Types of proofs	Want to show	How to show it
Direct proof	$p \rightarrow q$	Assume <i>p</i> is true. Derive a chain of
		implications which in the end proves
		that q is true.
Indirect proof	$p \rightarrow q$	Prove $\neg q \rightarrow \neg p$ with direct proof
(Proof by contrapositive)		
Proof by contradiction	p	Show $\neg p \rightarrow F$
	$p \rightarrow q$	Show $p \land \neg q \rightarrow F$
Proof by cases	$(p_1 \mathbf{v} p_2 \mathbf{v} \dots \mathbf{v} p_n) \rightarrow q$	Show $(p_1 \rightarrow q) \land (p_2 \rightarrow q) \land \dots \land (p_n \rightarrow q)$
		case 1
Proof of equivalence	$p \leftrightarrow q$	Show $(p \rightarrow q) \land (q \rightarrow p)$
	$p \leftrightarrow q \leftrightarrow r$	Show $(p \rightarrow q) \land (q \rightarrow r) \land (r \rightarrow p)$
For-all proof	$\forall x: P(x)$	Prove $P(x)$ for an arbitrary x
		Induction
Counterexample	$\neg \forall x: P(x)$	Find x for which $P(x)$ is false
Existence proof	$\exists x: P(x)$	Constructive: Find <i>x</i> such that $P(x)$
		is true.
		Non-constructive: Show that $P(x)$
		is true for some <i>x</i> without finding it.

CS 2233 Discrete Mathematical Structures -- Carola Wenk