CMPS 6640/4040: Computational Geometry Spring 2016

Convex Hulls
Carola Wenk

Convex Hull Problem

- Given a set of pins on a pinboard and a rubber band around them.
 - How does the rubber band look when it snaps tight?
- The convex hull of a point set is one of the simplest shape approximations for a set of points.

Convexity

• A set $C \subseteq \mathbb{R}^2$ is *convex* if for every two points $p,q \in C$ the line segment pq is fully contained in C.

non-convex

Convex Hull

• The convex hull CH(P) of a point set $P \subseteq \mathbb{R}^2$ is the smallest convex set $C \supseteq P$. In other words $CH(P) = \bigcap_{C \supseteq P} C$.

Convex Hull

- **Observation:** CH(P) is the unique convex polygon whose vertices are points of P and which contains all points of P.
- **Goal:** Compute CH(P).

What does that mean? How do we represent/store CH(P)?

⇒ Represent the convex hull as the sequence of points on the convex hull polygon (the boundary of the convex hull),

in counter-clockwise order.

Orientation Test / Halfplane Test

• positive orientation (counter-clockwise)

 negative orientation (clockwise)

- zero orientation
- r lies on the line pq

- r lies to the left of pq
- Thies to the right of pq

• Orient(p,q,r) = sign det
$$\begin{bmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{bmatrix}$$
, where $p = (p_x, p_y)$

Can be computed in constant time

Another incremental algorithm

- Compute solution by incrementally adding points
- Add points in which order?
 - Sorted by *x*-coordinate
 - But convex hulls are cyclically ordered
 - → Split convex hull into **upper** and **lower** part

Graham's LCH

```
Algorithm Grahams_LCH(P):

// Incrementally compute the lower convex hull of P

Input: Point set P \subseteq \mathbb{R}^2

Output: A stack S of vertices describing LCH(P) in counter-clockwise order

O(n log n)

Sort P in increasing order by x-coordinate \rightarrow P = \{p_1, ..., p_n\}

S.push(p_1)

S.push(p_2)

for i=3 to n

while |S| >= 2 and orientation(S.second(), S.top(), p_i,) <= 0 // no left turn

S.pop()

S.push(p_i)
```

- Each element is appended only once, and hence only deleted at most once \Rightarrow the for-loop takes O(n) time
- $O(n \log n)$ time total

Convex Hull: Divide & Conquer

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets A and B:
 - A contains the left $\lfloor n/2 \rfloor$ points,
 - B contains the right $\lceil n/2 \rceil$ points
- Recursively compute the convex hull of A
- Recursively compute the convex hull of B
- Merge the two convex hulls

Merging

- Find upper and lower tangent
- With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in O(n) linear time

Finding the lower tangent

```
a = rightmost point of A
                                                             4=b
b = leftmost point of B
while T=ab not lower tangent to both
      convex hulls of A and B do {
                                                    a=2
    while T not lower tangent to
     convex hull of A do {
       a=a-1
    while T not lower tangent to
      convex hull of B do {
       b = b + 1
                                    left turn
                                                            right turn
      check with
   orientation test
    1/12/16
                        CMPS 6640/4040: Computational Georgery
                                                                      16
```

Convex Hull: Runtime

 Preprocessing: sort the points by xcoordinate

 $O(n \log n)$ just once

Divide the set of points into two sets A and B:

O(1)

- A contains the left $\lfloor n/2 \rfloor$ points,
- B contains the right $\lceil n/2 \rceil$ points
- Recursively compute the convex hull of **A**

T(n/2)

•Recursively compute the convex hull of B

T(n/2)

Merge the two convex hulls

O(n)

Convex Hull: Runtime

Runtime Recurrence:

$$T(n) = 2 T(n/2) + cn$$

• Solves to $T(n) = \Theta(n \log n)$

Master theorem

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

CASE 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

 $\Rightarrow T(n) = \Theta(n^{\log_b a})$.
CASE 2: $f(n) = \Theta(n^{\log_b a} \log^k n)$
 $\Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.

CASE 3:
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
 and $af(n/b) \le cf(n)$
 $\Rightarrow T(n) = \Theta(f(n))$.

```
Convex hull: a = 2, b = 2 \implies n^{\log_b a} = n

\Rightarrow \text{CASE 2}(k = 0) \implies T(n) = \Theta(n \log n).
```

Jarvis' March (Gift Wrapping)


```
Algorithm Giftwrapping_CH(P):

// Compute CH(P) by incrementally inserting points from left to right

Input: Point set P \subseteq \mathbb{R}^2

Output: List q_1, q_2, \ldots of vertices in counter-clockwise order around CH(P)

q_1 = point in P with smallest y (if ties, with smallest x)

q_2 = point in P with smallest angle to horizontal line through q_1

i = 2

do {
i++
q_i = point with smallest angle to line through q_{i-2} and q_{i-1}
} while q_i \neq q_1
```

- Runtime: O(hn), where n = |P| and h = #points on CH(P)
- Output-sensitive algorithm

Chan's Algorithm

- Runtime goal: $O(n \log h)$, where n = |P| and h = #points on CH(P)
- Output-sensitive algorithm

Lower Bound

- Comparison-based sorting of n elements takes $\Omega(n \log n)$ time.
- How can we use this lower bound to show a lower bound for the computation of the convex hull of n points in \mathbb{R}^2 ?

Lower Bound

- Comparison-based sorting of n elements takes $\Omega(n \log n)$ time.
- How can we use this lower bound to show a lower bound for the computation of the convex hull of n points in \mathbb{R}^2 ?
- Devise a sorting algorithm which uses the convex hull and otherwise only linear-time operations
 - \Rightarrow Since this is a comparison-based sorting algorithm, the lower bound $\Omega(n \log n)$ applies
 - \Rightarrow Since all other operations need linear time, the convex hull algorithm has to take $\Omega(n \log n)$ time

CH_Sort

```
Algorithm CH_Sort(S):
/* Sorts a set of numbers using a convex hull
  algorithm.
  Converts numbers to points, runs CH,
  converts back to sorted sequence. */
Input: Set of numbers S \subseteq \mathbb{R}
Output: A list L of of numbers in S sorted in
          increasing order
P=\emptyset
for each s \in S insert (s,s^2) into P
L' = CH(P) // compute convex hull
Find point p' \in P with minimum x-coordinate
for each p=(p_x,p_y)\in L', starting with p',
  add p_x into L
return L
```


Convex Hull Summary

• Graham's scan: $O(n \log n)$

• Divide-and-conquer: $O(n \log n)$

• Jarvis' march (gift wrapping): O(nh)

• Chan's algorithm: $O(n \log h)$

• Lower bound: $\Omega(n \log n)$