into
subproblems.

a subproblems, each of size n/b

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.
Runtime 1s /(7

1/29/08 CS 5633 Analysis of Algorithms

s Example. merge sort

1 . Divide: Trivial.

2. Conquer: Recursively sort a=2
subarrays of size n/2=n/b

3. Combine: Linear-time merge, runtime

f(n)eO(n)
1(n) =2 T(n/2) +0(n) ~—_
subproblems Subpmblem size work dividing
\ and combining

I(n)=aT(n/b) + f(n)

1/29/08 CS 5633 Analysis of Algorithms 3

\'-:Z‘;‘ The master method

The master method applies to recurrences of
the form

I(n) = al(n/b) + f(n),

where a > 1, 5 > 1, and f 1s asymptotically
positive.

1/29/08 CS 5633 Analysis of Algorithms

k'-'!"'\"," Three common cases

Compare /(1) with n'°g;
1. f(n)= O(n'2"~¢) for some constant & > 0.

* f(n) grows polynomially slower than 7'°:¢
(by an »* factor).

Solution: T(n) = O(n'oer?)
2. f(n)=0O(n"2*]log"n) for some constant i > 0.

e f(n) and n'°2* grow at similar rates.
Solution: T(n) = O(n'°¢“ log"n) .

1/29/08 CS 5633 Analysis of Algorithms 5

. Three common cases (cont.)

Compare f(n) with n'ogne:

3. f(n)=Q(n'ee") for some constant € > 0.

e f(n) grows polynomially faster than »'°2¢ (by
an n° factor),

and f(n) satisfies the regularity condition that
af(n/b) <cf(n) for some constant ¢ < 1.

Solution: T(n) = O(f(n)) .

1/29/08 CS 5633 Analysis of Algorithms 6

" Examples

Ex. T(n) =41(n/2) + sqrt(n)
a=4,b=2= nloti=p?; f(n) = sqrt(n).
CASE 1: f(n) = O(n* ¢) fore = 1.5.
- T(n) = O(n?).

Ex. T(n) =4T(n/2) + n?
a=4,b=2= nloti=p?; f(n)=n
CASE 2: f(n) = O(n’log’n), that is, & = 0.
- T(n) = O(n’logn).

1/29/08 CS 5633 Analysis of Algorithms

~ <+ Examples

Ex. T(n) =4T(n/2) + n’
a=4,b=2= nloti=p?; f(n)=n’.
CASE 3: f(n)=Q(n* ") fore =1
and 4(n/2)° < cn’ (reg. cond.) for ¢ = 1/2.
o T(n) = O(n?).

Ex. T(n) =4T(n/2) + n*/logn
a=4,b=2 = nloe¢=p?; f(n) = n*/logn.
Master method does not apply. In particular,
for every constant € > 0, we have log n € o(n®).

1/29/08 CS 5633 Analysis of Algorithms 8

\ Master theorem (summary)
I(n)=aT(n/b) + f(n)

CASE 1: f(n) = O(n'ogbe)
— T(n) — @(nlogba) .

CASE 2: f(n) = O(n'°2? 1ogkn)
= T(n) = O(n'°er? logh*n) .

CASE 3: f(n) = Q(n'°2¢* &)y and a f(n/b) < cf(n)
= 1(n) =0O(f(n)) .

1/29/08 CS 5633 Analysis of Algorithms 9

) Example. merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

I(n)=2Tn/2) + O(n)~_

subproblems~gybproblem size work dividing
and combining

nloghd = plogr? = pl = n = CASE 2 (k= 0)
= 1(n)=0Onlogn) .

1/29/08 CS 5633 Analysis of Algorithms 10

‘-_l.-c:o.'.; ITHAS |
“ " Recurrence for binary search

Y

I(n)=11T(n/2) +O(1)

\
subproblems work dividing

subproblem size and combining

nloghe = plogsl = 0 =1 = CAaSE 2 (k= 0)
= T(n) =0B(logn) .

1/29/08 CS 5633 Analysis of Algorithms 11

= 5~ Powering a number

Problem: Compute a”, where n € N.
Naive algorithm: O(n).

Divide-and-conquer algorithm: (recursive squaring)

) {a”/z- a™? if 7 is even;
a j—

a2 =02 00 1f s odd.

I(n)y=Tn/2)+06(1) = T(n)=06ogn).

1/29/08 CS 5633 Analysis of Algorithms 12

= &~ Fibonacci numbers

Recursive definition:

0 1fn=0;
F =41 ifn=1;
F T F 5, iftn>2.

O I 1 2 3 5 8 1321 34 A

Naive recursive algorithm: CQ2(¢")
(exponential time), where ¢=(1+/5)/2
1s the golden ratio.

1/29/08 CS 5633 Analysis of Algorithms 13

w# Computing Fibonacci
% pumbers

Naive recursive squaring:

F = ¢"/\/5 rounded to the nearest integer.
* Recursive squaring: ©O(log ») time.
 This method 1s unreliable, since floating-point
arithmetic 1s prone to round-off errors.
Bottom-up (one-dimensional dynamic programming):

* Compute v, '\, I, ..., F_1n order, forming
each number by summing the two previous.

* Running time: O(n).

1/29/08 CS 5633 Analysis of Algorithms 14

ALGORITHMS

=&~ Convex Hull

Y

Given a set of pins on a pinboard

And a rubber band around them

How does the rubber band look
when 1t snaps tight?

We represent convex hull as the
sequence of points on the convex
hull polygon, in counter-clockwise
order.

