4/8/09

Schedule (subject to change)

D-4-	M-4:-1
Date Tra 1/12	Material (Cl. 2.2)
Tu 1/13	Analyzing algorithms (Ch. 2.2)
(D) 1/1F	Best case and worst case runtimes; insertion sort, incremental algorithm
Th 1/15	Asymptotic notation (Ch. 3, Ch. A)
TD 1/00	$O, \Omega, \Theta, o, \text{ limit-theorem; runtime for code-snippets}$
Tu 1/20	Asymptotic notation (Ch. 3, Ch. A)
	$O, \Omega, \Theta, o, \text{ limit-theorem; runtime for code-snippets}$
TI 1/00	Homework 1 assigned
Th 1/22	Heapsort (Ch. 6)
TD 1/07	Abstract data types (ADT), priority queue, heap, heapsort, linear-time buildheap
Tu 1/27	Recursion trees and induction (+)
	Recursive algorithms. Guess solution of recurrence using recursion trees and prove
	the correctness of the solution using induction.
Th 1/20	Homework 1 due; homework 2 assigned
Th 1/29	Divide-and-conquer (Ch. 2.3) and recurrences (Ch. 4.1, 4.2)
	Divide-and-conquer, merge sort, binary search; Runtime recurrences. Big-Oh induction (substitution method)
Tu 2/3	Master theorem (Ch. 4.3)
1u 2/3	Use of master theorem to solve recurrences.
	Homework 2 due; homework 3 assigned
Th 2/5	More divide-and-conquer (Ch. 31.6 pages 879–880; 28.2)
111 2/3	Repeated squaring for exponentiation, Strassen's matrix multiplication.
	Programming project 1 assigned
Tu 2/10	Probability, random variables and expected values (Ch. C.2, C.3)
10 2/10	Probability, random variables, expected values.
	Homework 3 due; homework 4 assigned
Th 2/12	Randomized algorithms (Ch. 5.1–5.3)
111 2/12	Hiring problem; Expected runtime analysis.
Tu 2/17	Quicksort (Ch. 7.1–7.4)
142/11	Quicksort, best-case and worst-case runtimes, randomized quicksort.
	Homework 4 due
Th 2/19	Test 1
111 2/10	Material until 2/10 (inclusive)
Tu 2/24	Sorting (Ch. 8.1, 8.2, 8.3)
1 u 2/24	Decision trees, lower $\Omega(n \log n)$ bound for comparison sorts, counting sort, radix sort
	Homework 5 assigned
Th 2/26	Sorting (Ch. 8.1, 8.2, 8.3)
111 2/20	Decision trees, lower $\Omega(n \log n)$ bound for comparison sorts, counting sort, radix sort
Tu 3/3	Order statistics (Ch. 9)
140/0	Order statistics (Cir. 9) Order statistics (find <i>i</i> -th smallest element); Randomized selection, deterministic
	selection in linear time
	Homework 5 due
Th 3/5	Red-black trees (Ch. 13.1, 13.2, 13.3)
111 0/0	Red-black tree property, rotations, insertion; abstract data types, ADT dictionary
	Two black tree property, rotations, insertion, abstract data types, ADT dictionary

Date	Material
Tu 3/10	SPRING BREAK
Th 3/12	SPRING BREAK
Tu 3/17	Dynamic programming (Ch. 15.4, +)
	Fibonacci, binomial coefficient, LCS: fill table, then construct solution from the
	table.
	Programming project 1 due
	Homework 6 assigned
Th $3/19$	Dynamic programming (Ch. 15.3, 15.4. 16.2, +)
	0-1 Knapsack; general outline of dynamic programming: Optimal substructure (re-
N F 0/00	currence), overlapping subproblems, fill table bottom-up or by memoization.
Mo 3/23	Drop deadline to drop with a 'W'
Tu 3/24	Greedy algorithms (Ch. 16.2, problem 16-1 on page 402)
	Greedy algorithms (greedy-choice property, optimal substructure). Making change,
	fractional knapsack.
Th 2/06	Homework 6 due; homework 7 assigned
Th 3/26	Elementary Graph Algorithms (Ch. 22.1–22.2) Representations of graphs, breadth-first search (BFS)
	Programming project 2 assigned
Tu 3/31	Review
14 5/51	Review for test 2
	Homework 7 due
Th 4/2	Test 2
111 1/2	Material from 2/12 until 3/24 (inclusive)
Tu 4/7	Elementary Graph Algorithms (Ch. 22.3–22.4)
14 1/1	Depth-first search (DFS), topological sort
	Homework 8 assigned
Th 4/9	Minimum Spanning Trees (Ch. 23)
,	Prim (grows single tree), Kruskal (grows forest; uses union/find data structure)
Tu 4/14	Single-source shortest paths (Ch. 24 without 24.4)
	Optimal substructure, triangle inequality, relaxation step; Dijkstra (only for non-
	negative edge weights), predecessor tree (shortest path tree); Bellman-Ford, detec-
	tion of negative-weight cycles; Shortest paths in a DAG
	Homework 8 due; homework 9 assigned
Th 4/16	All-Pairs Shortest Paths (Ch. 25.2)
	Dynamic programming: Floyd-Warshall
Tu 4/21	P and NP (Ch. 34)
	Decision problems, definition of classes P and NP, polynomial-time reductions, NP-
	hardness, NP-completeness; Show that problems are NP-complete by reducing from
	other problems
TEL 1/00	Homework 9 due; homework 10 assigned
Th $4/23$	P and NP (Ch. 34)
	TSP, Clique, Independent Set, Vertex Cover, Hamilton Path, Hamilton Circuit
TD 4/00	Programming project 2 due
Tu 4/28	Review for Final Exam
	Review for final exam
	Homework 10 due

Chapter numbers refer to the CLRS book. "+" indicates additional material.

The comprehensive final exam will be on Monday May 4th, 10:30am – 1pm.