
CS 5633 Analysis of Algorithms – Spring 05

3/31/05

6. Homework
Due 4/12/05 before class

1. Minimum edge (3 points)
Let G be a connected undirected graph with weight function w : E → R

+

0
(i.e., all

edge weights are ≥ 0). Assume edge weights are distinct. Let e∗ be the cheapest
edge, i.e., w(e∗) < w(e) for all e ∈ E with e 6= e∗.

Is it true that there is a minimum spanning tree T of G that contains the edge e∗?
If yes, justify your answer. If no, give a counterexample.

2. Adding an edge (5 points)
Let G = (V,E) be a connected undirected graph with weight function w : E → R

+

0

(i.e., all edge weights are ≥ 0). Assume edge weights are distinct. Further, let a
minimum spanning tree T on G be given.

Now, assume that one new edge (u, v), with u, v ∈ V , with weight w(u, v) is added
to G. (This weight is different from all other edge weights.)

Give an efficient algorithm to test if T remains the minimum spanning tree for this
new graph. Your algorithm should run in O(|E|) time. Can you make it run in
O(|V |) time?

3. Ackermann (2 points)
What is the value of α(108)? Justify your answer.

4. Union-Find (4 points)

for i:=1 to 16 do MAKE-SET(x[i])

for i:=1 to 13 by 3 do UNION(x[i], x[i+1])

for i:=1 to 11 by 5 do UNION(x[i], x[i+4])

UNION(x[1],x[6])

UNION(x[11],x[13])

UNION(x[7],x[13])

UNION(x[1],x[7])

FIND-SET(x[2])

FIND-SET(x[14])

Assume an implementation of the Union-Find data structure with a disjoint-set
forest with union-by-weight and path compression.

Show the data structure after every for-loop, as well as after the last union op-
eration, and the final data structure. What are the answers to the FIND-SET

operations?

5. LEDA (12 points)
Implement one of the two algorithms:

(a) Prim’s MST algorithm using LEDA priority queues

(b) your algorithm from problem 2)

In order to test your implementation use the demo program

gw_min_spanning_tree.c

You will find this on any linux machine in

/usr/local/LEDA-4.5/demo/graph_alg/

When setting the environment variable $LEDAROOT to

/usr/local/LEDA-4.5

you should be able to run the precompiled executable

/usr/local/LEDA-4.5/demo/graph_alg/gw_min_spanning_tree

on any linux machine. This program provides a graphical user interface (GUI)
which allows to create and load graphs, manipulate them, etc. And it displays the
minimum spanning tree computed with the built-in LEDA implementation.

The program compiles on any linux machine using -I and -L to point to $LEDA-
ROOT and using the libraries -lL -lG -lP -lD3 -lGeoW -lW -lX11 -lm . (In order to
find the proper libX11.so I needed to create a symbolic link to /usr/X11R6/lib/libX11.so.6
but maybe there is a better way.)

Your implementation should use

gw_min_spanning_tree.c

If you implement Prim’s algorithm then you should replace the call to the minimum
spanning tree algorithm with a call to your algorithm. If you implement the
algorithm from problem 2) you will have to modify the function

void new_edge_handler(GraphWin& gw, edge e)

in order to call your algorithm after a new edge has been inserted.

Please email me the source code and a screenshot of an example run: If you
implement Prim’s algorithm please provide screenshots of an MST computed with
the built-in LEDA algorithm and the MST computed with your algorithm, for the
same graph. If you implement the algorithm from problem 2) please provide a
screenshot of the MST before and after the edge insertion.

