
CS 3343 Analysis of Algorithms – Spring 09

2/3/09

3. Homework
Due 2/10/09 before class

1. Master theorem (8 points)
Use the master theorem to solve the following recurrences. Justify your results.
Assume that T (1) = 1.

• T (n) = 8T (n
2 ) + n3 log3 n

• T (n) = 81T (n
3 ) + n2 log2 n

• T (n) = T (n
2 ) + log n

• T (n) = 16T (n
4 ) + n2√n

2. Divide and Conquer (7 points)

Let A[1..n] be an array of n distinct numbers. An inversion is a pair (A[i], A[j])
where i < j and A[i] > A[j], i.e., the numbers are out of order. In this prob-
lem we want to count the number of inversions in A. For example if A[1..8] =
3, 7, 4, 8, 2, 9, 1, 6 then there are 14 inversions: (3, 2), (3, 1), (7, 4), (7, 2), (7, 1),
(7, 6), (4, 2), (4, 1), (8, 2), (8, 1), (8, 6), (2, 1), (9, 1), (9, 6).

(a) (1 point) In the best case, how many inversions can an array of n numbers
have? Justify your answer.

(b) (1 point) In the worst case, how many inversions can an array of n numbers
have? Justify your answer.

(c) (5 points) Write a divide-and-conquer algorithm that counts the number of
inversions in an array.

• Follow the standard divide and conquer approach by dividing in half and
recursing on both halves. How can you use the sub-solutions to obtain a
solution for the whole array?

• Try to develop an algorithm that is as efficient as possible. It is relatively
easy to get a O(n2) algorithm, O(n log2 n) is a bit harder, and even
O(n log n) is possible. (For the latter you may need a preprocessing step
that makes a copy of the input array and sorts it.) You will get more
points for a more efficient algorithm.

• Analyze your runtime by setting up a runtime recurrence and using the
master theorem to solve it.

Flip over to back page =⇒



3. Guessing and Induction (12 points)

For each of the following recurrences use the recursion tree method to find a good
guess of what it could solve to. Make your guess as tight as possible. Then prove
that T (n) is in big-Oh of your guess by big-Oh-induction (= substitution method;
including base case and inductive case).

Every recursion below is stated for n ≥ 2, and the base case is T (1) = 1.
(a) T (n) = 4T (n

2 ) + n2

(b) T (n) = 2T (n
3 ) + 5n (Hint: You may want to use log3 n instead of log2 n.)


