CS 5633 Analysis of Algorithms — Spring 05
3/31/05

6. Homework
Due 4/12/05 before class

1. Minimum edge (3 points)
Let GG be a connected undirected graph with weight function w : F —]Ra' (i.e., all
edge weights are > 0). Assume edge weights are distinct. Let e* be the cheapest
edge, i.e., w(e*) < w(e) for all e € F with e # e*.

Is it true that there is a minimum spanning tree T of G that contains the edge e*?
If yes, justify your answer. If no, give a counterexample.

2. Adding an edge (5 points)
Let G = (V, E) be a connected undirected graph with weight function w : E — R
(i.e., all edge weights are > 0). Assume edge weights are distinct. Further, let a
minimum spanning tree 1" on G be given.

Now, assume that one new edge (u,v), with u,v € V, with weight w(u,v) is added
to G. (This weight is different from all other edge weights.)

Give an efficient algorithm to test if 7' remains the minimum spanning tree for this
new graph. Your algorithm should run in O(|E|) time. Can you make it run in

O(|V]) time?

3. Ackermann (2 points)
What is the value of a(10%)? Justify your answer.

4. Union-Find (4 points)

for i:=1 to 16 do MAKE-SET(x[il)

for i:=1 to 13 by 3 do UNION(x[i], x[i+1])
for i:=1 to 11 by 5 do UNION(x[i], x[i+4])
UNION(x[1],x[61)

UNION(x[11],x[13])

UNION(x[7],x[13])

UNION(x[1],x[71)

FIND-SET(x[2])

FIND-SET(x[14])

Assume an implementation of the Union-Find data structure with a disjoint-set
forest with union-by-weight and path compression.

Show the data structure after every for-loop, as well as after the last union op-
eration, and the final data structure. What are the answers to the FIND-SET
operations?

5. LEDA (12 points)
Implement one of the two algorithms:

(a) Prim’s MST algorithm using LEDA priority queues
(b) your algorithm from problem 2)

In order to test your implementation use the demo program
gw_min_spanning_tree.c

You will find this on any linux machine in
/usr/local/LEDA-4.5/demo/graph_alg/

When setting the environment variable SLEDAROOT to
/usr/local/LEDA-4.5

you should be able to run the precompiled executable
/usr/local/LEDA-4.5/demo/graph_alg/gw_min_spanning_tree

on any linux machine. This program provides a graphical user interface (GUI)
which allows to create and load graphs, manipulate them, etc. And it displays the
minimum spanning tree computed with the built-in LEDA implementation.

The program compiles on any linux machine using -I and -L to point to $SLEDA-
ROOT and using the libraries -1L -1G -1P -1D3 -1GeoW -IW -1X11 -Im . (In order to

find the proper libX11.so I needed to create a symbolic link to /usr/X11R6/1ib/1ibX11.s0.6
but maybe there is a better way.)

Your implementation should use
gw_min_spanning_tree.c

If you implement Prim’s algorithm then you should replace the call to the minimum
spanning tree algorithm with a call to your algorithm. If you implement the
algorithm from problem 2) you will have to modify the function

void new_edge_handler (GraphWin& gw, edge e)

in order to call your algorithm after a new edge has been inserted.

Please email me the source code and a screenshot of an example run: If you
implement Prim’s algorithm please provide screenshots of an MST computed with
the built-in LEDA algorithm and the MST computed with your algorithm, for the
same graph. If you implement the algorithm from problem 2) please provide a
screenshot of the MST before and after the edge insertion.

