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m The divide-and-conquer
des1gn paradigm

1. Divide the problem (instance) into
subproblems.

a subproblems, each of size n/b

2. Conquer the subproblems by
solving them recursively.

3. Combine subproblem solutions.
Runtime 1s /(7
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s Example. merge sort

1 . Divide: Trivial.

2. Conquer: Recursively sort a=2
subarrays of size n/2=n/b

3. Combine: Linear-time merge, runtime

f(n)eO(n)
1(n) =2 T(n/2) +0(n) ~—_
# subproblems Subpmblem size work dividing
\ and combining

I(n)=aT(n/b) + f(n)
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\'-:Z‘;‘ The master method

The master method applies to recurrences of
the form

I(n) = al(n/b) + f(n),

where a > 1, 5 > 1, and f 1s asymptotically
positive.
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k'-'!"'\"," Three common cases

Compare /(1) with n'°g;
1. f(n)= O(n'2"~¢) for some constant & > 0.

* f(n) grows polynomially slower than 7'°:¢
(by an »* factor).

Solution: T(n) = O(n'oer?)
2. f(n)=0O(n"2*]log"n) for some constant i > 0.

e f(n) and n'°2* grow at similar rates.
Solution: T(n) = O(n'°¢“ log"n) .
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. Three common cases (cont.)

Compare f(n) with n'ogne:

3. f(n)=Q(n'ee" ) for some constant € > 0.

e f(n) grows polynomially faster than »'°2¢ (by
an n° factor),

and f(n) satisfies the regularity condition that
af(n/b) <cf(n) for some constant ¢ < 1.

Solution: T(n) = O(f(n)) .
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" Examples

Ex. T(n) =41(n/2) + sqrt(n)
a=4,b=2= nloti=p?; f(n) = sqrt(n).
CASE 1: f(n) = O(n* ¢) fore = 1.5.
- T(n) = O(n?).

Ex. T(n) =4T(n/2) + n?
a=4,b=2= nloti=p?; f(n)=n
CASE 2: f(n) = O(n’log’n), that is, & = 0.
- T(n) = O(n’logn).

1/29/08 CS 5633 Analysis of Algorithms



~ <+ Examples

Ex. T(n) =4T(n/2) + n’
a=4,b=2= nloti=p?; f(n)=n’.
CASE 3: f(n)=Q(n* ") fore =1
and 4(n/2)° < cn’ (reg. cond.) for ¢ = 1/2.
o T(n) = O(n?).

Ex. T(n) =4T(n/2) + n*/logn
a=4,b=2 = nloe¢=p?; f(n) = n*/logn.
Master method does not apply. In particular,
for every constant € > 0, we have log n € o(n®).
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\ Master theorem (summary)
I(n)=aT(n/b) + f(n)

CASE 1: f(n) = O(n'ogbe )
— T(n) — @(nlogba) .

CASE 2: f(n) = O(n'°2? 1ogkn)
= T(n) = O(n'°er? logh*n) .

CASE 3: f(n) = Q(n'°2¢* &)y and a f(n/b) < cf(n)
= 1(n) =0O(f(n)) .
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) Example. merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.

3. Combine: Linear-time merge.

I(n)=2Tn/2) + O(n)~_

# subproblems~gybproblem size work dividing
and combining

nloghd = plogr? = pl = n = CASE 2 (k= 0)
= 1(n)=0Onlogn) .
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‘-\_l.-c:o.'.; ITHAS |
“ " Recurrence for binary search

Y

I(n)=11T(n/2) +O(1)

\
# subproblems work dividing

subproblem size and combining

nloghe = plogsl = 0 =1 = CAaSE 2 (k= 0)
= T(n) =0B(logn) .
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= 5~ Powering a number

Problem: Compute a”, where n € N.
Naive algorithm: O(n).

Divide-and-conquer algorithm: (recursive squaring)

) {a”/z- a™? if 7 is even;
a j—

a2 =02 00 1f s odd.

I(n)y=Tn/2)+06(1) = T(n)=06ogn).
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= &~ Fibonacci numbers

Recursive definition:

0 1fn=0;
F =41 ifn=1;
F T F 5, iftn>2.

O I 1 2 3 5 8 1321 34 A

Naive recursive algorithm: CQ2(¢")
(exponential time), where ¢=(1+/5)/2
1s the golden ratio.
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w# Computing Fibonacci
% pumbers

Naive recursive squaring:

F = ¢"/\/5 rounded to the nearest integer.
* Recursive squaring: ©O(log ») time.
 This method 1s unreliable, since floating-point
arithmetic 1s prone to round-off errors.
Bottom-up (one-dimensional dynamic programming):

* Compute v, '\, I, ..., F_1n order, forming
each number by summing the two previous.

* Running time: O(n).
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ALGORITHMS

=&~ Convex Hull

Y

Given a set of pins on a pinboard

And a rubber band around them

How does the rubber band look
when 1t snaps tight?

