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Convex Hull Problem

 Given a set of pins on a pinboard

and a rubber band around them.

How does the rubber band look   
when it snaps tight?

 The convex hull of a point set is 
one of the simplest shape 
approximations for a set of points.
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Convexity

A set C  R2 is convex if for every two points p,qC the line 
segment pq is fully contained in C.

convex non-convex
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Convex Hull

 The convex hull CH(P) of a point set P  R2 is the smallest 
convex set C  P. In other words CH(P) =  C .

C  P
C convex

P
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Convex Hull
 Observation: CH(P) is the unique convex polygon whose 
vertices are points of P and which contains all points of P.
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 Goal: Compute CH(P). 
What does that mean? How do we represent/store CH(P)?

 Represent the convex hull as the sequence of points on 
the convex hull polygon (the boundary of the convex hull), 
in counter-clockwise order.
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Orientation Test / Halfplane Test
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• positive orientation
(counter-clockwise)

• r lies to the left of pq

• negative orientation
(clockwise)

• r lies to the right of pq

r
q

p
• zero orientation
• r lies on the line pq

• Orient(p,q,r) = sign det  

• Can be computed in constant time

1 px py
1 qx qy
1 rx ry

,where p = (px,py)
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Graham’s Scan

Another incremental algorithm
– Compute solution by incrementally adding points 
– Add points in which order?

• Sorted by x-coordinate
• But convex hulls are cyclically ordered
 Split convex hull into upper and lower part

upper convex hull UCH(P)

lower convex hull LCH(P)
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Graham’s LCH
Algorithm Grahams_LCH(P):
// Incrementally compute the lower convex hull of P  
Input: Point set P  R2

Output: A stack S of vertices describing LCH(P) in counter-clockwise order

Sort P in increasing order by x-coordinate  P = {p1,…,pn}
S.push(p1)
S.push(p2)
for i=3 to n 

while |S|>=2 and orientation(S.second(), S.top(), pi,) <= 0 // no left turn
S.pop()

S.push(pi)

• Each element is appended only once, and hence only deleted at 
most once   the for-loop takes O(n) time

• O(n log n) time total

O(n log n)

O(n)
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Graham’s Scan
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Convex Hull: Divide & Conquer
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two 
sets A and B:

 A contains the left n/2 points, 

 B contains the right n/2 points 

Recursively compute the convex 
hull of A

Recursively compute the convex 
hull of B

 Merge the two convex hulls

A B
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Merging 
 Find upper and lower tangent

 With those tangents the convex hull 
of AB can be computed from the 
convex hulls of A and the convex hull 
of B in O(n) linear time

A B
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check with 
orientation test

right turn
left turn

Finding the lower tangent 
a = rightmost point of A
b = leftmost point of B
while T=ab not lower tangent to both   

convex hulls of A and B do{
while T not lower tangent to 
convex hull of A do{

a=a-1
}
while T not lower tangent to 
convex hull of B do{
b=b+1

}
}

A B
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Convex Hull: Runtime
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two 
sets A and B:

 A contains the left n/2 points, 

 B contains the right n/2 points 

Recursively compute the convex 
hull of A

Recursively compute the convex 
hull of B

 Merge the two convex hulls

O(n log n)  just once

O(1)

T(n/2)

T(n/2)

O(n)
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Convex Hull: Runtime
 Runtime Recurrence:

T(n) = 2 T(n/2) + cn

 Solves to T(n) = (n log n)
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Master theorem
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – )
 T(n) = (nlogba) .

CASE 2: f (n) = (nlogba logkn)
 T(n) = (nlogba logk+1n) .

CASE 3: f (n) = (nlogba + ) and a f (n/b)  c f (n) 
 T(n) = ( f (n)) .

, 
where a  1, b > 1, and f is asymptotically positive.

Convex hull: a = 2, b = 2  nlogba = n
 CASE 2 (k = 0)   T(n) = (n log n) . 
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Jarvis’ March (Gift Wrapping)
Algorithm Giftwrapping_CH(P):
// Compute CH(P) by incrementally inserting points from left to right 
Input: Point set P  R2

Output: List q1, q2,… of vertices in counter-clockwise order around CH(P)
q1 = point in P with smallest y (if ties, with smallest x)
q2 = point in P with smallest angle to horizontal line through q1
i = 2
do {

i++
qi = point with smallest angle to line through qi-2 and qi-1

} while qi ≠ q1

q1

q2

q3

• Runtime: O(hn) , where n = |P| and h = #points on CH(P)
• Output-sensitive algorithm
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Chan’s Algorithm
• Runtime goal: O(n log h) , where n = |P| and h = #points on CH(P)
• Output-sensitive algorithm
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Lower Bound
• Comparison-based sorting of n elements takes

(n log n) time. 
• How can we use this lower bound to show a lower 

bound for the computation of the convex hull of n
points in R2?



1/12/16 CMPS 6640/4040: Computational Geometry 23

Lower Bound
• Comparison-based sorting of n elements takes

(n log n) time. 
• How can we use this lower bound to show a lower 

bound for the computation of the convex hull of n
points in R2?

• Devise a sorting algorithm which uses the convex 
hull and otherwise only linear-time operations
 Since this is a comparison-based sorting algorithm, the 

lower bound (n log n) applies
 Since all other operations need linear time, the convex 

hull algorithm has to take (n log n) time
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CH_Sort
Algorithm CH_Sort(S):
/* Sorts a set of numbers using a convex hull

algorithm. 
Converts numbers to points, runs CH, 
converts back to sorted sequence. */

Input: Set of numbers S  R
Output: A list L of of numbers in S sorted in  

increasing order
P=
for each sS insert (s,s2) into P
L’ = CH(P) // compute convex hull
Find point p’P with minimum x-coordinate
for each p=(px,py)L’, starting with p’,

add px into L
return L

s2

s
-2-4 1 4 5
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Convex Hull Summary
• Graham’s scan: O(n log n)
• Divide-and-conquer: O(n log n) 
• Jarvis’ march (gift wrapping): O(nh)
• Chan’s algorithm: O(n log h)

• Lower bound: (n log n)