1/29/08 CS 5633 Analysis of Algorithms 15

LGORITHM

ALG

pu 3 Convex Hull: Divide & Conquer

l 5 \
Preprocessing: sort the points by x-
coordinate

Divide the set of points into two
sets A and

A contains the left | n/2] points,
contains the right [n/2 | points

Recursively compute the convex
hull of A A

Recursively compute the convex
hull of

Merge the two convex hulls

1/29/08 CS 5633 Analysis of Algorithms 16

ALGORITHMS

~ o~ Merging

WY e

Find upper and lower tangent

With those tangents the convex hull
of AUB can be computed from the
convex hulls of A and the convex hull
of B in O(n) linear time

1/29/08 CS 5633 Analysis of Algorithms

ALGORITHMS

_— Flndlng the lower tangent

N
Y -

a= rlghtmost point of A
b = leftmost point of B

while T=ab not lower tangent to both
convex hulls of A and B do{

while T not lower tangent to
convex hull of A do{
a=a-1

while T not lower tangent to

convex hull of B do{
b=b+1

) j can be checked
1n constant time

1/29/08 CS 5633 Analysis of Algorithms

right turn or
“left turn?

18

ALGORITHMS

=&~ Convex Hull: Runtime

Y

Preprocessing: sort the points by x- O(n log n) ust once
coordinate)

Divide the set of points into two
sets A and O(1)

A contains the left | n/2] points,
contains the right | n/2 | points

Recursively compute the convex T(n/ 2)
hull of A

Recursively compute the convex T(Il /2)
hull of

Merge the two convex hulls O(n)

1/29/08 CS 5633 Analysis of Algorithms 19

1-\-1._(-;0'.; - |
= 4~ Convex Hull: Runtime

-
ny " .. Z‘.'Z.'

Runtime Recurrence:

T(n)=2Tm/2) + cn

Solves to T(n) = O(n log n)

1/29/08 CS 5633 Analysis of Algorithms

20

ALGORITHMS

~ <" Matrix multiplication

Input: A=|a,],B=[D,]. } .
Output: C=[c;]=A4-B. ij=1,2,...,n.

by b A by,
Ca1 € A Gy ay) Ay A ay, | byi by A by,
M MO M M MO M| M MO M

Cnl Cn2 A Cnn _anl a,n A ann_ _bnl bn2 A bnn_

a1 ¢ A ocyy ay ap Noay,

n
¢y = D ai by
k=1

1/29/08 CS 5633 Analysis of Algorithms 21

ALGO]

|

=~ &~ Standard algorithm

Y

fori< 1ton
do forj < 1 ton
do cij<—0
for k<« 1ton

docij<—cl.j+

Running time = O(»°)

1/29/08 CS 5633 Analysis of Algorithms

22

) D1V1de and-conquer algorithm

IDEA:
nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

ris| |ab]|el f]
— T = T || ——d—-

tu| |cd]|g h
C = 4 - B

r =a-efb-g’

S =afibh >8 recursive mults of (72/2)x(n/2) submatrices

{ =cetdh | 4adds of (n/2)x(n/2) submatrices
u =cfiedg

1/29/08 CS 5633 Analysis of Algorithms 23

:" Analysis of D&C algorithm
T(n) =8 I(n/2) + B(n?)

\
submatrices work adding

Do submatrices
submatrix size

nloght = plogsd = 3 — CASE 1 = T(n) = On?).

No better than the ordinary algorithm.

1/29/08 CS 5633 Analysis of Algorithms 24

= .« Strassen’s idea

AN
Ve

* Multiply 2x2 matrices with only 7 recursive mults.

P,=a-(f—-h) r=P.+P,—P,+P,
P,=(a+b)-h s =P +P,
P,=(c+d)-e t =P, +P,
P,=d-(g—e) u=Ps+ P —Py— Py

Py=(a+d):(e+h)
P.=(b—d):(g+h) 7 mults, 18 adds/subs.

P,=(a—c)-(e+f) Note: No .re.hance on
commutativity of mult!

1/29/08 CS 5633 Analysis of Algorithms 25

~ &~ Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

P, =a-(f—-h) r =P.+P,—P,+ P,
Py=(a+b)-h = (a+d)(e + h)
Py=(c+d)-e +d(g—e)—(a+b)h
Pi=d-(g—e) +(b—d)(g+h)
P.=(@+d) -(et+h) =qae +ah +de + dh
P.=(b-d)-(g+h) + dg —de — ah — bh
P,=(@a—c)-(etf) + bg + bh —dg — dh
= ae + bg

1/29/08 CS 5633 Analysis of Algorithms 26

ALGORITHM
;M‘ Strassen’s algorithm

1. Divide: Partition 4 and B into

(n/2)x(n/2) submatrices. Form P-terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n) =7 T(n/2) + O(n?)

1/29/08 CS 5633 Analysis of Algorithms

o Analysis of Strassen

S

T(n)="7T(n/2) + O(n?)
nlogbd = plogr) ~ p>8l = CASE 1 = T(n) = 0O(n's7).
The number 2.81 may not seem much smaller than
3, but because the difference 1s in the exponent, the
impact on running time 1s significant. In fact,

Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 30 or so.

Best to date (of theoretical interest only): ©(n?37%%).

1/29/08 CS 5633 Analysis of Algorithms 28

ALGORITHMS

O

"+~ Conclusion

mny

* D1ivide and conquer 1s just one of several
powerful techniques for algorithm design.

* Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

* Can lead to more efficient algorithms

1/29/08 CS 5633 Analysis of Algorithms 29