We represent convex hull as the
sequence of points on the convex
hull polygon, in counter-clockwise
order.
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LGORITHM

ALG

pu 3 Convex Hull: Divide & Conquer

l 5 \
Preprocessing: sort the points by x-
coordinate

Divide the set of points into two
sets A and

A contains the left | n/2] points,
contains the right [n/2 | points

Recursively compute the convex
hull of A A

Recursively compute the convex
hull of

Merge the two convex hulls
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ALGORITHMS

~ o~ Merging

WY e

Find upper and lower tangent

With those tangents the convex hull
of AUB can be computed from the
convex hulls of A and the convex hull
of B in O(n) linear time
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ALGORITHMS

_— Flndlng the lower tangent

N
Y -

a= rlghtmost point of A
b = leftmost point of B

while T=ab not lower tangent to both
convex hulls of A and B do{

while T not lower tangent to
convex hull of A do{
a=a-1

while T not lower tangent to

convex hull of B do{
b=b+1

) j can be checked
1n constant time
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“left turn?
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ALGORITHMS

=&~ Convex Hull: Runtime

Y

Preprocessing: sort the points by x- O(n log n) ust once
coordinate )

Divide the set of points into two
sets A and O( 1 )

A contains the left | n/2] points,
contains the right | n/2 | points

Recursively compute the convex T(n/ 2)
hull of A

Recursively compute the convex T(Il /2)
hull of

Merge the two convex hulls O(n)
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1-\-1._(-;0'.; - |
= 4~ Convex Hull: Runtime

-
ny " .. Z‘.'Z.'

Runtime Recurrence:

T(n)=2Tm/2) + cn

Solves to T(n) = O(n log n)
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ALGORITHMS

~ <" Matrix multiplication

Input: A=|a,],B=[D,]. } .
Output: C=[c;]=A4-B. ij=1,2,...,n.

by b A by,
Ca1 € A Gy ay) Ay A ay, | byi by A by,
M MO M M MO M| M MO M

_Cnl Cn2 A Cnn_ _anl a,n A ann_ _bnl bn2 A bnn_

a1 ¢ A ocyy ay ap Noay,

n
¢y = D ai by
k=1
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ALGO]

|

=~ &~ Standard algorithm

Y

fori< 1ton
do forj < 1 ton
do cij<—0
for k<« 1ton

docij<—cl.j+

Running time = O(»°)
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) D1V1de and-conquer algorithm

IDEA:
nxn matrix = 2x2 matrix of (n/2)x(n/2) submatrices:

ris| |ab]|el f]
— T = T || ——d—-

tu| |cd]|g h
C = 4 - B

r =a-efb-g’

S =afibh >8 recursive mults of (72/2)x(n/2) submatrices

{ =cetdh | 4adds of (n/2)x(n/2) submatrices
u =cfiedg
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:" Analysis of D&C algorithm
T(n) =8 I(n/2) + B(n?)

\
# submatrices work adding

Do submatrices
submatrix size

nloght = plogsd = 3 — CASE 1 = T(n) = On?).

No better than the ordinary algorithm.
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= .« Strassen’s idea

AN
Ve

* Multiply 2x2 matrices with only 7 recursive mults.

P,=a-(f—-h) r=P.+P,—P,+P,
P,=(a+b)-h s =P +P,
P,=(c+d)-e t =P, +P,
P,=d-(g—e) u=Ps+ P —Py— Py

Py=(a+d):(e+h)
P.=(b—d):(g+h) 7 mults, 18 adds/subs.

P,=(a—c)-(e+f) Note: No .re.hance on
commutativity of mult!
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~ &~ Strassen’s idea

* Multiply 2x2 matrices with only 7 recursive mults.

P, =a-(f—-h) r =P.+P,—P,+ P,
Py=(a+b)-h = (a+d)(e + h)
Py=(c+d)-e +d(g—e)—(a+b)h
Pi=d-(g—e) +(b—d)(g+h)
P.=(@+d) -(et+h) =qae +ah +de + dh
P.=(b-d)-(g+h) + dg —de — ah — bh
P,=(@a—c)-(etf) + bg + bh —dg — dh
= ae + bg
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ALGORITHM
;M‘ Strassen’s algorithm

1. Divide: Partition 4 and B into

(n/2)x(n/2) submatrices. Form P-terms
to be multiplied using + and — .

2. Conquer: Perform 7 multiplications of
(n/2)x(n/2) submatrices recursively.

3. Combine: Form C using + and — on
(n/2)x(n/2) submatrices.

T(n) =7 T(n/2) + O(n?)
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o Analysis of Strassen

S

T(n)="7T(n/2) + O(n?)
nlogbd = plogr) ~ p>8l = CASE 1 = T(n) = 0O(n's7).
The number 2.81 may not seem much smaller than
3, but because the difference 1s in the exponent, the
impact on running time 1s significant. In fact,

Strassen’s algorithm beats the ordinary algorithm
on today’s machines for n > 30 or so.

Best to date (of theoretical interest only): ©(n?37%%).
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ALGORITHMS

O

"+~ Conclusion

mny

* D1ivide and conquer 1s just one of several
powerful techniques for algorithm design.

* Divide-and-conquer algorithms can be
analyzed using recurrences and the master
method (so practice this math).

* Can lead to more efficient algorithms
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